1
|
Zou Y, Xu H, Wu X, Liu X, Zhao J. Enhancing Radiotherapy Sensitivity in Prostate Cancer with Lentinan-Functionalized Selenium Nanoparticles: Mechanistic Insights and Therapeutic Potential. Pharmaceutics 2024; 16:1230. [PMID: 39339266 PMCID: PMC11434965 DOI: 10.3390/pharmaceutics16091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Radiation therapy is a cornerstone of prostate cancer (PCa) treatment. However, its limited tumor sensitivity and severe side effects restrict its clinical utility. Lentinan-functionalized selenium nanoparticles (LET-SeNPs) have shown promise in enhancing radiotherapy sensitivity and exhibiting antitumor activity. In this study, we investigated the radiotherapy sensitization mechanism of LET-SeNPs in PCa. Our results demonstrate that the combination of LET-SeNPs and X-ray therapy (4 Gy) significantly inhibited the growth and colony formation of PCa cells by inducing apoptosis, surpassing the effects of individual treatments. This combined approach modulated DNA damage through the p53, MAPK (mitogen-activated protein kinase), and AKT pathways. Furthermore, LET-SeNPs increased PC3 cell sensitivity to X-ray-induced apoptosis by downregulating TrxR (Thioredoxin reductase) expression and inducing reactive oxygen species (ROS) overproduction, thereby activating mitochondria-mediated apoptosis signaling pathways. Additionally, LET-SeNPs regulated PARP (poly (ADP-ribose) polymerase) to prevent DNA damage repair. In vivo studies confirmed that the combination treatment inhibited PCa growth by synergistically activating the p53 pathway to induce cell apoptosis. These findings highlight LET-SeNPs' potential as a radiotherapy sensitizer and suggest that combining LET-SeNPs with X-ray therapy could be a promising strategy for clinical application, leveraging selenium-modified nanoparticles' antitumor effects.
Collapse
Affiliation(s)
- Yani Zou
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
- Tumor Radiotherapy Center, Fuyang People's Hospital, Fuyang 236012, China
| | - Helin Xu
- Department of Emergency Surgery, Fuyang People's Hospital, Fuyang 236012, China
| | - Xiu Wu
- Department of Clinical Pathology, Linyi Maternal and Child Healthcare Hospital, Linyi 276016, China
| | - Xuesong Liu
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D'Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, Acúrcio RC, Cerullo V, Santos HA, Florindo HF. Selenium Nanoparticles Synergize with a KRAS Nanovaccine against Breast Cancer. Adv Healthc Mater 2024:e2401523. [PMID: 39205539 DOI: 10.1002/adhm.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment. All optimized SeNP are spherical, <100 nm, and with a narrow size distribution. BSA-stabilized SeNPs produced under acidic conditions present the highest stability in medium, plasma, and at physiological pH, maintaining their size ≈50-60 nm for an extended period. SeNPs demonstrate enhanced toxicity in cancer cell lines while sparing primary human dermal fibroblasts, underscoring their potential as effective anticancer agents. Moreover, the combination of BSA-SeNPs with a nanovaccine results in a strong tumor growth reduction in an EO771 breast cancer mouse model, demonstrating a three-fold decrease in tumor size. This synergistic anticancer effect not only highlights the role of SeNPs as effective anticancer agents but also offers valuable insights for developing innovative combinatorial approaches using SeNPs to improve the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Cláudio Ferro
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ana I Matos
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Luigia Serpico
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carmine D'Amico
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Risto Koivula
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Vincenzo Cerullo
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Helena F Florindo
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| |
Collapse
|
3
|
Khaledizade E, Tafvizi F, Jafari P. Anti-breast cancer activity of biosynthesized selenium nanoparticles using Bacillus coagulans supernatant. J Trace Elem Med Biol 2024; 82:127357. [PMID: 38103517 DOI: 10.1016/j.jtemb.2023.127357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND In the present study, Selenium Nanoparticles (SeNPs) were prepared using Bacillus coagulans, which is a type of Lactic Acid Bacteria (LAB), and then they were applied to treat breast cancer cells. METHODS The chemicophysical properties of the bioengineered SeNPs were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), zeta potential, dynamic light scattering, Fourier Transform Infrared Spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The cytotoxic potential of SeNPs was evaluated by MTT assay against MCF-7 breast cancer cell line. The expression levels of apoptotic genes including BAX, BCL2, VEGF, ERBB2, CASP3, CASP9, CCNE1, CCND1, MMP2 and MMP9 were determined by real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the results of the cell cycle were evaluated by flow cytometry method. RESULTS The synthesized SeNPs had an average particle size of about 24-40 nm and a zeta potential of -16.1 mV, indicating the high stability of SeNPs. EDX results showed presence of SeNPs because amount of selenium in SeNPs was 86.6 % by weight. The cytotoxicity results showed a concentration-dependent effect against MCF-7 cells. The half-maximal inhibitory concentration (IC50) values of B. coagulans supernatant and SeNPs against breast cancer cells were 389.7 µg/mL and 17.56 µg/mL, respectively. In addition, SeNPs synthesized by the green process exhibited enhanced apoptotic potential in MCF-7 cancer cells compared with bacterial supernatants. Cancer cells treated with IC50 concentration of SeNPs induced 32 % apoptosis compared to untreated cells (3 % apoptosis). The gene expression levels of BAX, CASP3, and CASP9 were upregulated, while the expression levels of BCL2, CCNE1, CCND1, MMP2, MMP9, VEGF, and ERBB2 were downregulated after SeNPs treatment of cells. The potential of SeNPs to induce cell apoptosis was demonstrated by the increase in the expression level of BAX gene and the decrease in the expression level of BCL2 after treatment of cancer cells with SeNPs. CONCLUSION The obtained results indicated that SeNPs had strong potential to induce significant cell apoptosis and are cytotoxic against the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Elaheh Khaledizade
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
4
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
5
|
Shehata NS, Elwakil BH, Elshewemi SS, Ghareeb DA, Olama ZA. Selenium nanoparticles coated bacterial polysaccharide with potent antimicrobial and anti-lung cancer activities. Sci Rep 2023; 13:21871. [PMID: 38072846 PMCID: PMC10711019 DOI: 10.1038/s41598-023-48921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Bacterial exopolysaccharides are homopolymeric or heteropolymeric polysaccharides with large molecular weights (10-1000 kDa). Exopolysaccharides' functional uses and potential have revolutionized the industrial and medicinal industries. Hence, the aim of the present study was to optimize the production of bacterial exopolysaccharide and apply it as a capping agent for selenium nanoparticles synthesis. Exopolysaccharide (EPS) producing Lactic acid bacteria (LAB) were isolated from dairy products then biochemically characterized and assessed for their potential antimicrobial effect. The most potent EPS producer was identified as Lactiplantibacillus plantarum strain A2 with accession number OP218384 using 16S rRNA sequencing. Overall, FTIR data of the extracted EPS revealed similarity with amylopectin spectrum. 1H NMR spectrum revealed an α-anomeric configuration of the glycosidic linkage pattern in the polysaccharides while the 13C NMR spectrum can also be separated into two main portions, the anomeric carbons region (δ 98-102 ppm) and the non-anomeric carbons region (δ 60-81 ppm). Antimicrobial activity of the produced EPS showed maximum activity against Staphylococcus aureus, MRSA, Enterobacter aerogenes, Klebsiella pneumoniae and Candida albicans respectively. The EPS capsule layer surrounding the bacterial cells was detected by TEM study. Optimization of EPS production was evaluated using Taguchi design, trial 23 reported the highest biomass yield and EPS output (6.5 and 27.12 g/L respectively) with 2.4 and 3.3 folds increase (from the basal media) respectively. The optimized exopolysaccharide was used as a capping and stabilizing agent for selenium nanoparticles (EPS-SeNPs) synthesis. Zeta potential, size and PDI of the synthesized nanoparticles were - 19.7 mV, 45-65 nm and 0.446 respectively with strong bactericidal and fungicidal effect against the tested pathogens. Complete microbial growth eradication was recorded after 6, 8 and 10 h against Staphylococcus aureus, Candida albicans and Klebsiella pneumoniae respectively. EPS-SeNPs showed a potent antioxidant effect reached 97.4% and anticancer effect against A549 lung cancer cell line (IC50 reached 5.324 µg/mL). EPS-SeNPs inhibited cancerous cell growth at S phase. Moreover, molecular studies revealed the anti-apoptotic activity of Bcl2's was inhibited and Bax was activated. The present investigation successfully synthesized selenium nanoparticles through bacterial EPS with significantly high antimicrobial and anticancer activity.
Collapse
Affiliation(s)
- Nourhan S Shehata
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt.
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Salma S Elshewemi
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt
| | - Zakia A Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Cai W, Wong K, Huang Q. Isolation, structural features, rheological properties and bioactivities of polysaccharides from Lignosus rhinocerotis: A review. Int J Biol Macromol 2023; 242:124818. [PMID: 37178885 DOI: 10.1016/j.ijbiomac.2023.124818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
L. rhinocerotis, an edible and medicinal mushroom, has long been utilized as folk medicine and nutritional food in Southeast Asia and southern China. Polysaccharides are the main bioactive substances of L. rhinocerotis sclerotia, and they have attracted extensive attention of researchers both at home and abroad. In the past few decades, various methods have been applied to extract polysaccharides from L. rhinocerotis (LRPs) and the structural features of LRPs are closely related to the used methods of extraction and purification. Many studies have confirmed that LRPs possess various remarkable bioactivities, including immunomodulatory, prebiotic, antioxidant, anti-inflammatory and anti-tumor activities and intestinal mucosa protective effect. As a natural polysaccharide, LRP has the potential to be a drug and functional material. This paper systematically reviews the recent studies on structural characteristics, modification, rheological properties and bioactivities of LRPs, and provides a theoretical basis for an in-depth study of the structure-activity relationship, and utilization of LRPs as therapeutic agents and functional foods. Additionally, the further research and development of LRPs are also prospected.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kahing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Tangjaidee P, Swedlund P, Xiang J, Yin H, Quek SY. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front Nutr 2023; 9:962312. [PMID: 36815133 PMCID: PMC9939470 DOI: 10.3389/fnut.2022.962312] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023] Open
Abstract
Selenium (Se) is an essential element for maintaining human health. The biological effects and toxicity of Se compounds in humans are related to their chemical forms and consumption doses. In general, organic Se species, including selenoamino acids such as selenomethionine (SeMet), selenocystine (SeCys2), and Se-methylselenocysteine (MSC), could provide greater bioactivities with less toxicity compared to those inorganics including selenite (Se IV) and selenate (Se VI). Plants are vital sources of organic Se because they can accumulate inorganic Se or metabolites and store them as organic Se forms. Therefore, Se-enriched plants could be applied as human food to reduce deficiency problems and deliver health benefits. This review describes the recent studies on the enrichment of Se-containing plants in particular Se accumulation and speciation, their functional properties related to human health, and future perspectives for developing Se-enriched foods. Generally, Se's concentration and chemical forms in plants are determined by the accumulation ability of plant species. Brassica family and cereal grains have excessive accumulation capacity and store major organic Se compounds in their cells compared to other plants. The biological properties of Se-enriched plants, including antioxidant, anti-diabetes, and anticancer activities, have significantly presented in both in vitro cell culture models and in vivo animal assays. Comparatively, fewer human clinical trials are available. Scientific investigations on the functional health properties of Se-enriched edible plants in humans are essential to achieve in-depth information supporting the value of Se-enriched food to humans.
Collapse
Affiliation(s)
- Pipat Tangjaidee
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Swedlund
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand,Riddet Institute New Zealand Centre of Research Excellence in Food, Palmerston North, New Zealand,*Correspondence: Siew Young Quek,
| |
Collapse
|
9
|
Majeed S, Saravanan M, Danish M, Zakariya NA, Ibrahim MNM, Rizvi EH, NisaAndrabi SU, Barabadi H, Mohanta YK, Mostafavi E. Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang H, Xu MZ, Liang XY, Nag A, Zeng QZ, Yuan Y. Fabrication of food grade zein-dispersed selenium dual-nanoparticles with controllable size, cell friendliness and oral bioavailability. Food Chem 2023; 398:133878. [DOI: 10.1016/j.foodchem.2022.133878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
|
11
|
Nie S, He X, Sun Z, Zhang Y, Liu T, Chen T, Zhao J. Selenium speciation-dependent cancer radiosensitization by induction of G2/M cell cycle arrest and apoptosis. Front Bioeng Biotechnol 2023; 11:1168827. [PMID: 37034255 PMCID: PMC10073679 DOI: 10.3389/fbioe.2023.1168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Radiation therapy has Q6long been a routine and effective treatment for non-small cell lung cancer (NSCLC), but the radioresistance and side effects have limited its application. In recent years, the superiority showed by trace element selenium in tumor radiotherapy sensitization has received wide attention. However, different forms of selenium compounds exhibit different chemical properties and their mechanisms of action on tumors may be different. Methods: Human non-small cell lung cancer SPC-A1 cells were studied. Drug toxicity was detected by MTT assay. The selenium content absorbed in vitro at different time points was detected by ICP-MS. Colony formation were conducted to observe the radiosensitization effect of different selenium compounds on SPC-A1 cells, and to compare the proliferation ability of SPC-A1 cells treated by radiation alone and radiation combined with different selenium compounds. Cell migration was detected by cell scratch assay. The changes of cell cycle and apoptosis were detected by flow cytometry. DCFH-DA fluorescent probe was used to detect the effects of different selenium compounds combined with X-ray on ROS production. Results: In this study, these four representative selenium compounds all have a certain ability to enhance the ability of radiotherapy to inhibit tumor cell proliferation and migration, and the mechanism may be related to blocking cell cycle in G2/M phase, activating the caspase cascade and reducing intracellular ROS levels to induce tumor cell apoptosis. Among them, -2-valent organic selenium has the most obvious effect, mainly inhibits cell migration, and induces early apoptosis by activating a large number of caspase-3, and arrest the cell cycle in S phase and G2/M phase. 0-valent selenium nanoparticles mainly arrest the cell cycle in G2/M phase. +4-valent inorganic selenium exerts its antitumor effects primarily by inhibiting tumor cell migration and inducing early apoptosis of tumor cells. Discussion: In this paper, the antitumor effects of four different forms of selenium compounds combined with X-rays on SPC-A1 cells were investigated, and their inhibitory effects on the proliferation and migration of cancer cells and their mechanisms were examined. We found that the radiosensitizing effect of selenium on NSCLC was closely related to its selenium form through the study of the sensitizing effect of different kinds of selenium compounds on radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianfu Zhao
- *Correspondence: Tianfeng Chen, ; Jianfu Zhao,
| |
Collapse
|
12
|
Alvandi H, Hatamian-Zarmi A, Webster TJ. Bioactivity and applications of mushroom and polysaccharide-derived nanotherapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
13
|
Liu G, Ling J, He L, Xu Y, Chen T, Shi C, Luo L. Theranostic Cancer Treatment Using Lentinan-Coated Selenium Nanoparticles and Label-Free CEST MRI. Pharmaceutics 2022; 15:pharmaceutics15010120. [PMID: 36678748 PMCID: PMC9864256 DOI: 10.3390/pharmaceutics15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Selenium nanoparticle (SeNP)-based nanotherapeutics have become an emerging cancer therapy, while effective drug delivery remains a technical hurdle. A theranostic approach, through which imaging companions are integrated with SeNPs, will allow image-guided drug delivery and, therefore, is highly desirable. Traditional methods require the chemical conjugation of imaging agents to the surface of nanoparticles, which may impede the later clinical translation. In this study, we developed a label-free strategy in which lentinan-functionalized SeNPs (LNT-SeNPs) are detected using MRI by the hydroxyl protons carried on LNT molecules. The in vitro phantom study showed that LNT and LNT-SeNPs have a strong CEST signal at 1.0 ppm apart from the water resonance, suggesting an in vivo detectability in the µM concentration range. Demonstrated on CT26 colon tumor cells, LNT-SeNPs exert a strong anticancer effect (IC50 = 4.8 μM), prominently attributed to the ability to generate intracellular reactive oxygen species. However, when testing in a mouse model of CT26 tumors, administration of LNT-SeNPs alone was found unable to deliver sufficient drugs to the tumor, leading to poor treatment responses. To improve the drug delivery, we co-injected LNT-SeNPs and TNF-α, a previously reported drug that could effectively damage the endothelial cells in the tumor vasculature, thereby increasing drug delivery to the tumor. Our results revealed a 75% increase in the intratumoral CEST MRI signal, indicating a markedly increased delivery efficiency of LNT-SeNPs when combined with TNF-α. The combination therapy also resulted in a significantly enhanced treatment outcome, as revealed by the tumor growth study. Taken together, our study demonstrates the first label-free, SeNP-based theranostic system, in which LNT was used for both functional surface coating and CEST MRI signal generating. Such a theranostic LNT-SeNP system is advantageous because it requires chemical labeling and, therefore, has high biocompatibility and low translatable barriers.
Collapse
Affiliation(s)
- Guanfu Liu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jiabao Ling
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuan Xu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Correspondence: (T.C.); (C.S.); Tel.: +86-022-85223393 (T.C.); +86-020-38688848 (C.S.)
| | - Changzheng Shi
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Correspondence: (T.C.); (C.S.); Tel.: +86-022-85223393 (T.C.); +86-020-38688848 (C.S.)
| | - Liangping Luo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
How CW, Ong YS, Low SS, Pandey A, Show PL, Foo JB. How far have we explored fungi to fight cancer? Semin Cancer Biol 2022; 86:976-989. [PMID: 33737109 DOI: 10.1016/j.semcancer.2021.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
The use of fungal cultures have been well documented in human history. Although its used in healthcare, like penicillin and statins, have saved countless of lives, but there is still no fungal products that are specifically indicated for cancers. Research into fungal-derived materials to curb cancers in the recent decades have made a considerable progress in terms of drug delivery vehicles, anticancer active ingredients and cancer immunotherapy. Various parts of the organisms have successfully been exploited to achieve specific tasks. Apart from the identification of novel anticancer compound from fungi, its native capsular structure can also be used as drug cargo to achieve higher oral bioavailability. This review summarises the anticancer potential of fungal-derived materials, highlighting the role of capsular polysaccharides, proteins, and other structures in variety of innovative utilities to fit the current pharmaceutical technology. Many bioactive compounds isolated from fungi have also been formulated into nanoparticles to achieve greater anticancer activity. The progress of fungal compounds and their analogues in clinical trials is also highlighted. In addition, the potential of various fungal species to be developed for anticancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sze Shin Low
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
15
|
Comparative Analysis of the Metabolites and Biological Activity of Cultivated and Wild Lignosus rhinocerotis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5752575. [PMID: 36164453 PMCID: PMC9509233 DOI: 10.1155/2022/5752575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
In this paper, Lignosus rhinocerotis (Cooke) Ryvarden (L. rhinocerotis) cultivated in rice medium (LRR) and in sawdust medium (LRS) was harvested. Then, in terms of the LRR, LRS, and wild L. rhinocerotis (LRW), the total flavonoid contents, total polyphenol contents, total polysaccharide contents, and metabolites were detected; antioxidants of their aqueous extracts and anti-inflammatory of their polysaccharides were performed. In addition, the possible mechanism of the polysaccharides of L. rhinocerotis inhibiting lung damage was elucidated. The results showed that 32 compounds were characterized in L. rhinocerotis, including flavonoids, terpenoids, lignans, and steroids and there were 20 compounds in cultivated and wild L. rhinocerotis; LRR has the highest total polyphenol and flavonoid contents, as well as ABTS and DPPH scavenging capacity. The total polysaccharide contents and the FRAP scavenging capacity of wild L. rhinocerotis were higher than those of cultivated L. rhinocerotis. The inhibition of polysaccharides of LRW (PLRW) on LPS-induced MRC-5 damage was stronger than that of the polysaccharides from cultivated L. rhinocerotis. The PLRW may alleviate lung damage by inhibiting the NLRP3 pathway and thereby suppressing the inflammatory response. In summary, both cultivated and wild L. rhinocerotis are abundant in bioactive components and have antioxidant and anti-inflammatory activities.
Collapse
|
16
|
Li H, Wang Y, Chen Y, Wang S, Zhao Y, Sun J. Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate SeNPs and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Shuxin Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
17
|
Properties of selenium nanoparticles stabilized by Lycium barbarum polysaccharide-protein conjugates obtained with subcritical water. Int J Biol Macromol 2022; 205:672-681. [PMID: 35240216 DOI: 10.1016/j.ijbiomac.2022.02.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/02/2023]
Abstract
Selenium nanoparticles (SeNPs) in an aqueous solution have poor stability and tend to aggregate when stored for a long time. In the present study, SeNPs were stabilized by using Lycium barbarum polysaccharide (LBP) and Lycium barbarum protein (LBPr) conjugates (LBPP) as a stabilizer and dispersing agent. Particularly, the LBPP1 was obtained with subcritical water treatment. In addition, the physical stability, re-dispersity and antitumor activity of LBPP1-SeNPs were investigated. The results showed the particle size of LBPP1-SeNPs was maintained at 111.5-117 nm, which was stable at PH 6, 4 °C and darkness for at least 40 days. Besides, the result of TEM showed that the dispersion of LBPP1-SeNPs had more clear layers and smoother surfaces. Moreover, LBPP1-SeNPs had excellent re-dispersibility and exhibited a significant inhibitory effect on HepG-2 cells and Caco-2 cells, respectively (p < 0.05). Therefore, LBPP1-SeNPs can be used as potential selenium nutritional supplements for food and medical applications.
Collapse
|
18
|
Yu YH, Tang ZM, Xiong C, Wu FF, Zhao JR, Zhao XH. Enhanced Growth Inhibition and Apoptosis Induction in Human Colon Carcinoma HT-29 Cells of Soluble Longan Polysaccharides with a Covalent Chemical Selenylation. Nutrients 2022; 14:nu14091710. [PMID: 35565676 PMCID: PMC9100046 DOI: 10.3390/nu14091710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
The selenylated polysaccharides chemically belong to the organic Se-conjugated macromolecules and have recently been attracting more and more attention due to their potential to promote body health or prevent cancers. Longan (Dimocarpus longan L.), as a subtropical fruit, contains soluble and non-digestible polysaccharides that are regarded with health care functions in the body. In this study, the longan polysaccharides (LP) were obtained via enzyme-assisted water extraction, and then chemically selenylated using a reaction system composed of HNO3–Na2SeO3 to yield two selenylated products, namely, SeLP1 and SeLP2, with Se contents of 1.46 and 4.79 g/kg, respectively. The anti-cancer effects of the three polysaccharide samples (LP, SeLP1, and SeLP2) were thus investigated using the human colon cancer HT-29 cells as the cell model. The results showed that SeLP1 and SeLP2 were more able than LP to inhibit cell growth, alter cell morphology, cause mitochondrial membrane potential loss, increase intracellular reactive oxygen and [Ca2+]i levels, and induce apoptosis via regulating the eight apoptosis-related genes and proteins including Bax, caspases-3/-8/-9, CHOP, cytochrome c, DR5, and Bcl-2. It was thereby proven that the selenylated polysaccharides could induce cell apoptosis via activating the death receptor, mitochondrial-dependent, and ER stress pathways. Collectively, both SeLP1 and SeLP2 showed higher activities than LP in HT-29 cells, while SeLP2 was consistently more active than SeLP1 in exerting these assessed anti-cancer effects on the cells. In conclusion, this chemical selenylation covalently introduced Se into the polysaccharide molecules and caused an enhancement in their anti-cancer functions in the cells, while higher selenylation extent was beneficial to the activity enhancement of the selenylated products.
Collapse
Affiliation(s)
- Ya-Hui Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China;
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.-M.T.); (C.X.); (F.-F.W.); (J.-R.Z.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.-M.T.); (C.X.); (F.-F.W.); (J.-R.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Cen Xiong
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.-M.T.); (C.X.); (F.-F.W.); (J.-R.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Fei-Fei Wu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.-M.T.); (C.X.); (F.-F.W.); (J.-R.Z.)
| | - Jun-Ren Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.-M.T.); (C.X.); (F.-F.W.); (J.-R.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China;
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.-M.T.); (C.X.); (F.-F.W.); (J.-R.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence: ; Tel.: +86-668-292-3716
| |
Collapse
|
19
|
Liu Y, Yang H, Liu Q, Pan M, Wang D, Pan S, Zhang W, Wei J, Zhao X, Ji J. Selenocystine-Derived Label-Free Fluorescent Schiff Base Nanocomplex for siRNA Delivery Synergistically Kills Cancer Cells. Molecules 2022; 27:1302. [PMID: 35209090 PMCID: PMC8878402 DOI: 10.3390/molecules27041302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemo and siRNA synergic treatments for tumors is a promising new therapeutic trend. Selenocystine, a selenium analog of cysteine, has been considered a potential antitumor agent due to its redox perturbing role. In this study, we developed a nanocarrier for siRNA based on a selenocystine analog engineered polyetherimide and achieved traceable siRNA delivery and the synergic killing of tumor cells. Notably, we applied the label-free Schiff base fluorescence mechanism, which enabled us to trace the siRNA delivery and to monitor the selenocystine analogs' local performance. A novel selenocystine-derived fluorescent Schiff base linker was used to crosslink the polyetherimide, thereby generating a traceable siRNA delivery vehicle with green fluorescence. Moreover, we found that this compound induced tumor cells to undergo senescence. Together with the delivery of a siRNA targeting the anti-apoptotic BCL-xl/w genes in senescent cells, it achieved a synergistic inhibition function by inducing both senescence and apoptosis of tumor cells. Therefore, this study provides insights into the development of label-free probes, prodrugs, and materials towards the synergic strategies for cancer therapy.
Collapse
Affiliation(s)
- Yang Liu
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Qian Liu
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Mingming Pan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Danli Wang
- Zhoushan Hospital of Zhejiang Province, Zhoushan 316004, China;
| | - Shiyuan Pan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Weiran Zhang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Jinfeng Wei
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Xiaowei Zhao
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
20
|
Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, Alshehri S, Ghoneim MM, Rahamathulla M, Hani U, Shakeel F. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118008] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Abbas HS, Nagy MM, Hammam WE, Abd El Fatah AA, Abd-Elafatah MS, Aref AAAENM, Abdulhamid HA, Ghotekar S, Abou Baker DH. A Comprehensive Review on the Synthesis, Surface Decoration of Nanoselenium and Their Medical Applications. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:197-220. [DOI: 10.1007/978-981-16-9190-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Huang W, He L, Zhang Z, Shi S, Chen T. Shape-Controllable Tellurium-Driven Heterostructures with Activated Robust Immunomodulatory Potential for Highly Efficient Radiophotothermal Therapy of Colon Cancer. ACS NANO 2021; 15:20225-20241. [PMID: 34807558 DOI: 10.1021/acsnano.1c08237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tellurium (Te)-based semiconductor easily leads to the recombination of photogenerated electron-hole pairs (h+-e-) that severely limits the efficiency of reactive oxygen species (ROS) generation and further hinders its clinical application in biomedicine. With regard to these problems, herein we designed and synthesized a Te heterostructure (BTe-Pd-Au) by incorporating palladium (Pd) and gold (Au) elements to promote its radiosensitivity and photothermal performance, thus realizing highly efficient radiophotothermal tumor elimination by activating robust immunomodulatory potential. This shape-controllable heterostructure that coated by Pd on the surface of Te nanorods and Au in the center of Te nanorods was simply synthesized by using in situ synthesis method, which could promote the generation and separation of h+-e- pairs, thereby exhibiting superior ROS producing ability and photothermal conversion efficiency. Using a mouse model of colon cancer, we proved that BTe-Pd-Au-R-combined radiophotothermal therapy not only eradicated tumor but also elicited to a series of antitumor immune responses by enhancing the cytotoxic T lymphocytes, triggering dendritic cells maturation, and decreasing the percentage of M2 tumor-associated macrophages. In summary, our study highlights a facile strategy to design Te-driven heterostructure with versatile performance in radiosensitization, photothermal therapy, and immunomodulation and offers great promise for clinical translational treatment of colon cancer.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhongyang Zhang
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Sujiang Shi
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
23
|
Martínez-Esquivias F, Gutiérrez-Angulo M, Pérez-Larios A, Sánchez-Burgos J, Becerra-Ruiz J, Guzmán-Flores JM. Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anticancer Agents Med Chem 2021; 22:1658-1673. [PMID: 34515010 DOI: 10.2174/1871520621666210910084216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Health systems worldwide consider cancer a disease that causes the highest number of deaths per year. The low efficacy of current cancer therapies has led other areas of science to search for new alternatives, including nanomaterial sciences. Selenium nanoparticles have anticancer activity, as revealed by in vitro tests performed on prostate, breast, cervical, lung, colorectal, and liver cancer cell lines. Studies attribute anticancer activity to the anti-metastatic effect due to the inhibition of migration and invasion processes. The antiproliferative effect is the low expression of molecules such as cyclin D1, cyclin E, and CDK2. In addition to the activation of cell apoptosis by caspase-dependent mechanisms, there is a low expression of anti-apoptotic proteins such as Bcl-2 and a high expression of the apoptotic proteins like Bax and Bad. Other studies attribute anticancer activity to the activation of cell necroptosis, where molecules such as TNF and IRF1 participate. The pharmacological potential of selenium nanoparticles depends primarily on the administered dose, particle size, and chemical composition. Furthermore, several studies have shown that the administration of these nanoparticles is safe due to their low toxicity in non-cancerous cells. In this review, the most relevant antecedents on the anticancer potential of selenium nanoparticles in prostate, breast, cervical, lung, liver, and colorectal cancer cell lines are discussed.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Alejandro Pérez-Larios
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | | | - Julieta Becerra-Ruiz
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| |
Collapse
|
24
|
Liu Y, Huang W, Han W, Li C, Zhang Z, Hu B, Chen S, Cui P, Luo S, Tang Z, Wu W, Luo Q. Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Zhang S, Song Z, Shi L, Zhou L, Zhang J, Cui J, Li Y, Jin DQ, Ohizumi Y, Xu J, Guo Y. A dandelion polysaccharide and its selenium nanoparticles: Structure features and evaluation of anti-tumor activity in zebrafish models. Carbohydr Polym 2021; 270:118365. [PMID: 34364610 DOI: 10.1016/j.carbpol.2021.118365] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
In this study, an inulin fructan (TMP50-2) with moderate anti-tumor activity was obtained from dandelion. To further improve the anti-tumor activity of TMP50-2, a monodisperse and stable spherical nanoparticle (Tw-TMP-SeNP, 50 nm) was fabricated. Physico-chemical analysis revealed that TMP50-2 and Tween 80 were tightly wrapped on the surface of SeNPs by forming CO⋯Se bonds or through hydrogen bonding interaction (OH⋯Se). In vitro anti-tumor assay showed that Tw-TMP-SeNP treatment could significantly inhibit the proliferation of cancer cells (HepG2, A549, and HeLa) in a dose-dependent manner, while HepG2 cells were more susceptible to Tw-TMP-SeNP with an IC50 value of 46.8 μg/mL. The apoptosis induction of HepG2 cells by Tw-TMP-SeNP was evidenced by increasing the proportion of apoptotic cells ranging from 12.5% to 27.4%. Furthermore, in vivo zebrafish model confirmed the anti-tumor activity of Tw-TMP-SeNP by inhibiting the proliferation and migration of tumor cells as well as the angiogenesis of zebrafish embryos.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
26
|
Tsivileva O, Pozdnyakov A, Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules 2021; 26:3657. [PMID: 34203966 PMCID: PMC8232642 DOI: 10.3390/molecules26123657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| |
Collapse
|
27
|
Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021; 164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Cancer remains a global health problem largely due to a lack of effective therapies. Major cancer management strategies include chemotherapy, surgical resection, and radiation. Unfortunately, these strategies have a number of limitations, such as non-specific side effects, uneven delivery of the drugs, and lack of proper monitoring technology. Inorganic nanoparticles (NPs) are considered promising agents in treating and tracing cancer due to their unique physicochemical properties such as the controlled release of drugs, bioavailability, biocompatibility, stability, and large surface area. Also, they enhance the solubility of hydrophobic drugs, prolong their circulation time, prevent undesired off-targeting and subsequent side effects, making them efficient particles in cancer theranostics. Promising inorganic-NPs include gold, selenium, silica, and oxide NPs. Further, several techniques are used to modify the surface of inorganic-NPs, making them more efficient for the effective transport of therapeutic cargos to overcome cellular barriers. Thus, inorganic-NPs function effectively, surmounting the intrinsic drawbacks of traditional organic NPs. This mini-review summarizes the significant inorganic-NPs, their properties, surface modifications, cellular uptake, and bio-distributions, along with their potential use in cancer theranostics. We also discuss the promises and challenges faced during the inorganic-NPs mediated therapeutic approach for cancer and these particles' status in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
28
|
Nivedita PS, Joy HH, Torvi AI, Shettar AK. Applications of Polysaccharides in Cancer Treatment. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O, Chlichlia K. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. NANOSCALE ADVANCES 2021; 3:2516-2528. [PMID: 36134160 PMCID: PMC9417964 DOI: 10.1039/d0na00984a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Eleni Tryfonopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace 68100 Alexandroupolis Greece
| | - Charalampos Sarafidis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| |
Collapse
|
30
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
31
|
Ofoedu CE, You L, Osuji CM, Iwouno JO, Kabuo NO, Ojukwu M, Agunwah IM, Chacha JS, Muobike OP, Agunbiade AO, Sardo G, Bono G, Okpala COR, Korzeniowska M. Hydrogen Peroxide Effects on Natural-Sourced Polysacchrides: Free Radical Formation/Production, Degradation Process, and Reaction Mechanism-A Critical Synopsis. Foods 2021; 10:699. [PMID: 33806060 PMCID: PMC8064442 DOI: 10.3390/foods10040699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous reactive oxygen species (ROS) entities exist, and hydrogen peroxide (H2O2) is very key among them as it is well known to possess a stable but poor reactivity capable of generating free radicals. Considered among reactive atoms, molecules, and compounds with electron-rich sites, free radicals emerging from metabolic reactions during cellular respirations can induce oxidative stress and cause cellular structure damage, resulting in diverse life-threatening diseases when produced in excess. Therefore, an antioxidant is needed to curb the overproduction of free radicals especially in biological systems (in vivo and in vitro). Despite the inherent properties limiting its bioactivities, polysaccharides from natural sources increasingly gain research attention given their position as a functional ingredient. Improving the functionality and bioactivity of polysaccharides have been established through degradation of their molecular integrity. In this critical synopsis; we articulate the effects of H2O2 on the degradation of polysaccharides from natural sources. Specifically, the synopsis focused on free radical formation/production, polysaccharide degradation processes with H2O2, the effects of polysaccharide degradation on the structural characteristics; physicochemical properties; and bioactivities; in addition to the antioxidant capability. The degradation mechanisms involving polysaccharide's antioxidative property; with some examples and their respective sources are briefly summarised.
Collapse
Affiliation(s)
- Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
| | - Chijioke M. Osuji
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Jude O. Iwouno
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Ngozi O. Kabuo
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Moses Ojukwu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Ijeoma M. Agunwah
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - James S. Chacha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
- Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, 3006 Morogoro, Tanzania
| | - Onyinye P. Muobike
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
- Department of Food Technology, University of Ibadan, 200284 Ibadan, Nigeria
| | - Giacomo Sardo
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council (CNR), Via Vaccara, 61, 91026 Mazara del Vallo, Italy; (G.S.); (G.B.)
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council (CNR), Via Vaccara, 61, 91026 Mazara del Vallo, Italy; (G.S.); (G.B.)
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| |
Collapse
|
32
|
El-Zayat MM, Eraqi MM, Alrefai H, El-Khateeb AY, Ibrahim MA, Aljohani HM, Aljohani MM, Elshaer MM. The Antimicrobial, Antioxidant, and Anticancer Activity of Greenly Synthesized Selenium and Zinc Composite Nanoparticles Using Ephedra aphylla Extract. Biomolecules 2021; 11:biom11030470. [PMID: 33809976 PMCID: PMC8005055 DOI: 10.3390/biom11030470] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
The current work aimed to synthesize selenium and zinc nanoparticles using the aqueous extract of Ephedra aphylla as a valuable medicinal plant. The prepared nanoparticles were characterized by TEM, zeta potential, and changes in the phytochemical constituents. Hence, the phenolic, flavonoid, and tannin contents were reduced in the case of the prepared samples of nanoparticles than the original values in the aqueous extract. The prepared extract of Ephedra aphylla and its selenium and zinc nanoparticles showed high potency as antioxidant agents as a result of the DPPH• assay. The samples were assessed as anticancer agents against six tumor cells and a normal lung fibroblast (WI-38) cell line. The selenium nanoparticles of Ephedra aphylla extract revealed very strong cytotoxicity against HePG-2 cells (inhibitory concentration (IC50) = 7.56 ± 0.6 µg/mL), HCT-116 cells (IC50 = 10.02 ± 0.9 µg/mL), and HeLa cells (IC50 = 9.23 ± 0.8 µg/mL). The samples were evaluated as antimicrobial agents against bacterial and fungal strains. Thus, selenium nanoparticles showed potent activities against Gram-negative strains (Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), Gram-positive strains (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus epidermidis), and the fungal strain Candida albicans. In conclusion, the preparation of nanoparticles of either selenium or zinc is crucial for improved biological characteristics.
Collapse
Affiliation(s)
- Mustafa Mohsen El-Zayat
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, Mansoura City 35516, Egypt;
| | - Mostafa M. Eraqi
- National Research Center, Department of Microbiology and Immunology, Veterinary Research Division, Dokki Giza 12622, Egypt;
- Department of Biology, College of Science, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Hani Alrefai
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura City 35516, Egypt
- Department of Internal Medicine, Infectious Diseases Division, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: (H.A.); (M.A.I.); Tel.: +1-513-9759-195 (H.A.); +966-541-267-818 (M.A.I.)
| | - Ayman Y. El-Khateeb
- Department of Agricultural Chemistry, Faculty of Agriculture, Mansoura University, Mansoura City 35516, Egypt;
| | - Marwan A. Ibrahim
- Department of Biology, College of Science, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Zoology, Women’s College, Ain Shams University, Cairo City 11566, Egypt
- Correspondence: (H.A.); (M.A.I.); Tel.: +1-513-9759-195 (H.A.); +966-541-267-818 (M.A.I.)
| | - Hashim M. Aljohani
- Department of Molecular Genetics and Biochemistry, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina City 42353, Saudi Arabia
| | - Maher M. Aljohani
- Department of Pathology, College of Medicine, Taibah University, Medina City 42353, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, Ministry of The National Guard-Heath Affairs, Medina City 42353, Saudi Arabia
| | - Moustafa Mohammed Elshaer
- Department of Microbiology at Specialized Medical Hospital, Mansoura University, Mansoura City 35516, Egypt;
| |
Collapse
|
33
|
Nayak V, Singh KRB, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. NEW J CHEM 2021. [DOI: 10.1039/d0nj05884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) have revolutionized biomedical domain and are still developing rapidly. Hence, this perspective elaborates SeNPs properties, synthesis, and biomedical applications, together with their potential for management of SARS-CoV-2.
Collapse
Affiliation(s)
- Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Kshitij RB Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ajaya Kumar Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
34
|
Prooxidation and Cytotoxicity of Selenium Nanoparticles at Nonlethal Level in Sprague-Dawley Rats and Buffalo Rat Liver Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7680276. [PMID: 32922654 PMCID: PMC7453254 DOI: 10.1155/2020/7680276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
The effects of selenium nanoparticles (SeNPs) on the antioxidant capacity in Sprague-Dawley (SD) rats were investigated. The rats were given intragastric administration of an SeNP suspension at doses of 0, 2, 4, and 8 mg Se/kg BW for two weeks. The antioxidant capacity in serum and organic tissues (liver, heart, and kidney) and the gene expression levels of glutathione peroxidase 1 (GPX1) and glutathione peroxidase 4 (GPX4) in the liver were measured. Buffalo rat liver (BRL) cell lines were further constructed to explore the cytotoxicity mechanism induced by SeNPs through the determination of antioxidant capacity; cell activity; apoptosis; and Caspase-3, Caspase-8, and Caspase-9 family activities. The results showed that SeNP administration over 4.0 mg Se/kg BW decreased the antioxidant capacities in the serum, liver, and heart and downregulated mRNA expression of GPX1 and GPX4 in the liver. The BRL cell line experiments showed that treatment with over 24 μM SeNPs decreased the viability of the cells and damaged the antioxidant capacity. Flow cytometry analysis showed that decreased cell viability induced by SeNPs is mainly due to apoptosis, rather than cell necrosis. Caspase-3 and Caspase-8 activities were also increased when BRL cells were treated with 24 μM and 48 μM SeNPs. Taken together, a nonlethal level of SeNPs could impair the antioxidant capacity in serum and organic tissues of rats, and the liver is the most sensitive to the toxicity of SeNPs. A pharmacological dose of SeNPs could lead to cytotoxicity and induce cell death through apoptosis and extrinsic pathways contributing to SeNP-induced apoptosis in BRL cells.
Collapse
|
35
|
Gharbavi M, Johari B, Mousazadeh N, Rahimi B, Leilan MP, Eslami SS, Sharafi A. Hybrid of niosomes and bio-synthesized selenium nanoparticles as a novel approach in drug delivery for cancer treatment. Mol Biol Rep 2020; 47:6517-6529. [PMID: 32767222 DOI: 10.1007/s11033-020-05704-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023]
Abstract
The current study intends to investigate a novel drug delivery system (DDS) based on niosomes structure (NISM) and bovine serum albumin (BSA) which was formulated to BSA coated NISM (NISM-B). Also, selenium nanoparticles (SeNPs) have been prepared by BSA mediated biosynthesis. Finally, the NISM-B was hybridized with SeNPs and was formulated as NISM-B@SeNPs for drug delivery applications. Physicochemical properties of all samples were characterized by UV-Vis spectroscopy, FT-IR, DLS, FESEM, and EDX techniques. The cytotoxicity of all samples against A549 cell line was assessed by cell viability analysis and flow cytometry for apoptotic cells as well as RT-PCR for the expression of MDR-1, Bax, and Bcl-2 genes. Besides, in vivo biocompatibility was performed by LD50 assay to evaluate the acute toxicity. The proposed formulation has a regular spherical shape and approximately narrow size distribution with proper zeta-potential values; the proposed DDS revealed a good biocompatibility. The compound showed a significant cytotoxic effect against A549 cell line. Although the Bax/Bcl-2 expression ratio was significantly in NISM-B@SeNPs- treated cancer cells, the expression of MDR-1 was non-significantly lower in NISM-B@SeNPs-treated cancer cells. The obtained results suggest that the proposed DDS presents a promising approach for drug delivery, co-delivery and multifunctional biomedicine applications.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Parvinzad Leilan
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Sadegh Eslami
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
36
|
Liu HJ, Qin Y, Zhao ZH, Zhang Y, Yang JH, Zhai DH, Cui F, Luo C, Lu MX, Liu PP, Xu HW, Li K, Sun B, Chen S, Zhou HG, Yang C, Sun T. Lentinan-functionalized Selenium Nanoparticles target Tumor Cell Mitochondria via TLR4/TRAF3/MFN1 pathway. Theranostics 2020; 10:9083-9099. [PMID: 32802180 PMCID: PMC7415812 DOI: 10.7150/thno.46467] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Malignant ascites caused by cancer cells results in poor prognosis and short average survival time. No effective treatment is currently available for malignant ascites. In this study, the effects of lentinan (LNT)-functionalized selenium nanoparticles (Selene) on malignant ascites were evaluated. Furthermore, the mechanism of Selene targeting mitochondria of tumor cells were also investigated. Methods: Selene were synthesized and characterized by TEM, AFM and particle size analysis. The OVCAR-3 and EAC cells induced ascites models were used to evaluate the effects of Selene on malignant ascites. Proteomic analysis, immunofluorescence, TEM and ICP-MS were used to determine the location of Selene in tumor cells. Mitochondrial membrane potential, ROS, ATP content, and caspase-1/3 activity were detected to evaluate the effect of Selene on mitochondrial function and cell apoptosis. Immunofluorescence, Co-IP, pull-down, duolink, Western blot, and FPLC were used to investigate the pathway of Selene targeting mitochondria. Results: Selene could effectively inhibit ascites induced by OVCAR-3 and EAC cells. Selene was mainly located in the mitochondria of tumor cells and induced apoptosis of tumor cells. The LNT in Selene was involved in caveolae-mediated endocytosis through the interaction between toll-like receptor-4 (TLR4) and caveolin 1 (CAV1). Furthermore, the Selene in the endocytic vesicles could enter the mitochondria via the mitochondrial membrane fusion pathway, which was mediated by TLR4/TNF receptor associated factor 3 (TRAF3)/mitofusin-1 (MFN1) protein complex. Conclusion: Selene is a candidate anticancer drug for the treatment of malignant ascites. And TLR4/TRAF3/MFN1 may be a specific nano-drug delivery pathway that could target the mitochondria.
Collapse
|
37
|
Gao X, Li X, Mu J, Ho CT, Su J, Zhang Y, Lin X, Chen Z, Li B, Xie Y. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. Int J Biol Macromol 2020; 152:605-615. [PMID: 32087224 DOI: 10.1016/j.ijbiomac.2020.02.199] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/07/2023]
Abstract
Selenium nanoparticles (SeNPs), a novel selenium form, have attracted worldwide attention due to their bioactivities and low toxicity. This study aimed to assess the physicochemical characterization, storage stability, and anti-proliferative activities of SeNPs stabilized by Polyporus umbellatus polysaccharide (PUP). Results showed that orange-red, zero-valent, amorphous and spherical SeNPs with mean diameter of approximately 82.5 nm were successfully prepared by using PUP as a capping agent. PUP-SeNPs solution stored at 4 °C in dark condition could be stable for at least 84 days. Moreover, PUP-SeNPs treatment inhibited four cancer cell lines proliferation in a dose-dependent manner, while no significant cytotoxicity towards three normal cell lines was observed. Comparing with the other cancer cell lines (HepG2, Hela, and HT29), PUP-SeNPs displayed the most sensitive towards MDA-MB-231 cells with an IC50 value of 6.27 μM. Furthermore, PUP-SeNPs significantly up-regulated Bax/Bcl-2 ratio, promoted cytochrome c release, increased caspase-9, -8 and -3 activities, and poly (ADP-ribose) polymerase cleavage, suggesting that mitochondria-mediated and death receptor-mediated apoptotic pathways were activated in MDA-MB-231 cells. Besides, PUP-SeNPs possessed better anti-proliferative activity than selenomethionine as well as lower cytotoxicity than sodium selenite. Taken together, PUP-SeNPs have strong potential as a dietary supplement for application in cancer chemoprevention, especially breast cancer.
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Xiaofei Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Jingjing Mu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuting Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China.
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| |
Collapse
|
38
|
Green synthesized selenium nanoparticle as carrier and potent delivering agent of s-allyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and apoptosis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Kanipandian N, Li D, Kannan S. Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 23:e00339. [PMID: 31467862 PMCID: PMC6713847 DOI: 10.1016/j.btre.2019.e00339] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 01/05/2023]
Abstract
In the past decade, the research communities raised wide concerns on using medicinal plants for synthesis of nanomaterials due to its effective biological activity, lower side effects and also eco-friendly manner. Our previous report concentrated on the biomedical efficacy of fine characterized silver nanoparticles (AgNPs) from Gossypium hirsutum (cotton) leaf extract. Further, the current examination is planned to reveal the molecular mechanisms involving for activation of mitochondria-mediated signaling pathway by AgNPs in human lung cancer cells (A549) using various biological endpoints such as apoptotic induction by HOECHST 33342, AO/EtBr and Rhodamine 123 staining, cell cycle analysis using flow cytometry, gene and protein expressions by RT-PCR and immunoblotting respectively. This study was further extended to identify the toxicity of AgNPs using an animal model. Interestingly, we observed that A549 cells treated with AgNPs resulted in G2/M arrest and ultimately leads to induction of apoptosis cell death. Moreover, gene analysis demonstrated that diminished expression of anti-apoptotic (Bcl-2) and enhanced expression of pro-apoptotic (Bax) mitochondrial genes. The alterations in the gene pattern may interrupt of mitochondrial membrane potential which facilitates the releasing of cytochrome c (cyt c) into cytosol. The cyt c act as a key molecule for activation of caspases (9 and 3) to initiate intrinsic apoptotic signaling cell death process. The histological analysis proven the application of AgNPs in nanomedicine is quietly harmless and would not cause any discernible stress like swelling and inflammation to the organs of mice. Taken together, this investigation may provide solid evidence for cotton crop mediated AgNPs induced apoptosis cell death pathway and offer a novel approach for cancer therapy.
Collapse
Key Words
- A549 cells
- A549 cells, adenocarcinomic human alveolar basal epithelial cells
- AO/EtBr, acridine Orange and Ethidium Bromide
- AgNPs, silver nanoparticles
- BSA, bovine serum albumin
- Bax, Bcl-2-associated X protein
- Bcl-2, B-cell Lymphoma
- Cas 3 and Cas 9, Caspase 3 and Caspase 9
- Cell cycle arrest
- Cyt-c, cytochrome C
- DLS, dynamic light scattering
- DMEM, Dulbecco's modified eagles medium
- DMSO, dimethyl sulfoxide
- GC–MS, gas chromatography-mass spectrometry
- Gossypium hirsutum
- H&E, hematoxylin and eosin
- Intrinsic apoptosis pathway
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- SDS-PAGE, SDS-polyacrylamide gel electrophoresis
- Silver nanoparticles
- mRNA, messenger ribonucleic acid
- nm, nanometers
- p53 gene, tumor suppressor gene
- ΔΨ m, mitochondrial membrane potential
- β-Actin, beta actin
Collapse
Affiliation(s)
- Nagarajan Kanipandian
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Periyar University, Salem, 636 011, TN, India
- Department of Hepato-Biliary Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, People's Republic of China
| | - Deyu Li
- Department of Hepato-Biliary Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, People's Republic of China
| | - Soundarapandian Kannan
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Periyar University, Salem, 636 011, TN, India
| |
Collapse
|
40
|
Li H, Liu D, Li S, Xue C. Synthesis and cytotoxicity of selenium nanoparticles stabilized by α-D-glucan from Castanea mollissima Blume. Int J Biol Macromol 2019; 129:818-826. [DOI: 10.1016/j.ijbiomac.2019.02.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023]
|
41
|
Xia IF, Cheung JS, Wu M, Wong KS, Kong HK, Zheng XT, Wong KH, Kwok KW. Dietary chitosan-selenium nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2019; 87:449-459. [PMID: 30703551 DOI: 10.1016/j.fsi.2019.01.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is an essential micronutrient for human and animals. It plays an important role in antioxidative stress, selenoenzymes regulation and immunomodulation. In this study, two common immunostimulants chitosan (CTS) and Se were used to synthesize nanoparticles (CTS-SeNP). Immunomodulation of CTS-SeNP were explored in wild-type zebrafish (Danio rerio). Dietary supplementation of CTS-SeNP enhanced lysozyme activity, phagocytic respiratory burst as well as splenocytes proliferation stimulated by LPS and ConA. CTS-SeNP showed immunomodulation effect from 5 to 20 μg/g but the best outcome was observed at 10 μg/g. Immunomodulation effect were rapidly induced after 3-9d and can sustain to 60. The zebrafish fed with 10 μg/g CTS-SeNP also showed 26.7% higher survival rate than the control after intraperitoneal injection of common bacterium Aeromonas hydrophila. Our results suggested that CTS-SeNP is an effective immunostimulant to fish and has potential application in aquaculture.
Collapse
Affiliation(s)
- Ivan Fan Xia
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jacky St Cheung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Manhui Wu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kwong-Sen Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hang-Kin Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao-Ting Zheng
- Key Laboratory of South China Sea Fisheries Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, China
| | - Ka-Hing Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Kevin Wh Kwok
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
42
|
Bidkar AP, Sanpui P, Ghosh SS. Combination Therapy with MAPK-Pathway-Specific Inhibitor and Folic-Acid-Receptor-Targeted Selenium Nanoparticles Induces Synergistic Antiproliferative Response in BRAF Mutant Cancer Cells. ACS Biomater Sci Eng 2019; 5:2222-2234. [DOI: 10.1021/acsbiomaterials.9b00112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anil Parsram Bidkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Pallab Sanpui
- Department of Biotechnology, Academic Building, BITS Pilani Dubai Campus, Dubai International Academic City, P.O. Box No. 345055, Dubai, UAE
| | - Siddhartha Sankar Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| |
Collapse
|
43
|
Zeng D, Zhao J, Luk KH, Cheung ST, Wong KH, Chen T. Potentiation of in Vivo Anticancer Efficacy of Selenium Nanoparticles by Mushroom Polysaccharides Surface Decoration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2865-2876. [PMID: 30785270 DOI: 10.1021/acs.jafc.9b00193] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selenium nanoparticles (SeNPs) are recently emerging as promising anticancer agents because of their high bioavailability, low toxicity and remarkable anticancer activities. However, the effects of surface physicochemical properties on the biological actions remain elusive. Herein we decorated SeNPs with various water-soluble polysaccharides extracted from various mushrooms, to compare physical characteristics and anticancer profile of these SeNPs. The results showed that the prepared spherical SeNPs displayed particle sizes at 91-102 nm, and kept stable in aqueous solution for up to 13 weeks. However, different decoration altered the tumor selectivity of the SeNPs, while gastric adenocarcinoma AGS cells showed relative highest sensitivity. Moreover, PTR-SeNPs demonstrated potent in vivo antitumor, by inducing caspases- and mitochondria-mediated apoptosis, but showed no obvious toxicity to nomal organs. Taken together, this study offers insights into how surface decoration can tune the cancer selectivity of SeNPs and provides a basis for engineering particles with increased anticancer efficacy.
Collapse
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Kar-Him Luk
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong , China
| | - Siu-To Cheung
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong , China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong , China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
44
|
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 2019; 111:802-812. [DOI: 10.1016/j.biopha.2018.12.146] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
|
45
|
Zhang S, Pang G, Chen C, Qin J, Yu H, Liu Y, Zhang X, Song Z, Zhao J, Wang F, Wang Y, Zhang LW. Effective cancer immunotherapy by Ganoderma lucidum polysaccharide-gold nanocomposites through dendritic cell activation and memory T cell response. Carbohydr Polym 2019; 205:192-202. [DOI: 10.1016/j.carbpol.2018.10.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
|
46
|
Li J, Shen B, Nie S, Duan Z, Chen K. A combination of selenium and polysaccharides: Promising therapeutic potential. Carbohydr Polym 2019; 206:163-173. [DOI: 10.1016/j.carbpol.2018.10.088] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
|
47
|
Effect of Surface Coating of Gold Nanoparticles on Cytotoxicity and Cell Cycle Progression. NANOMATERIALS 2018; 8:nano8121063. [PMID: 30562921 PMCID: PMC6316730 DOI: 10.3390/nano8121063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles (GNPs) are usually wrapped with biocompatible polymers in biomedical field, however, the effect of biocompatible polymers of gold nanoparticles on cellular responses are still not fully understood. In this study, GNPs with/without polymer wrapping were used as model probes for the investigation of cytotoxicity and cell cycle progression. Our results show that the bovine serum albumin (BSA) coated GNPs (BSA-GNPs) had been transported into lysosomes after endocytosis. The lysosomal accumulation had then led to increased binding between kinesin 5 and microtubules, enhanced microtubule stabilization, and eventually induced G2/M arrest through the regulation of cadherin 1. In contrast, the bare GNPs experienced lysosomal escape, resulting in microtubule damage and G0/G1 arrest through the regulation of proliferating cell nuclear antigen. Overall, our findings showed that both naked and BSA wrapped gold nanoparticles had cytotoxicity, however, they affected cell proliferation via different pathways. This will greatly help us to regulate cell responses for different biomedical applications.
Collapse
|
48
|
Wang YY, Qiu WY, Sun L, Ding ZC, Yan JK. Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide–protein complexes from Corbicula fluminea. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Nanostructured biomedical selenium at the biological interface (Review). Biointerphases 2018; 13:06D301. [DOI: 10.1116/1.5042693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Li Y, Guo M, Lin Z, Zhao M, Xia Y, Wang C, Xu T, Zhu B. Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180509. [PMID: 30564384 PMCID: PMC6281927 DOI: 10.1098/rsos.180509] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
The morbidity and mortality of hepatocellular carcinoma, the most common cancer, are increasing continuously worldwide. Galangin (Ga) has been demonstrated to possess anti-cancer effect, but the efficacy of Ga was limited by its low permeability and poor solubility. To develop aqueous formulation and improve the anti-cancer activity of Ga, surface decoration of functionalized selenium nanoparticles with Ga (Se@Ga) was synthesized in the present study. The aim of this study was to evaluate the anti-cancer effect of Se@Ga and the mechanism on HepG2 cells. Se@Ga-induced HepG2 cell apoptosis was confirmed by depletion of mitochondrial membrane potential, translocation of phosphatidylserine and caspase-3 activation. Furthermore, Se@Ga enhanced the anti-cancer activity of HepG2 cells through ROS-mediated AKT and p38 signalling pathways. In summary, these results suggest that Se@Ga might be potential candidate chemotherapy for cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| |
Collapse
|