1
|
Rehman MFU, Khan MM. Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess Biosyst Eng 2024; 47:1-22. [PMID: 37993740 DOI: 10.1007/s00449-023-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Insects feed on plants and cause the growth of plants to be restricted. Moreover, the application of traditional pesticides causes harmful effects on non-target organisms and poses serious threats to the environment. The use of conventional pesticides has negative impacts on creatures that are not the intended targets. It also presents significant risks to the surrounding ecosystem. Insects that are exposed to these chemicals eventually develop resistance to them. This review could benefit researcher for future development of nanopesticides research. This is because a holistic approach has been taken to describe the multidimensional properties of nanopesticides, health and environmental concerns and its possible harmful effects on non-target organisms and physiochemical entities. The assessment of effects of the nanopesticides is also being discussed through the drosophotoxicology. The future outlooks have been suggested to take a critical analysis before commercialization or formulation of the nanopesticides.
Collapse
Affiliation(s)
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
2
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Chen W, Amir MB, Liao Y, Yu H, He W, Lu Z. New Insights into the Plutella xylostella Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10952-10969. [PMID: 37462091 PMCID: PMC10375594 DOI: 10.1021/acs.jafc.3c03246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Brassica plants have glucosinolate (GLs)-myrosinase defense mechanisms to deter herbivores. However, Plutella xylostella specifically feeds on Brassica vegetables. The larvae possess three glucosinolate sulfatases (PxGSS1-3) that compete with plant myrosinase for shared GLs substrates and produce nontoxic desulfo-GLs (deGLs). Although PxGSSs are considered potential targets for pest control, the lack of a comprehensive review has hindered the development of PxGSSs-targeted pest control methods. Recent advances in integrative multi-omics analysis, substrate-enzyme kinetics, and molecular biological techniques have elucidated the evolutionary origin and functional diversity of these three PxGSSs. This review summarizes research progress on PxGSSs over the past 20 years, covering sequence properties, evolution, protein modification, enzyme activity, structural variation, substrate specificity, and interaction scenarios based on functional diversity. Finally, we discussed the potential applications of PxGSSs-targeted pest control technologies driven by artificial intelligence, including CRISPR/Cas9-mediated gene drive, transgenic plant-mediated RNAi, small-molecule inhibitors, and peptide inhibitors. These technologies have the potential to overcome current management challenges and promote the development and field application of PxGSSs-targeted pest control.
Collapse
Affiliation(s)
- Wei Chen
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Muhammad Bilal Amir
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Liao
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haizhong Yu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State
Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops,
International Joint Research Laboratory of Ecological Pest Control, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanjun Lu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Ulaeto SB, Mathew GM, Pancrecious JK, Rajimol P, Karun AS, Rajan T. Azadirachta indica (Neem) Self-healing Efficacy Assessment in Epoxy Primer Coatings: A Bio-responsive Strategy for Counteracting Corrosion. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Christofoli M, Costa ECC, Peixoto MF, Alves CCF, Costa AC, Fernandes JB, Forim MR, Araújo WL, de Melo Cazal C. Nanoparticles Loaded with Essential Oil from Zanthoxylum riedelianum Engl. Leaves: Characterization and Effects on Bemisia tabaci Middle-East Asia Minor 1. NEOTROPICAL ENTOMOLOGY 2022; 51:761-776. [PMID: 35948802 DOI: 10.1007/s13744-022-00980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle-East Asia Minor 1 is a major pest of agricultural production systems. It is controlled by synthetic insecticides. Essential oils are promising eco-friendly alternatives. This study developed and characterized nanoparticles loaded with essential oils of Zanthoxylum riedelianum Engl. (Rutaceae) leaves and evaluated their potential for B. tabaci management. The essential oil exhibited an average yield of 0.02% (w w-1) and showed as major components γ-elemene (24.81%), phytol (18.16%), bicyclogermacrene (16.18%), cis-nerolidol (8.26%), and D-germacrene (6.52%). Characterization of the nanoparticles showed a pH between 4.5 and 6.7, a zeta potential of approximately - 25 mV, particle-size distribution ranging from 450 to 550 nm, and encapsulation efficiency close to 98%. The nanoencapsulation was an efficient process that provided photostability against photodegradation. Bioassays with crude and nanoencapsulated essential oils significantly reduced the number of nymphs and eggs of B. tabaci, with the best results observed at concentrations of 5 and 2% (v v-1). Our results demonstrated that essential oils from Z. riedelianum can be nanoformulated resulting in a stable product while maintaining their biological activity against B. tabaci Middle-East Asia Minor 1.
Collapse
Affiliation(s)
- Marcela Christofoli
- Federal Institute of Education, Science and Technology Goiano, Rio Verde, Goiás, Brazil
| | | | | | | | | | | | | | | | - Cristiane de Melo Cazal
- Federal Institute of Education, Science and Technology of Minas Gerais - Campus Barbacena, Barbacena, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Kala S, Jawle CKD, Sogan N, Agarwal A, Kant K, Mishra BK, Kumar J. Analogous foliar uptake and leaf-to-root translocation of micelle nanoparticles in two dicot plants of diverse families. NANOIMPACT 2022; 28:100431. [PMID: 36206944 DOI: 10.1016/j.impact.2022.100431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bio-inspired nanoparticles, including metallic, micelles, and polymeric, have been explored as a novel tool in the quest for effective and safe agrochemicals. Although nanoparticles (NPs) are being rapidly investigated for their usefulness in agricultural production and protection, little is known about the behaviour and interaction of oil-in-water micelle nanoparticles or nano-micelles (NM) with plants. We loaded a bio-based resin inherent of tree from the Pinaceae family as active material and produced stable nano-micelles using a natural emulsifier system. Here, we show that foliar-applied nano-micelle can translocate in two dicot plants belonging to diverse families (Coriandrum sativum -Apiaceae and Trigonella foenumgraecum -Fabaceae) via similar mode. Fluorescent-tagged NM (average diameter 11.20nm) showed strong signals and higher intensities as revealed by confocal imaging and exhibited significant adhesion in leaf compared to control. The NM subsequently translocates to other parts of the plants. As observed by SEM, the leaf surface anatomies revealed higher stomata densities and uptake of NM by guard cells; furthermore, larger extracellular spaces in mesophyll cells indicate a possible route of NM translocation. In addition, NM demonstrated improved wetting-spreading as illustrated by contact angle measurement. In a field bioassay, a single spray application of NM offered protection from aphid infestation for at least 9 days. There were no signs of phytotoxicity in plants post-application of NM. We conclude that pine resin-based nano-micelle provides an efficient, safe, and sustainable alternative for agricultural applications.
Collapse
Affiliation(s)
- Smriti Kala
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India.
| | - Chetan K D Jawle
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| | - Nisha Sogan
- Deapartment of Botany, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amrish Agarwal
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| | - Krishna Kant
- National Research Center for Seed Spice Research, Ajmer 305206, India
| | - B K Mishra
- National Research Center for Seed Spice Research, Ajmer 305206, India
| | - Jitendra Kumar
- Formulation Division, Institute of Pesticide Formulation Technology (IPFT), Gurugram 122016, Haryana, India
| |
Collapse
|
7
|
Zheng Q, Qin D, Wang R, Yan W, Zhao W, Shen S, Huang S, Cheng D, Zhao C, Zhang Z. Novel application of biodegradable chitosan in agriculture: Using green nanopesticides to control Solenopsis invicta. Int J Biol Macromol 2022; 220:193-203. [PMID: 35981672 DOI: 10.1016/j.ijbiomac.2022.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
Botanical pesticides are biological pesticides that are environment friendly. However, their instability and short persistence limit their application. In this study, pH sensitive chitosan based rotenone (Rot) nanoparticles (CS/CMCS/Rot-NPs) were prepared using chitosan and carboxymethyl chitosan to take advantage of the acidic nature of the red fire ant midgut. Chitosan based nanoparticles showed photoprotective and slow sustained release effects on Rot and significantly increased the insecticidal activity of Rot against red fire ants. The 24-96hLC50 of CS/CMCS/Rot-NPs against red fire ants was 3.28-6.84 fold that of Rot. The CS/CMCS/Rot-NPs significantly reduced the venom alkaloid content of red fire ants and their living environment and weakened their survival by increasing their survival cost in the ecological environment. Nanotechnology combined with botanical pesticides can be used as a novel, safe, effective, and ecofriendly method to control red fire ants.
Collapse
Affiliation(s)
- Qun Zheng
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Deqiang Qin
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Ruifei Wang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Wenjuan Yan
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Weihua Zhao
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shigang Shen
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chen Zhao
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
The Symbiotic Fungus Leucoagaricus gongylophorus (Möller) Singer (Agaricales, Agaricaceae) as a Target Organism to Control Leaf-Cutting Ants. INSECTS 2022; 13:insects13040359. [PMID: 35447801 PMCID: PMC9029082 DOI: 10.3390/insects13040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The most used approach to control leaf-cutting ants (which cause damage in agricultural areas) is the application of synthetic chemical compounds that directly affect these insects. But another approach is the use of natural substances that attack the symbiotic fungus responsible for many aspects of the survival of the nest. In this study, we discuss the natural substances already reported in the literature to have fungicidal activity and how they could be applicable as products for the control of leaf-cutting ants. Abstract Atta and Acromyrmex are the main genera of leaf-cutting ants present in North and South America, causing extensive damage to agroforestry. Control of the ants requires high handling costs with few effective methods available to decrease the losses. The symbiosis between the leaf-cutting ants and the fungus Leucoagaricus gongylophorus is essential for ant nest survival. Therefore, L. gongylophorus may be a key target in controlling leaf-cutting ants, since its reduction may cause an imbalance in the symbiosis necessary to maintain the nest. Among the options for natural fungal control, plant species are considered important sources of compounds belonging to several classes of natural products that show potential as antifungal agents. This review also presents studies that establish that the antagonist fungi from the Escovopsis and Trichoderma genera effectively reduce the development of L. gongylophorus. The development of nanostructured delivery systems, which have shown advantages over conventional formulations, is suggested for ant control; no commercial nanotechnology-based product has yet been developed, and this appears to be a new approach for future studies.
Collapse
|
9
|
Hazafa A, Jahan N, Zia MA, Rahman KU, Sagheer M, Naeem M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. CHEMOSPHERE 2022; 292:133411. [PMID: 34958785 DOI: 10.1016/j.chemosphere.2021.133411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The rapidly emerging field of nanotechnology is considered an important achievement in the agriculture sector to increase the pest mortality rate and improve the crop production. The present study evaluates the novel pesticidal and anti-microbial activities of Chrysanthemum coronarium and Azadirachta indica in the nano-suspensions form. The anti-solvent precipitation method was used to formulate nano-suspensions proposed by Response Surface Methodology (RSM). Physicochemical nature of plant extracts and nano-suspensions was characterized through analysis of Zeta-sizer, FT-IR, and HPLC. Characterization results revealed a minimum particle size of 121.1 and 170.1 nm for Chrysanthemum coronarium and Azadirachta indica, respectively. The pesticidal activity of nano-suspension was performed against red flour beetle (RFB) and lesser grain borer (LGB) pests, which showed the maximum mortality rate of 100% with 100% concentration of plant extracts and nano-suspensions of Chrysanthemum coronarium and Azadirachta indica against both insects. In comparison, the combination of these both plant extracts revealed the maximum 100% mortality with a 50% concentration of nano-suspensions (mixing ratio 1:1) after 72 h. The antibacterial activity showed the maximum zone inhibition of 9.96 ± 0.17 and 14.17 ± 0.50 mm against S.aureus and E. coli with nano-suspension of Chrysanthemum coronarium, and 12.09 ± 0.11 and 14.10 ± 0.49 mm with nano-suspension of Azadirachta indica, respectively. It is concluded that individual nano-suspensions showed better pesticidal as well as antimicrobial activities than combinations. However, the constructed nanosuspension can be applied to control the plant pests and diseases simultaneously.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Khalil-Ur Rahman
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sagheer
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
10
|
Nanotechnology-Based Bioactive Antifeedant for Plant Protection. NANOMATERIALS 2022; 12:nano12040630. [PMID: 35214959 PMCID: PMC8879102 DOI: 10.3390/nano12040630] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
Abstract
The productivity of vegetable crops is constrained by insect pests. The search for alternative insect pest control is becoming increasingly important and is including the use of plant-derived pesticides. Plant-derived pesticides are reported as effective in controlling various insect pests through natural mechanisms, with biodegradable organic materials, diverse bioactivity, and low toxicity to non-target organisms. An antifeedant approach for insect control in crop management has been comprehensively studied by many researchers, though it has only been restricted to plant-based compounds and to the laboratory level at least. Nano-delivery formulations of biopesticides offer a wide variety of benefits, including increased effectiveness and efficiency (well-dispersion, wettability, and target delivery) with the improved properties of the antifeedant. This review paper evaluates the role of the nano-delivery system in antifeedant obtained from various plant extracts. The evaluation includes the research progress of antifeedant-based nano-delivery systems and the bioactivity performances of different types of nano-carrier formulations against various insect pests. An antifeedant nano-delivery system can increase their bioactivities, such as increasing sublethal bioactivity or reducing toxicity levels in both crude extracts/essential oils (EOs) and pure compounds. However, the plant-based antifeedant requires nanotechnological development to improve the nano-delivery systems regarding properties related to the bioactive functionality and the target site of insect pests. It is highlighted that the formulation of plant extracts creates a forthcoming insight for a field-scale application of this nano-delivery antifeedant due to the possible economic production process.
Collapse
|
11
|
Li N, Sun C, Jiang J, Wang A, Wang C, Shen Y, Huang B, An C, Cui B, Zhao X, Wang C, Gao F, Zhan S, Guo L, Zeng Z, Zhang L, Cui H, Wang Y. Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12579-12597. [PMID: 34672558 DOI: 10.1021/acs.jafc.0c05431] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pesticides are commonly used in modern agriculture and are important for global food security. However, postapplication losses due to degradation, photolysis, evaporation, leaching, surface runoff, and other processes may substantially reduce their efficacy. Controlled-release formulations can achieve the permeation-regulated transfer of an active ingredient from a reservoir to a target surface. Thus, they can maintain an active ingredient at a predetermined concentration for a specified period. This can reduce degradation and dissipation and other losses and has the potential to improve efficacy. Recent developments in controlled-release technology have adapted the concepts of intelligence and precision from the pharmaceutical industry. In this review, we present recent advances in the development of controlled-release formulations and discuss details of the preparation methods, material improvements, and application technologies.
Collapse
Affiliation(s)
- Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Rao J, Chandrani AN, Powar A, Chandra S. Preparation of microcapsule suspension of herbicide oxyfluorfen polyurea and its effects on phytotoxicity on rice crop. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1951285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jayprakash Rao
- Indofil Industries Limited, Research and Development Lab., Thane, Maharashtra, India
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Amar Nath Chandrani
- Indofil Industries Limited, Research and Development Lab., Thane, Maharashtra, India
| | - Anil Powar
- Indofil Industries Limited, Research and Development Lab., Thane, Maharashtra, India
| | - Sudeshna Chandra
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| |
Collapse
|
13
|
|
14
|
Azadirachta indica A. Juss (Meliaceae) microencapsulated bioinsecticide: Spray drying technique optimization, characterization, in vitro release, and degradation kinetics. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Mondédji AD, Silvie P, Nyamador WS, Martin P, Agboyi LK, Amévoin K, Ketoh GK, Glitho IA. Cabbage Production in West Africa and IPM with a Focus on Plant-Based Extracts and a Complementary Worldwide Vision. PLANTS (BASEL, SWITZERLAND) 2021; 10:529. [PMID: 33799877 PMCID: PMC7998567 DOI: 10.3390/plants10030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
In urban and peri-urban areas in West Africa, the cabbage Brassica oleracea L. (Brassicaceae) is protected using repeated high doses of synthetic insecticides. After a brief description of available IPM components, this paper presents a literature review focused on the botanical extracts that have been experimented with at the laboratory or in the field in West Africa against major cabbage pests. The literature reviewed mentions 19 plant species from 12 families used for cabbage protection in the subregion. The species most used are Azadirachta indica, Capsicum frutescens, Ocimum gratissimum and Ricinus communis. An overview of the world literature showed that a total of 13 plant species belonging to 8 families used to control cabbage pests are reported from the rest of Africa, and 140 plant species belonging to 43 families from the rest of the world. The most commonly used and tested plant species against insect pests in the three geographical areas considered is A. indica.
Collapse
Affiliation(s)
- Abla Déla Mondédji
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
- CIRAD, Agroécologie et Intensification Durable Des Cultures Annuelles (AIDA), 34398 Montpellier, France; (P.S.); (P.M.)
| | - Pierre Silvie
- CIRAD, Agroécologie et Intensification Durable Des Cultures Annuelles (AIDA), 34398 Montpellier, France; (P.S.); (P.M.)
- Institut de Recherche Pour le Développement, UMR IPME, 34AA001 Montpellier, France
- AIDA, CIRAD, Montpellier University, CEDEX 05, 34398 Montpellier, France
| | - Wolali Seth Nyamador
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| | - Pierre Martin
- CIRAD, Agroécologie et Intensification Durable Des Cultures Annuelles (AIDA), 34398 Montpellier, France; (P.S.); (P.M.)
- AIDA, CIRAD, Montpellier University, CEDEX 05, 34398 Montpellier, France
| | - Lakpo Koku Agboyi
- CABI West Africa, PO Box CT 8630, Cantonments, Accra GA 0376800, Ghana;
| | - Komina Amévoin
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| | - Guillaume Koffivi Ketoh
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| | - Isabelle Adolé Glitho
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| |
Collapse
|
16
|
Singh RP, Handa R, Manchanda G. Nanoparticles in sustainable agriculture: An emerging opportunity. J Control Release 2020; 329:1234-1248. [PMID: 33122001 DOI: 10.1016/j.jconrel.2020.10.051] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Conventional agriculture often relies on bulky doses of fertilizers and pesticides that have adversely affected the living beings as well as the ecosystems. As a basic tenet of sustainable agriculture, minimum agrochemicals should be used so that the environment can be protected and various species can be conserved. Further, sustainable agriculture should be a low input system, where the production costs are lower and net returns are higher. The application of nanotechnology in agriculture can significantly enhance the efficiency of agricultural inputs and thus it offers a significant way to maintain sustainable development of agroecosystems via nanoparticles. In this regard, nano-plant growth promoters, nanopesticides, nanofertilizers, nano-herbicides, agrochemical encapsulated nanocarrier systems etc. have been developed for the potential applications in agriculture. These can have great benefits for agriculture, including higher production of crops, inhibition of plant pathogens, removal of unwanted weeds and insects with lesser cost, energy and waste production. However, there are several concerns related to the use of nanoparticles in agriculture. These include the approaches for synthesis, their mechanisms of penetration to applied surfaces and the risks involved. Though, advent of new technologies has significantly improved the synthesis and application of nanomaterials in agriculture, there are many uncertainties regarding nano-synthesis, their way of utilization, uptake and internalization inside the crop cells. Therefore, an elaborate investigation is required for deciphering the engineered nanomaterials, assessing their mechanistic application and agroecological toxicity. Hence, this review is aimed to critically highlight the NPs material application and points towards the vital gaps in the use of nanotechnology for sustainable agriculture.
Collapse
Affiliation(s)
- Raghvendra Pratap Singh
- Department of Research & Development, Biotechnology, Uttaranchal University, Uttarakhand 248007, India.
| | - Rahul Handa
- Department of Botany and Environment Studies, DAV University, Jalandhar, Punjab 144001, India
| | - Geetanjali Manchanda
- Department of Botany and Environment Studies, DAV University, Jalandhar, Punjab 144001, India.
| |
Collapse
|
17
|
Antonioli G, Fontanella G, Echeverrigaray S, Longaray Delamare AP, Fernandes Pauletti G, Barcellos T. Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chem 2020; 326:126997. [DOI: 10.1016/j.foodchem.2020.126997] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
|
18
|
Melanie M, Kosasih FY, Kasmara H, Malini DM, Panatarani C, Made Joni I, Husodo T, Hermawan W. Antifeedant activity of Lantana camara nano suspension prepared by reverse emulsion of ethyl acetate active fraction at various surfactant organic-phase ratio. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Kaur P, Choudhary R, Pal A, Mony C, Adholeya A. Polymer - Metal Nanocomplexes Based Delivery System: A Boon for Agriculture Revolution. Curr Top Med Chem 2020; 20:1009-1028. [DOI: 10.2174/1568026620666200330160810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
Metal nanoparticles are well known for their antimicrobial properties. The use of metalbased
nanoparticles in the agricultural field has considerably increased globally by both direct and
indirect means for the management of plant diseases. In this context, the development of controlled
delivery systems for slow and sustained release of metal nanoparticles is crucial for prolonged antimicrobial
activity. Polymers have emerged as a valuable carrier for controlled delivery of metal nanoparticles
as agrochemicals because of their distinctive properties. The most significant benefits of encapsulating
metal nanoparticles in a polymer matrix include the ability to function as a protector of metal
nanoparticles and their controlled release with prolonged efficacy. This review focuses on loading
strategies and releasing behavior of metal nanoparticles in the polymer matrix as antimicrobial agents
for plant diseases. The Polymer-metal nanocomplexes (PMNs) comprise a biocompatible polymeric
matrix and metal nanoparticles as active components of an antimicrobial agent, pesticides and plant
growth regulators used to enhance the crop productivity.
Collapse
Affiliation(s)
- Pawan Kaur
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Rita Choudhary
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Anamika Pal
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Chanchal Mony
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Alok Adholeya
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| |
Collapse
|
20
|
Plant-derived nanopesticides for agricultural pest control: challenges and prospects. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s41204-020-0066-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Elabasy A, Shoaib A, Waqas M, Jiang M, Shi Z. Synthesis, Characterization, and Pesticidal Activity of Emamectin Benzoate Nanoformulations against Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Molecules 2019; 24:E2801. [PMID: 31374818 PMCID: PMC6696337 DOI: 10.3390/molecules24152801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
Using nanotechnology to develop new formulations of pesticides is considered a possible option in enhancing the efficiency, safety, and photostability of pesticides under various climatic conditions. In the present study, two novel nanoformulations (NFs) were successfully prepared based on nano-delivery systems for emamectin benzoate (EMB) by loading it on cellulose nanocrystals (CNCs) and silicon dioxide nanoparticles (SNPs) as carriers through a freeze-drying method. The synthesized nanoformulations were examined using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). The results showed that SNPs and CNCs had a loading efficiency of 43.31% and 15.04% (w/w) for EMB, respectively, and could effectively protect EMB from photolysis under UV radiation. The LC50 values for EMB + SNPs, EMB + CNCs, and EMB commercial formulation against Phenacoccus solenopsis were 0.01, 0.05, and 0.31 μg/mL, respectively, indicating that both NFs were more effective than the EMB commercial formulation. This work seeks to develop new nano-carriers for potential applications of pesticides in plant protection, which will reduce the recommended dose of pesticides and thereby decrease the amount of pesticide residue in food and the environment.
Collapse
Affiliation(s)
- Asem Elabasy
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Pesticides, Plant Protection Research Institute, Agricultural Research Center, Cairo 11341, Egypt
| | - Ali Shoaib
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Pesticides, Plant Protection Research Institute, Agricultural Research Center, Cairo 11341, Egypt
| | - Muhammad Waqas
- Department of Pesticides, Plant Protection Research Institute, Agricultural Research Center, Cairo 11341, Egypt
| | - Mingxing Jiang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zuhua Shi
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
22
|
Abada MB, Hamdi SH, Gharib R, Messaoud C, Fourmentin S, Greige-Gerges H, Jemâa JMB. Post-harvest management control of Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae): new insights through essential oil encapsulation in cyclodextrin. PEST MANAGEMENT SCIENCE 2019; 75:2000-2008. [PMID: 30610757 DOI: 10.1002/ps.5315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Essential oils are reported to be bio-insecticides. However, problems related to their volatility, oxidation and poor water solubility need to be solved before they can be considered as replacement pest control methods. Thus, an appropriate formulation is needed for commercial use. In this work, a new control method based on the use of a powdered cyclodextrin (CD)/1,8-cineole inclusion complex was assessed against larvae and adults of Ectomyelois ceratoniae (Zeller) in comparison with two Rosmarinus officinalis (L.) essential oils, free 1,8-cineole (oils major compound) and a mixture of 50% CD/1,8-cineole inclusion complex and 50% free 1,8-cineole. RESULTS Solid CD/1,8-cineole complex was more toxic against E. ceratoniae larvae than the two crude essential oils. At a concentration of 15 µL liter-1 air, the respective mortalities were 94.12%, 35.29% and 19.61% for solid CD/1,8-cineole complex, Thala and Cap Zbib oils after 37 days of exposure. Moreover, the solid CD/1,8-cineole complex achieved 5% adult emergence versus 68.33% for Cap Zbib and 55% for Thala oils. The half-life of solid CD/1,8-cineole inclusion complex (10.98 days) was considerably longer than that of the mixture (7.53 days) or free 1,8-cineole (3.43 days). CONCLUSION This work highlights the utility of essential oil encapsulation in CD to overcome restrictions when used to control the date moth E. ceratoniae during storage. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maha Ben Abada
- National Agronomic Institute of Tunisia (INAT), University of Carthage, Tunis, Tunisia
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Soumaya Haouel Hamdi
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Riham Gharib
- Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut Lebanon
| | - Chokri Messaoud
- National Institute of Applied Sciences and Technology (INSAT), Laboratory of Plant Biotechnology, University of Carthage, Tunis, Tunisia
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), Physics and Chemistry Department, Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut Lebanon
| | - Jouda Mediouni Ben Jemâa
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| |
Collapse
|
23
|
Thanigaivel S, Chandrasekaran N, Mukherjee A, Thomas J. Protective efficacy of microencapsulated seaweed extracts for preventing Aeromonas infections in Oreochromis mossambicus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 218:36-45. [PMID: 30594645 DOI: 10.1016/j.cbpc.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/21/2023]
Abstract
Sea weeds are valuable natural assets in aquaculture due to the presence of various bioactive active metabolites in them. Successful fish production and maintenance of disease free culturing systems in aquaculture with environment friendly practices is often affected by various environmental factors. Disease causing pathogens is one of the major factors. These can be controlled by the emerging technologies such as biopolymer based drug delivery systems, feed encapsulations processes and immersions of active ingredients which can possibly facilitate sustainable production by enhancing growth and immune responses in aquaculture animals. The focus of our study is on the identification of antibacterial and antioxidant compounds from two brown seaweeds, Gracilaria foliifera and Sargassum longifolium which have proven bioactive compounds. By a process of microencapsulation these bioactive compounds were encapsulated in the form of beads. Sodium caseinate and xanthan gum were mixed together to form the beads. This process helps to retain and protect the bio active ingredients from adverse reactions such as oxidation and nutritional deterioration. These microencapsulated beads were administered orally to 10 Oreochromis mossambicus the experimental fishes, with average body weight of 10-12 g and challenged against the pathogenic bacteria Aeromonas salmonicida to assess their antibacterial efficacy to control this bacterial pathogen. Microencapsulated bio active compounds were further characterized by FT-Raman, GC-MS, NMR, HPLC and SEM analysis. In this study, the effects of combined formulations of the different bioactive compounds were determined. Data obtained from the treatment of A. salmonicida infection in O. mossambicus using formulated bioactive compounds obtained from these seaweeds showed very high survival percentage in this species of fish.
Collapse
Affiliation(s)
- S Thanigaivel
- Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
24
|
Sittipummongkol K, Pechyen C. RETRACTED: Production, characterization and controlled release studies of biodegradable polymer microcapsules incorporating neem seed oil by spray drying. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Wang G, Xiao Y, Xu H, Hu P, Liang W, Xie L, Jia J. Development of Multifunctional Avermectin Poly(succinimide) Nanoparticles to Improve Bioactivity and Transportation in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11244-11253. [PMID: 30299946 DOI: 10.1021/acs.jafc.8b03295] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Avermectin (AVM) as a nonsystemic pesticide possesses a low effective utilization rate. Studies of the multifunctional pesticide delivery system for improving biological activity are developing prosperously. In this study, multifunctional avermectin/polysuccinimide with glycine methyl ester nanoparticles (AVM-PGA) were prepared by the self-assembly process. The AVM loading capacity was up to 23.7%. After 24 h of UV irradiation, there was still about 70% of AVM remaining in PGA42 nanocarriers, as opposed to less than 5% of the free-form AVM. The rising ambient pH promoted the release of AVM using an in vitro releasing test, revealing a favorable pH-responsively controlled-release property. The mortality rate of Plutella xylostella with 2.5 μg/mL of AVM content of AVM-PGA42 was 96.3% after 48 h, while that of free AVM was only 51.5%. In addition, the AVM could be detected in stems and all leaves treated with AVM-PGA42 nanoparticles, whereas rare AVM was detected only in treated leaves for the free-form AVM, which achieved the transportation of nanocarriers carrying AVM in rice for the first time. Furthermore, the PGA nanoparticles performed a good growth promoting effect on rice. These results show that the AVM-PGA42 nanopesticides have a great potential application prospect to control the pest and improve the drug utilization efficiency on agriculture.
Collapse
Affiliation(s)
- Guodong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou , Guangdong 510642 , China
- College of Materials and Energy , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Yuyan Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Pengtong Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou , Guangdong 510642 , China
- College of Materials and Energy , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Wenlong Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Lijuan Xie
- College of Materials and Energy , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Jinliang Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou , Guangdong 510642 , China
- College of Materials and Energy , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| |
Collapse
|
26
|
Characterization of Nanospheres Containing Zanthoxylum riedelianum Fruit Essential Oil and Their Insecticidal and Deterrent Activities against Bemisia tabaci (Hemiptera: Aleyrodidae). Molecules 2018; 23:molecules23082052. [PMID: 30115840 PMCID: PMC6222527 DOI: 10.3390/molecules23082052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022] Open
Abstract
The aim of our study was to produce and characterize poly-ε-caprolactone (PCL) nanospheres containing essential oils from Zanthoxylum riedelianum fruit and to evaluate their stability gains as well as their insecticidal and deterrent activities against whitefly (Bemisia tabaci). The PCL nanospheres exhibited a homogeneous spherical morphology, with particle diameters between 106.7 nm and 129.2 nm, pH of approximately 6, zeta potential (ZP) lower than −19.0 mV and encapsulation efficiency higher than 98%. Only 43% of the nanoencapsulated essential oil (NSEO) was degraded in response to ultraviolet light, whereas the essential oil (EO) degraded by 76% over the same period. In a free-choice test, the NSEO and EO reduced the number of whitefly eggs by approximately 70%. NSEO and EO at 1.5% killed 82.87% and 91.23% of 2nd-instar nymphs of whitefly, respectively. Although NSEO displayed lower insecticidal activity, it offers a greater advantage over the free EO, due to protection conferred by polymer against photodegradation. Therefore, its usage may optimize the maintenance of essential oils in the field through photoprotection and controlled release. Our results suggest that the EO of Z. riedelianum fruit can be used for B. tabaci management strategy; nevertheless, the benefits of NSEO require further evaluation at the field level.
Collapse
|
27
|
Sittipummongkol K, Chuysinuan P, Techasakul S, Pisitsak P, Pechyen C. Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2456-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Jampílek J, Kráľová K. Benefits and Potential Risks of Nanotechnology Applications in Crop Protection. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Shoaib A, Waqas M, Elabasy A, Cheng X, Zhang Q, Shi Z. Preparation and characterization of emamectin benzoate nanoformulations based on colloidal delivery systems and use in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae). RSC Adv 2018; 8:15687-15697. [PMID: 35539448 PMCID: PMC9080111 DOI: 10.1039/c8ra01913d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022] Open
Abstract
Colloidal delivery systems have been widely used as carriers for controlled delivery of pesticides to improve the efficacy and photostability of natural and semi-synthetic pesticides. In this study, we have synthesized emamectin benzoate nanoformulations (EB + NFs) depending on polymeric nanocapsules (PNC) and two types of the nanosilica, mesoporous nanosilica (MCM-48) and silicon dioxide nanoparticles (SNPs) as carriers for the emamectin benzoate (EB). The fabricated nanoformulations were characterized by using X-ray diffraction analysis, Fourier transform infrared spectroscopy, particle size, zeta potential, morphology, absolute recovery (AR), entrapment efficiency (EE), UV stability and release kinetics. The obtained results showed that the carriers had a remarkable loading ability for EB and improved the EB photostability. The EE% of nanoformulations were 92.84%, 87.45% and 71.19% for emamectin benzoate polymeric nanocapsules (EB + PNC), emamectin benzoate SNPs (EB + SNPs) and emamectin benzoate MCM-48 (EB + MCM-48) respectively. The insecticidal activity of EB + NFs against Plutella xylostella showed that the EB + SNPs was more effective than other EB + NFs and EB alone. The LC50 values were 0.18, 4.03, 8.49 and 11.06 mg L−1 for EB + SNPs, EB + MCM-48, EB + PNC and EB respectively. The obtained results suggest the colloidal delivery systems that used in this study could improve the efficacy and photostability for EB, and they are able to overcome the disadvantage of the natural and semi-synthetic pesticides such as environmental sensitivity and to increase the efficacy of pesticides, which eventually leads to reduce the dosage of pesticides needed, reducing the number of applications required in comparison to conventional formulations. Colloidal delivery systems have been widely used as carriers for controlled delivery of pesticides to improve the efficacy and photostability of natural and semi-synthetic pesticides.![]()
Collapse
Affiliation(s)
- Ali Shoaib
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Muhammad Waqas
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Asem Elabasy
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Xinlai Cheng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Qianqian Zhang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| | - Zuhua Shi
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects
- Ministry of Agriculture
- Institute of Insect Sciences
- Zhejiang University
- Hangzhou 310058
| |
Collapse
|
30
|
Chaudhary S, Kanwar RK, Sehgal A, Cahill DM, Barrow CJ, Sehgal R, Kanwar JR. Progress on Azadirachta indica Based Biopesticides in Replacing Synthetic Toxic Pesticides. FRONTIERS IN PLANT SCIENCE 2017; 8:610. [PMID: 28533783 PMCID: PMC5420583 DOI: 10.3389/fpls.2017.00610] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/04/2017] [Indexed: 05/13/2023]
Abstract
Over the years, extensive use of commercially available synthetic pesticides against phytophagous insects has led to their bioaccumulation in the environment causing increased resistance and reduction in soil biodiversity. Further, 90% of the applied pesticides enter the various environmental resources as a result of run-off, exposing the farmers as well as consumers of the agricultural produce to severe health issues. Therefore, growing attention has been given toward the development of alternate environmentally friendly pesticides/insecticides that would aid an efficient pest management system and also prevent chronic exposures leading to diseases. One such strategy is, the use of neem plant's (Binomial name: Azadirachta indica) active ingredients which exhibit agro-medicinal properties conferring insecticidal as well as immunomodulatory and anti-cancer properties. The most prominent constituent of neem is azadirachtin, which has been established as a pivotal insecticidal ingredient. It acts as an antifeedant, repellent, and repugnant agent and induces sterility in insects by preventing oviposition and interrupting sperm production in males. This review discusses, key neem pesticidal components, their active functional ingredients along with recent strategies on employing nanocarriers, to provide controlled release of the active ingredients and to improve their stability and sustainability.
Collapse
Affiliation(s)
- Suman Chaudhary
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, Faculty of Health, Centre for Molecular and Medical Research, Strategic Research Centre, School of Medicine, Deakin UniversityGeelong, VIC, Australia
| | - Rupinder K. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, Faculty of Health, Centre for Molecular and Medical Research, Strategic Research Centre, School of Medicine, Deakin UniversityGeelong, VIC, Australia
| | - Alka Sehgal
- Department of Gynecology, Government Medical College and HospitalChandigarh, India
| | - David M. Cahill
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin UniversityGeelong, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin UniversityGeelong, VIC, Australia
| | - Rakesh Sehgal
- Department of Medical Parasitology, Jawaharlal Institute of Postgraduate Medical Education and ResearchChandigarh, India
| | - Jagat R. Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, Faculty of Health, Centre for Molecular and Medical Research, Strategic Research Centre, School of Medicine, Deakin UniversityGeelong, VIC, Australia
- *Correspondence: Jagat R. Kanwar
| |
Collapse
|
31
|
Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:157-169. [PMID: 27697374 DOI: 10.1016/j.jenvman.2016.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.
Collapse
Affiliation(s)
- Neha Khandelwal
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Ranjit S Barbole
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Shashwat S Banerjee
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Govind P Chate
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Ankush V Biradar
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, Bhavnagar 364002, Gujarat, India
| | - Jayant J Khandare
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India; Maharashtra Institute of Pharmacy, MIT Campus, Pune 411038, Maharashtra, India.
| | - Ashok P Giri
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
32
|
Xu Y, Wang L, Tong Y, Xiang S, Guo X, Li J, Gao H, Wu X. Study on the preparation, characterization, and release behavior of carbosulfan/polyurethane microcapsules. J Appl Polym Sci 2016. [DOI: 10.1002/app.43844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Xu
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| | - Liying Wang
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| | - Yujia Tong
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| | - Sheng Xiang
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| | - Xinyu Guo
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| | - Jing Li
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| | - Haixiang Gao
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| | - Xuemin Wu
- College of Science; China Agricultural University; Beijing 100193 People's Republic of China
| |
Collapse
|
33
|
Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 121:31-38. [PMID: 26184431 DOI: 10.1016/j.ecoenv.2015.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/20/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Two of the most important challenges facing humanity in the 21st century comprise food production and disease control. Eco-friendly control tools against mosquito vectors and agricultural pests are urgently needed. Insecticidal products of marine origin have a huge potential to control these pests. In this research, we reported a single-step method to synthesize silver nanoparticles (AgNP) using the aqueous leaf extract of the seaweed Hypnea musciformis, a cheap, nontoxic and eco-friendly material, that worked as reducing and stabilizing agent during the biosynthesis. The formation of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometer. AgNP were characterized by FTIR, SEM, EDX and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 40-65nm. Low doses of H. musciformis aqueous extract and seaweed-synthesized AgNP showed larvicidal and pupicidal toxicity against the dengue vector Aedes aegypti and the cabbage pest Plutella xylostella. The LC50 value of AgNP ranged from 18.14 to 38.23ppm for 1st instar larvae (L1) and pupae of A. aegypti, and from 24.5 to 38.23ppm for L1 and pupae of P. xylostella. Both H. musciformis extract and AgNP strongly reduced longevity and fecundity of A. aegypti and P. xylostella adults. This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools.
Collapse
Affiliation(s)
- Mathath Roni
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Chellasamy Panneerselvam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jayapal Subramaniam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Pari Madhiyazhagan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Devakumar Dinesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Udaiyan Suresh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Hanem F Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Egypt
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Akon Higuchi
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
34
|
Flores-Céspedes F, Martínez-Domínguez GP, Villafranca-Sánchez M, Fernández-Pérez M. Preparation and Characterization of Azadirachtin Alginate-Biosorbent Based Formulations: Water Release Kinetics and Photodegradation Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8391-8398. [PMID: 26345112 DOI: 10.1021/acs.jafc.5b03255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The botanical insecticide azadirachtin was incorporated in alginate-based granules to obtain controlled release formulations (CRFs). The basic formulation [sodium alginate (1.47%) - azadirachtin (0.28%) - water] was modified by the addition of biosorbents, obtaining homogeneous hybrid hydrogels with high azadirachtin entrapment efficiency. The effect on azadirachtin release rate caused by the incorporation of biosorbents such as lignin, humic acid, and olive pomace in alginate formulation was studied by immersion of the granules in water under static conditions. The addition of the biosorbents to the basic alginate formulation reduces the rate of release because the lignin-based formulation produces a slower release. Photodegradation experiments showed the potential of the prepared formulations in protecting azadirachtin against simulated sunlight, thus improving its stability. The results showed that formulation prepared with lignin provided extended protection. Therefore, this study provides a new procedure to encapsulate the botanical insecticide azadirachtin, improving its delivery and photostability.
Collapse
Affiliation(s)
- Francisco Flores-Céspedes
- Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería , Agrifood Campus of International Excellence, CeiA3, E-04120 Almería, Spain
| | - Gerardo P Martínez-Domínguez
- Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería , Agrifood Campus of International Excellence, CeiA3, E-04120 Almería, Spain
| | - Matilde Villafranca-Sánchez
- Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería , Agrifood Campus of International Excellence, CeiA3, E-04120 Almería, Spain
| | - Manuel Fernández-Pérez
- Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería , Agrifood Campus of International Excellence, CeiA3, E-04120 Almería, Spain
| |
Collapse
|
35
|
de Oliveira JL, Campos EVR, Bakshi M, Abhilash P, Fraceto LF. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol Adv 2014; 32:1550-61. [DOI: 10.1016/j.biotechadv.2014.10.010] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
|