1
|
Hussain A, Kumar S, Husain FM, Kumar V, Vlaskin MS, Alajmi MF. Numerical optimization of hydrothermal liquefaction process for the production of bio-oil and bio-char from Citrus maxima peel waste and product characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102462-102473. [PMID: 37667127 DOI: 10.1007/s11356-023-29618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
This research study aims to potential utilization of Citrus maxima peel waste and optimize the hydrothermal liquefaction process for the production of bio-oil (BO) and bio-char (BC). The effect of several HTL processing variables on BO yield (%) and BC yield (%), including temperature, retention period, and slurry concentration, has been examined using central composite design (CCD) (a three-level three-factor design). The optimized values of HTL process variables were found to be 240 °C (temperature), 52 min (retention time), and 7% (slurry concentration) and the corresponding responses were 5.794% (BO yield) and 29.450% (BC yield). The values obtained from the RSM-CCD model as the predicted values agreed with the experimental values (5.93% and 30.14%). Further the BO and BC obtained under optimized conditions and CPP were analyzed to identify the variations by 1H-NMR, GC-MS, FT-IR, and CHNO-S.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Vinod Kumar
- Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
- Peoples' Friendship, University of Russia, (RUDN University), Moscow, 117198, Russian Federation
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow, 125412, Russian Federation
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Thumwong A, Darachai J, Thamrongsiripak N, Tokonami S, Ishikawa T, Saenboonruang K. Fruit Peel Powder as Natural Antioxidant and Reinforcing Bio-Filler in Natural Rubber Latex Gloves: Cases of Mangosteen, Pomelo and Durian. Antioxidants (Basel) 2023; 12:antiox12051119. [PMID: 37237986 DOI: 10.3390/antiox12051119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
As the world is facing rapid increases in agricultural wastes that greatly affect global health, the environment, and economies, this work aims to alleviate such issues by introducing simple uses of waste fruit peel powder (FPP) derived from mangosteen (MPP), pomelo (PPP), or durian (DPP), as dual natural antioxidants and reinforcing bio-fillers in natural rubber latex (NRL) gloves. A thorough investigation was undertaken of the relevant characteristics for both FPP (morphological, functional groups, particle sizes, and thermals stability) and NRL gloves (morphological, functional groups, density, color, thermal stability, and mechanical properties-both before and after thermal/25 kGy gamma aging). The results indicated that the initial addition (2-4 parts per hundred parts of rubber by weight; phr) of FPP to NRL composites generally enhanced the strength and elongation at the break of the specimens, with the levels of the improvement varying depending on the type and content of FPPs. In addition to the reinforcing effects, the FPP also offered natural antioxidant properties, evidenced by higher values of aging coefficients for all FPP/NRL gloves under either thermal or 25 kGy gamma aging than those of pristine NRL. Furthermore, by comparing the tensile strength and elongation at break of the developed FPP/NRL gloves with the requirements for medical examination latex gloves according to ASTM D3578-05, the recommended FPP contents for actual glove production were 2-4 phr for MPP, 4 phr for PPP, and 2 phr for DPP. Consequently, based on the overall outcomes, the FPPs of interest showed promising potential for utilization as simultaneous natural antioxidants and reinforcing bio-fillers in NRL gloves, which would not only enhance the strength and ability of the gloves to resist oxidative degradation from heat and gamma irradiation but also increase their economical value as well as reducing the amounts of the investigated wastes.
Collapse
Affiliation(s)
- Arkarapol Thumwong
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jitsuna Darachai
- Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 0368564, Japan
| | - Tetsuo Ishikawa
- Department of Radiation Physics and Chemistry, Fukushima Medical University, Fukushima 9601295, Japan
| | - Kiadtisak Saenboonruang
- Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Sánchez M, Laca A, Laca A, Díaz M. Towards food circular economy: hydrothermal treatment of mixed vegetable and fruit wastes to obtain fermentable sugars and bioactive compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3901-3917. [PMID: 35962165 DOI: 10.1007/s11356-022-22486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Due to processing activity, fruits and vegetables generate notable amounts of wastes at the processing, retail, and consumption level. Following the European goals for reducing food wastes and achieving a circular economy of resources, these biowastes should be valorized. In this work, hydrothermal hydrolysis at different conditions (temperatures, times, waste/water ratio, pH values) were tested to treat for first time; biowastes composed of mixed overripe fruits or vegetables to maximize the extraction of fermentable sugars that can be used as substrates in bioprocesses. Experimental data were fitted by a model based on irreversible first-order reactions, and kinetic constants were obtained. When hydrolysis of fruit wastes was carried out at 135 °C and pH 5 during 40 min, more than 40 g of reducing sugars per 100 g of waste (dry weight) could be obtained (represents an extraction of 97% of total carbohydrates). Concentrations of inhibitor compounds (HMF, furfural, acetic acid) in the hydrolysates were very low and, as example, a fermentation to obtain bioethanol was successfully carried out with an efficiency above 95%. Additionally, the production by hydrothermal treatment of bioactive compounds was investigated and the best results obtained were 92% DPPH inhibition and 12 mg GAE/g (dry weight) for antioxidant activity and phenolic compounds, respectively. These values are similar or even higher than those reported in literature using specific parts of fruits and vegetables.
Collapse
Affiliation(s)
- Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| |
Collapse
|
4
|
The potential of multistress tolerant yeast, Saccharomycodes ludwigii, for second-generation bioethanol production. Sci Rep 2022; 12:22062. [PMID: 36543886 PMCID: PMC9772304 DOI: 10.1038/s41598-022-26686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Ethanol production at high temperatures using lignocellulosic biomass as feedstock requires a highly efficient thermo and lignocellulosic inhibitor-tolerant ethanologenic yeast. In this study, sixty-three yeast isolates were obtained from tropical acidic fruits using a selective acidified medium containing 80 mM glacial acetic acid. Twenty-nine of the yeast isolates exhibited significant thermo and acetic acid-tolerant fermentative abilities. All these isolates were classified into three major yeast species, namely Saccharomycodes ludwigii, Pichia kudriavzevii, and P. manshurica, based on molecular identification. Saccharomycodes ludwigii APRE2 displayed an ability to grow at high temperatures of up to 43 °C and exhibited significant multistress tolerance toward acetic acid, furfural, 5-hydroxymethyl furfural (5-HMF), and ethanol among the isolated yeast species. It can produce a maximum ethanol concentration of 63.07 g/L and productivity of 1.31 g/L.h in yeast extract malt extract (YM) medium containing 160 g/L glucose and supplemented with 80 mM acetic acid and 15 mM furfural as a cocktail inhibitor. When an acid-pretreated pineapple waste hydrolysate (PWH) containing approximately 106 g/L total sugars, 131 mM acetic acid, and 3.95 mM furfural was used as a feedstock, 38.02 g/L and 1.58 g/L.h of ethanol concentration and productivity, respectively, were achieved. Based on the results of the current study, the new thermo and acetic acid-tolerant yeast S. ludwigii APRE2 exhibited excellent potential for second-generation bioethanol production at high temperatures.
Collapse
|
5
|
Wang YJ, Li N, Ni GR, Zhou CH, Yin X, Huang HJ. Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15249055. [PMID: 36556860 PMCID: PMC9782344 DOI: 10.3390/ma15249055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
Pomelo peel (PP) is a kind of solid waste that is produced in the processing industry of honey pomelo. This study deeply explored the feasibility of recycling PP in the form of hydrochar (HC) by microwave-assisted hydrothermal carbonization (HTC) technology. Under the non-catalytic reaction conditions, the yield of hydrochar initially increased with the rise of reaction temperature (150-210 °C) until it remained relatively stable after 210 °C. Under the CaO-catalytical reaction condition, the yield of hydrochar did not change much at first (150-190 °C) but decreased significantly when the reaction temperature exceeded 190 °C. After the microwave-assisted HTC treatment, the PP-derived HC presented higher aromaticity, carbonization degree, porosity, and caloric value. Compared with raw PP, the nutrients in HC were more stable (conducive to being used as slow-release fertilizer). The application of CaO increased the pH value of HC and effectively promoted the accumulation of phosphorus in HC. The HC produced at 210 °C without any catalyst possessing a high devolatilization ability. Additionally, the HC obtained at 190 °C with CaO as the catalyst presented a high combustion property. In general, PP-derived HC showed great application potential in the field of soil remediation/improvement and solid fuels. This preliminary study would undoubtedly provide some important fundamental understanding of the microwave-assisted HTC of PP.
Collapse
|
6
|
Phong HX, Klanrit P, Dung NTP, Thanonkeo S, Yamada M, Thanonkeo P. High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae. Sci Rep 2022; 12:13965. [PMID: 35978081 PMCID: PMC9385605 DOI: 10.1038/s41598-022-18212-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
High-temperature ethanol fermentation by thermotolerant yeast is considered a promising technology for ethanol production, especially in tropical and subtropical regions. In this study, optimization conditions for high-temperature ethanol fermentation of pineapple waste hydrolysate (PWH) using a newly isolated thermotolerant yeast, Saccharomyces cerevisiae HG1.1, and the expression of genes during ethanol fermentation at 40 °C were carried out. Three independent variables, including cell concentration, pH, and yeast extract, positively affected ethanol production from PWH at 40 °C. The optimum levels of these significant factors evaluated using response surface methodology (RSM) based on central composite design (CCD) were a cell concentration of 8.0 × 107 cells/mL, a pH of 5.5, and a yeast extract concentration of 4.95 g/L, yielding a maximum ethanol concentration of 36.85 g/L and productivity of 3.07 g/L. Gene expression analysis during high-temperature ethanol fermentation using RT-qPCR revealed that the acquisition of thermotolerance ability and ethanol fermentation efficiency of S. cerevisiae HG1.1 are associated with genes responsible for growth and ethanol stress, oxidative stress, acetic acid stress, DNA repair, the pyruvate-to-tricarboxylic acid (TCA) pathway, and the pyruvate-to-ethanol pathway.
Collapse
Affiliation(s)
- Huynh Xuan Phong
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Microbial Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Can Tho, 900000, Vietnam
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ngo Thi Phuong Dung
- Department of Microbial Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Can Tho, 900000, Vietnam
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8315, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Center for Alternative Energy Research and Development (AERD), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Chemical composition, structural and functional properties of insoluble dietary fiber obtained from the Shatian pomelo peel sponge layer using different modification methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Direct Construction of K-Fe3C@C Nanohybrids Utilizing Waste Biomass of Pomelo Peel as High-Performance Fischer–Tropsch Catalysts. Catalysts 2022. [DOI: 10.3390/catal12050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the only renewable organic carbon source, abundant biomass has long been established and developed to mass-produce functionalized carbon materials. Herein, an extremely facile and green strategy was executed for the first time to in situ construct K-Fe3C@C nanohybrids directly by one-pot carbonizing the pomelo peel impregnated with Fe(NO3)3 solutions. The pyrolytically self-assembled nanohybrids were successfully applied in Fischer–Tropsch synthesis (FTS) and demonstrated high catalytic performance. Accordingly, the optimized K-Fe3C@C catalysts revealed excellent FTS activity (92.6% CO conversion) with highlighted C5+ hydrocarbon selectivity of 61.3% and light olefin (C2-4=) selectivity of 26.0% (olefin/paraffin (O/P) ratio of 6.2). Characterization results further manifest that the high performance was correlated with the in situ formation of the core-shell nanostructure consisting of Fe3C nanoparticles enwrapped by graphitized carbon shells and the intrinsic potassium promoter originated in pomelo peel during high-temperature carbonization. This work provided a facile approach for the low-cost mass-fabrication of high-performance FTS catalysts directly utilizing waste biomass without any chemical pre-treatment or purification.
Collapse
|
9
|
Qiu Y, Yang J, Ma L, Song M, Liu G. Limonin Isolated From Pomelo Seed Antagonizes Aβ25-35-Mediated Neuron Injury via PI3K/AKT Signaling Pathway by Regulating Cell Apoptosis. Front Nutr 2022; 9:879028. [PMID: 35634407 PMCID: PMC9133815 DOI: 10.3389/fnut.2022.879028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Pomelo seed as a by-product from pomelo consumption is rich in bioactive compounds, however, a huge volume of pomelo seed was disposed as wastes, the comprehensive utilization of pomelo seed could not only generate valued-added products/ingredients, but also decrease the environmental pollution. In this study, the main active substance limonin in pomelo seed was considered as a high-value bioactive compound. The purification of limonin from pomelo seed was investigated, and the neuroprotective and mechanism were characterized. The UPLC-MS/MS results indicated that 29 compounds in pomelo seed were identified, including 14 flavonoids, 3 limonids, 9 phenols and 3 coumarins. Moreover, high purity of limonin was obtained by crystallization and preparative-HPLC. Furthermore, limonin pretreatment can antagonize the cell damage mediated by Aβ25-35 in a concentration-dependent relationship. The regulation of Bax/Bcl-2, expression of caspase-3 protein and the activation of PI3K/Akt signaling pathway were observed in the cells pretreated with limonin. Treatment of PC12 cells with PI3K inhibitor LY294002 weakened the protective effect of limonin. These results indicated that limonin prevented Aβ25-35-induced neurotoxicity by activating PI3K/Akt, and further inhibiting caspase-3 and up-regulating Bcl-2. This study enables comprehensive utilization of pomelo seed as by-product and offers a theoretical principle for a waste-to-wealth solution, such as potential health benefits of food ingredient and drug.
Collapse
Affiliation(s)
- Yuanxin Qiu
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
| | - Jingxian Yang
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
- Guangdong Meizhou Vocational and Technical College, Meizhou, China
| | - Lukai Ma
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Gómez-Aguilar DL, Rodríguez-Miranda JP, Salcedo-Parra OJ. Fruit Peels as a Sustainable Waste for the Biosorption of Heavy Metals in Wastewater: A Review. Molecules 2022; 27:2124. [PMID: 35408520 PMCID: PMC9000619 DOI: 10.3390/molecules27072124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
One of the environmental challenges that is currently negatively affecting the ecosystem is the continuous discharge of untreated industrial waste into both water sources and soils. For this reason, one of the objectives of this qualitative study of exploratory-descriptive scope was the review of scientific articles in different databases-Scopus, Web of Science, and Science Direct-published from 2010 to 2021 on the use of fruit peels as a sustainable waste in the removal of heavy metals present in industrial wastewater. For the selection of articles, the authors used the PRISMA guide as a basis, with which 210 publications were found and 93 were compiled. Considering the reported work, a content analysis was carried out using NVivo 12 Plus and VOSviewer 1.6.17 software. The results show that the fruits mentioned in these publications are lemon, banana, mango, tree tomato, pineapple, passion fruit, orange, coconut, avocado, apple, lulo, and tangerine. However, no studies were found with lulo and tree tomato peels. On the other hand, the heavy metals removed with the selected fruit peels were Pb+2, Cr+3, Cr+6, Ni+2, Cd+2, As+5, Cu+2, and Zn+2.
Collapse
Affiliation(s)
| | - Juan Pablo Rodríguez-Miranda
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia;
| | - Octavio José Salcedo-Parra
- Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Universidad Nacional de Colombia, Bogotá 110231, Colombia; or
| |
Collapse
|
11
|
Sood A, Saini C. Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107135] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Saadatinavaz F, Karimi K, Denayer JFM. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. BIORESOURCE TECHNOLOGY 2021; 341:125834. [PMID: 34479139 DOI: 10.1016/j.biortech.2021.125834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Orange waste (OW), an abundant and severe globally environmental treat, was used for biobutanol and biohydrogen production emploing acetone-butanol-ethanol (ABE) fermentation through a biorefinery process. The solvent yield from untreated OW was insufficient; thus, the substrate was subjected to hydrothermal pretreatment before hydrolysis. The pretreatment at 140 ℃ for 30 min resulted in the solid with the highest yield of hydrolysis and fermentation. Moreover, the anaerobic digestion of hydrolysis residue produced appreciable amounts of biomethane. However, the pretreatment liquor was not fermentable; thus, it was detoxified by overliming for 24 h at 30 ℃ and then fermented. Overall, this sustainable biorefinery, based on pretreatment without any additional chemical agent, hydrolysis of pretreated solids, detoxification of pretreatment liquor, ABE fermentation, and anaerobic digestion of residues, produced 42.3 g biobutanol, 33.1 g acetone, 13.4 g ethanol, 104.5 L biohydrogen, and 28.3 L biomethane per kg of OW that contained 4560 kJ energy.
Collapse
Affiliation(s)
- Fateme Saadatinavaz
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
13
|
Comprehensive Utilization of Immature Honey Pomelo Fruit for the Production of Value-Added Compounds Using Novel Continuous Phase Transition Extraction Technology. BIOLOGY 2021; 10:biology10080815. [PMID: 34440047 PMCID: PMC8389540 DOI: 10.3390/biology10080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary For the first time, this study investigated the extraction of bioactive substances with different polarities from immature honey pomelo fruit (IPF), a by-product of pomelo planting processing that causes resource waste and environmental pollution, using novel continuous phase transition extraction technology (CPTE). The results showed that CPTE was suitable for extracting essential oil, naringin, and pectin in sequence according to their polarities. The naringin extraction process was optimized by the response surface methodology, resulting in an extract ratio up to 99.47%. Moreover, the pectin extracted from IPF by CPTE showed better quality compared to commercial counterparts, as evidenced by lower protein and ash contents and higher white value. Together, these results suggested that CPTE could be a promising technology to improve the application value of IPF. For instance, the extracted bioactive components can be utilized as nutraceutical food ingredients. The scientific insights from this study will contribute to the development of functional food ingredients and comprehensive utilization of farming by-products. Abstract The immature honey pomelo fruit (IPF) is a huge agro-industrial by-product generated during pomelo planting. Although IPF is rich in nutrients, more than 95% of IPF is discarded annually, which causes resource waste and a serious environmental problem. Here, we report a novel continuous phase transition extraction technology (CPTE) to improve the comprehensive utilization of IPF by sequentially generating high value products and solve pollution problems related to their disposal. First, essential oil was successively extracted by CPTE at a yield of 1.12 ± 0.36%, in which 43 species were identified. Second, naringin extraction parameters were optimized using the response surface methodology (RSM), resulting in a maximum extraction rate of 99.47 ± 0.15%. Finally, pectin was extracted at a yield of 20.23 ± 0.66%, which is similar to the contents of commercial pectin. In conclusion, this study suggested that IPF was an excellent potential substrate for the production of value-added components by CPTE.
Collapse
|
14
|
Zhao Y, Yang X, Hu Y, Gu Q, Chen W, Li J, Guo X, Liu Y. Evaluation of Carotenoids Accumulation and Biosynthesis in Two Genotypes of Pomelo ( Citrus maxima) during Early Fruit Development. Molecules 2021; 26:molecules26165054. [PMID: 34443643 PMCID: PMC8400066 DOI: 10.3390/molecules26165054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pomelo is rich in bioactive compounds (carotenoids, phenolics and essential oil) in the early stage of fruit development, but it is often wasted in the cultivation and management process. To gain an insight into the carotenoid metabolism pathway in pomelo, the carotenoid profiles and the expression patterns of carotenogenic genes were investigated in two genotypes of pomelo during early fruit development. The results showed that a higher carotenoid content was observed in honey pomelo as compared with golden pomelo, which may be related to different gene regulation mechanisms. Lutein, α-carotene, and β-carotene were the main carotenoids in pomelo young fruit, and lutein was the highest one. The accumulation of carotenoids during fruit early development in honey pomelo is related to the transcriptional regulation of ZISO and LUT5. In golden pomelo, the rate-limiting gene for carotenoids is PDS and ZDS. In addition, the expression of seven genes except CRTISO in honey pomelo was higher than that in golden pomelo. The results are helpful to further clarify the regulatory mechanism of carotenoid accumulation during early fruit development and provide a direction for the high-value utilization of young fruits in pomelo.
Collapse
Affiliation(s)
- Yihan Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Xufeng Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Yuwei Hu
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Areas, National S&T Innovation Center for Modern Agricultural Industry, Guangzhou 510520, China;
| | - Qiuming Gu
- Guangdong Lijinyou Agricultural Technology Co., Ltd., Meizhou 514743, China; (Q.G.); (W.C.); (J.L.)
| | - Weiling Chen
- Guangdong Lijinyou Agricultural Technology Co., Ltd., Meizhou 514743, China; (Q.G.); (W.C.); (J.L.)
| | - Jiaqi Li
- Guangdong Lijinyou Agricultural Technology Co., Ltd., Meizhou 514743, China; (Q.G.); (W.C.); (J.L.)
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Correspondence: (X.G.); (Y.L.)
| | - Yutao Liu
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Areas, National S&T Innovation Center for Modern Agricultural Industry, Guangzhou 510520, China;
- Correspondence: (X.G.); (Y.L.)
| |
Collapse
|
15
|
Doan CT, Tran TN, Nguyen TT, Tran TPH, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers (Basel) 2021; 13:polym13121959. [PMID: 34199171 PMCID: PMC8231626 DOI: 10.3390/polym13121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there has been increasing use of agro-byproducts in microbial fermentation to produce a variety of value-added products. In this study, among various kinds of agro-byproducts, pomelo albedo powder (PAP) was found to be the most effective carbon source for the production of sucrose hydrolyzing enzyme by Bacillus licheniformis TKU004. The optimal medium for sucrolytic enzyme production contained 2% PAP, 0.75% NH4NO3, 0.05% MgSO4, and 0.05% NaH2PO4 and the optimal culture conditions were pH 6.7, 35 °C, 150 rpm, and 24 h. Accordingly, the highest sucrolytic activity was 1.87 U/mL, 4.79-fold higher than that from standard conditions using sucrose as the carbon source. The purified sucrolytic enzyme (sleTKU004) is a 53 kDa monomeric protein and belongs to the glycoside hydrolase family 68. The optimum temperature and pH of sleTKU004 were 50 °C, and pH = 6, respectively. SleTKU004 could hydrolyze sucrose, raffinose, and stachyose by attacking the glycoside linkage between glucose and fructose molecules of the sucrose unit. The Km and Vmax of sleTKU004 were 1.16 M and 5.99 µmol/min, respectively. Finally, sleTKU004 showed strong sucrose tolerance and presented the highest hydrolytic activity at the sucrose concentration of 1.2 M–1.5 M.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - Trung Dung Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
16
|
Thangaraj B, Solomon PR, Chuangchote S, Wongyao N, Surareungchai W. Biomass‐derived Carbon Quantum Dots – A Review. Part 1: Preparation and Characterization. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baskar Thangaraj
- King Mongkut's University of Technology Thonburi Pilot Plant Development and Training Institute Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| | - Pravin Raj Solomon
- SASTRA-Deemed University School of Chemical and Biotechnology 613 402 Thanjavur Tamil Nadu India
| | - Surawut Chuangchote
- King Mongkut's University of Technology Thonburi Research Center of Advanced Materials for Energy and Environmental Technology 126 Prachauthit Road 10140 Bangmod, Bangkok Thailand
- King Mongkut's University of Technology Thonburi Department of Tool and Materials Engineering Faculty of Engineering 126 Prachauthit Road 10140 Bangmod, Thungkru, Bangkok Thailand
| | - Nutthapon Wongyao
- King Mongkut's University of Technology Thonburi Fuel Cells and Hydrogen Research and Engineering Center Pilot Plant Development and Training Institute 10140 Bangkok Thailand
| | - Werasak Surareungchai
- King Mongkut's University of Technology Thonburi School of Bioresources and Technology Nanoscience & Nanotechnology Graduate Programme Faculty of Science Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| |
Collapse
|
17
|
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021; 13:1345. [PMID: 33924089 PMCID: PMC8074295 DOI: 10.3390/polym13081345] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.
Collapse
Affiliation(s)
- Md. Saifur Rahman
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md. Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Ashis Sutradhar Nitai
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Sunghyun Nam
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA;
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Md. Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Muhammad J. A. Shiddiky
- School of Environment and Science (ESC) and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan 4111, Australia;
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
18
|
Xiao L, Ye F, Zhou Y, Zhao G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem 2021; 351:129247. [PMID: 33640768 DOI: 10.1016/j.foodchem.2021.129247] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Pomelo peel as a by-product from pomelo consumption is rich in various nutrients and functional compounds, while most of the by-product is disposed as wastes. The utilization of pomelo peels could not only result in valued-added products/ingredients, but also reduce the environmental threats. By mainly reviewing the recent articles, pomelo peels could be directly used to produce candied pomelo peel, tea, jams, etc. Additionally, functional components (essential oils, pectin, polyphenols, etc.) could be extracted from pomelo peels and applied in food, pharmaceutical and chemical fields. The extraction methods exerted important influences on the composition, physicochemical properties, bioactivities and structures of the resultant fractions. Furthermore, pomelo peel was exploited to make adsorbents, bioethanol, etc. For the future investigations, the functionality- or bioactivity-oriented regimes to recovery valuable components from pomelo peel should be developed in an economic, effective and eco-friendly way and their applicability in large-scale production should be addressed.
Collapse
Affiliation(s)
- Li Xiao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Centre for Regional Foods, Chongqing 400715, People's Republic of China.
| |
Collapse
|
19
|
Zheng N, Chen C, Tang M, Wu W, Jiang Y, Min D. Ultrahigh compressibility and superior elasticity carbon framework derived from shaddock peel for high-performance pressure sensing. RSC Adv 2021; 11:28621-28631. [PMID: 35478543 PMCID: PMC9038115 DOI: 10.1039/d1ra02978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022] Open
Abstract
Shaddock peel, a crop by-product mainly composed of cellulose, hemicellulose, lignin, and pectin, was developed as a flexible sensitive material for detecting environmental external pressure. Firstly, a natural carbon framework (C-SPF) with high conductivity was prepared using hydrothermal treatment followed by carbonization. Then, the PDMS elastomer was coated on the C-SPF instead of dense filling to convert the brittle C-SPF into elastic porous materials (M-SPF). Benefiting from the large deformation space of the porous framework and the stable interactions between PDMS and C-SPF, M-SPF exhibited ultrahigh coercibility (up to 99.0% strain) and high elasticity (99.4% height retention for 10 000 cycles at 50.0% strain). The M-SPF-based pressure sensor also exhibited a quick response (loading and unloading times were 20 ms and 30 ms), high sensitivity (63.4 kPa−1), wide working range (from 0 to 800 kPa), and stable stress-electric current response (10 000 cycles). These advantages open a door to a variety of applications, such as flexible wearable devices, which demonstrated human physiological signal monitoring. The low cost, simple design and portable use of piezoresistive sensors highlight the potential application of the crop by-product shaddock peel as a high-value material. The piezoresistive sensor constructed by a PDMS modified Shaddock peel 3D carbon skeleton has an excellent sensing performance, which has promising potential in the field of human health detection.![]()
Collapse
Affiliation(s)
- Na Zheng
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning, 530004, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Changzhou Chen
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning, 530004, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mengqi Tang
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning, 530004, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Weixin Wu
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning, 530004, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yan Jiang
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning, 530004, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Douyong Min
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning, 530004, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| |
Collapse
|
20
|
Sunlight-Driven Synthesis of Silver Nanoparticles Using Pomelo Peel Extract and Antibacterial Testing. J CHEM-NY 2020. [DOI: 10.1155/2020/6407081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A green approach, including using phytochemicals in pomelo peel extract (PPE) and direct sunlight, was used to synthesize silver nanoparticles (AgNPs). PPE was prepared by treating pomelo peel with a citric acid solution at 85°C for 2 h. PPE was then mixed with AgNO3 and exposed to sunlight to induce the formation of AgNPs. Time-dependent UV-vis spectra of the reaction mixture demonstrated that AgNPs are formed under sunlight irradiation faster than underheating at 90°C. Characterization techniques, including X-ray diffraction, transmission electron microscopy, and scanning electron microscopy, confirmed the formation of AgNPs with sizes of 20–30 nm. AgNPs synthesized in PPE were more stable toward electrolyte-induced aggregation than those synthesized using the conventional NaBH4/citrate method. The AgNPs synthesized in PPE showed antibacterial activities comparable to those of AgNO3 at the same silver concentration against four pathogenic bacterial strains. The obtained PPE containing AgNPs, pectin, and other phytochemicals can be utilized further to produce antibacterial and antioxidant films in food packaging and medical applications.
Collapse
|
21
|
Xi J, Xiang B, Deng Y. Comparison of batch and circulating processes for polyphenols extraction from pomelo peels by liquid-phase pulsed discharge. Food Chem 2020; 340:127918. [PMID: 32889209 DOI: 10.1016/j.foodchem.2020.127918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
The study was an attempt to compare batch and circulating processes for polyphenols extraction from pomelo peels by liquid-phase pulsed discharge (LPD) in order to assess the extraction efficiency of the two processes. Response surface methodology was used to optimize batch (8-12 kV discharge voltage, 30-50 mL/g liquid to solid ratio and 2-4 min extraction time) and circulating (8-12 kV discharge voltage, 30-50 mL/g liquid to solid ratio and 20-40 mL/min flow rate) extractions. The highest polyphenols yield was 2.50 ± 0.02% at 42.2 mL/g, 12 kV and 4 min in batch extraction, while circulating extraction produced the most polyphenols (2.42 ± 0.01%) at 43.7 mL/g, 10.4 kV and 27.6 mL/min. The results showed that batch extraction achieved much greater yields than circulating extraction with lower-cost equipment. Therefore, batch extraction was a promising technology for the separation of high value-added products from pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Bing Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|
23
|
|
24
|
Del Río PG, Gomes-Dias JS, Rocha CMR, Romaní A, Garrote G, Domingues L. Recent trends on seaweed fractionation for liquid biofuels production. BIORESOURCE TECHNOLOGY 2020; 299:122613. [PMID: 31870706 DOI: 10.1016/j.biortech.2019.122613] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Concerns about fossil fuels depletion has led to seek for new sources of energy. The use of marine biomass (seaweed) to produce biofuels presents widely recognized advantages over terrestrial biomasses such as higher production ratio, higher photosynthetic efficiency or carbon-neutral emissions. In here, interesting seaweed sources as a whole or as a residue from seaweed processing industries for biofuel production were identified and their diverse composition and availability compiled. In addition, the pretreatments used for seaweed fractionation were thoroughly revised as this step is pivotal in a seaweed biorefinery for integral biomass valorization and for enabling biomass-to-biofuel economic feasibility processes. Traditional and emerging technologies were revised, with particular emphasis on green technologies, relating pretreatment not only with the type of biomass but also with the final target product(s) and yields. Current hurdles of marine biomass-to-biofuel processes were pinpointed and discussed and future perspectives on the development of these processes given.
Collapse
Affiliation(s)
- Pablo G Del Río
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Joana S Gomes-Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
25
|
Bello K, Sarojini BK, Narayana B. Design and fabrication of environmentally benign cellulose based hydrogel matrix for selective adsorption of toxic dyes from industrial effluvia. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1724-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Wandee Y, Uttapap D, Mischnick P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Highly Efficient Liquid-Phase Hydrogenation of Naringin Using a Recyclable Pd/C Catalyst. MATERIALS 2018; 12:ma12010046. [PMID: 30586873 PMCID: PMC6337632 DOI: 10.3390/ma12010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/20/2023]
Abstract
A highly efficient liquid-phase hydrogenation reaction using a recyclable palladium on carbon (Pd/C) catalyst has been used for the transformation of naringin to its corresponding dihydrochalcone. The effects of various solvents on the hydrogenation process were studied, with water being identified as the optimal solvent. The analysis also revealed that sodium hydroxide (NaOH) can accumulate on the surface of the Pd/C catalyst in alcoholic solvents, leading to its inactivation. The higher solubility of NaOH in water implies that it remains in solution and does not accumulate on the Pd/C catalyst surface, ensuring the catalytic activity and stability.
Collapse
|
28
|
Tian X, Liu Y, Feng X, Khaskheli AA, Xiang Y, Huang W. The effects of alcohol fermentation on the extraction of antioxidant compounds and flavonoids of pomelo peel. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Wang Z, Zhuang W, Cheng J, Sun W, Wu J, Chen Y, Ying H. In Vivo Multienzyme Complex Coconstruction of N-Acetylneuraminic Acid Lyase and N-Acetylglucosamine-2-epimerase for Biosynthesis of N-Acetylneuraminic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7467-7475. [PMID: 28791861 DOI: 10.1021/acs.jafc.7b02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metabolic channeling enables efficient transfer of the intermediates by forming a multienzyme complex. To leverage the metabolic channeling for improved biosynthesis, we coexpressed N-acetylneuraminic acid lyase from C. glutamicum ATCC 13032 (CgNal) and N-acetylglucosamine-2-epimerase from Anabaena sp. CH1 (anAGE) in Escherichia coli and used the whole cell to synthesize N-acetylneuraminic acid (Neu5Ac) from N-acetylglucosamine (GlcNAc) and pyruvate. To get the multienzyme complex, polycistronic plasmid with high levels of CgNal and anAGE expression was constructed by tuning the orders of the genes. The Shine-Dalgarno (SD) sequence and aligned spacing (AS) distance were optimized. The E. coli Rosetta harboring the polycistronic plasmid pET-28a-SD2-AS1-CgNal-SD-AS-anAGE increased the production of Neu5Ac by 58.7% to 92.5 g/L in 36 h by whole-cell catalysis and by 21.9% up to 112.8 g/L in 24 h with the addition of Triton X-100.
Collapse
Affiliation(s)
- Zhenfu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Jian Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
30
|
Dai H, Huang H. Enhanced Swelling and Responsive Properties of Pineapple Peel Carboxymethyl Cellulose-g-poly(acrylic acid-co-acrylamide) Superabsorbent Hydrogel by the Introduction of Carclazyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:565-574. [PMID: 28049294 DOI: 10.1021/acs.jafc.6b04899] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The superabsorbent hydrogels were synthesized by grafting acrylic acid and acrylamide onto pineapple peel carboxymethyl cellulose and effect of carclazyte introduction was compared. The structure and morphology of the superabsorbents were investigated by Fourier transform infrared spectroscopy, X-ray diffraction, and field emission scanning electron microscopy. Swelling behaviors of the superabsorbents were investigated in distilled water, 0.9% NaCl solution, various salt and pH solutions, as well as surfactant solutions and simulated physiological fluids. The swelling dynamic mechanism of the superabsorbents was explained well by Fickian diffusion and Schott's pseudo-second-order models. The introduction of carclazyte effectively improved the swelling capacity of the superabsorbents in various solutions as well as its salt- and pH-sensitivity. The prepared superabsorbents also exhibited excellent sensitivities to various surfactant solutions and simulated physiological fluids, showing potential applications in the biomaterials field.
Collapse
Affiliation(s)
- Hongjie Dai
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510641, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510641, China
| |
Collapse
|
31
|
Huang R, Guo H, Su R, Qi W, He Z. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Biotechnol Bioeng 2016; 114:543-551. [DOI: 10.1002/bit.26194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Renliang Huang
- Tianjin Engineering Center of Bio Gas/Oil Technology; School of Environmental Science and Engineering; Tianjin University; Tianjin China
| | - Hong Guo
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|
32
|
Magyar M, da Costa Sousa L, Jin M, Sarks C, Balan V. Conversion of apple pomace waste to ethanol at industrial relevant conditions. Appl Microbiol Biotechnol 2016; 100:7349-58. [PMID: 27364625 DOI: 10.1007/s00253-016-7665-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Apple pomace samples were evaluated for conversion to ethanol at industrial relevant conditions. Biomass degradation efficiency by commercial enzymes was evaluated at 20 % solid loading for dilute sulfuric acid, calcium oxide, and autoclave without any chemical (control) apple pomace samples. The control and calcium oxide-pretreated pomace provided similar sugar yields, while dilute sulfuric acid pretreatment resulted in reduced sugar yields. The control and calcium oxide-pretreated pomace hydrolysate were fermented to ethanol using a native Saccharomyces cerevisiae yeast strain, producing 38.8 and 36.9 g/L of ethanol, respectively. When control apple pomace sample loading was increased from 20 to 30 %, 57.5 and 50.1 g/L of glucose and fructose was produced, respectively. Lastly, we found that unhydrolyzed solids (UHS) present during fermentation had little effect on ethanol yield, as 53.6 and 53.8 g/L of ethanol were produced with and without UHS, respectively. Overall, ethanol yields were 134 g per kg of dry apple pomace. A complete process mass balance for enzyme hydrolysis and ethanol fermentation is provided in this manuscript. These results show that apple pomace is an excellent feedstock for producing ethanol that could be either used as biofuel or as beverage.
Collapse
Affiliation(s)
- Margaret Magyar
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Material Science, Michigan State University (MSU), MBI Building, 3900 Collins Road, Lansing, MI, 48910, USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Material Science, Michigan State University (MSU), MBI Building, 3900 Collins Road, Lansing, MI, 48910, USA
| | - Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Material Science, Michigan State University (MSU), MBI Building, 3900 Collins Road, Lansing, MI, 48910, USA.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cory Sarks
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Material Science, Michigan State University (MSU), MBI Building, 3900 Collins Road, Lansing, MI, 48910, USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Material Science, Michigan State University (MSU), MBI Building, 3900 Collins Road, Lansing, MI, 48910, USA.
| |
Collapse
|
33
|
Unrean P. Bioprocess modelling for the design and optimization of lignocellulosic biomass fermentation. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-015-0079-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
34
|
Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015; 100:2459-70. [DOI: 10.1007/s00253-015-7173-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022]
|
35
|
Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol Adv 2015; 33:1091-107. [DOI: 10.1016/j.biotechadv.2014.12.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
36
|
Cui M, Zhang Y, Huang R, Su R, Qi W, He Z. Enhanced enzymatic hydrolysis of lignocellulose by integrated decrystallization and fed-batch operation. RSC Adv 2014. [DOI: 10.1039/c4ra08891c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Lou H, Wu S, Li X, Lan T, Yang D, Pang Y, Qiu X, Li X, Huang J. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8430-8436. [PMID: 25111907 DOI: 10.1021/jf502534s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effects of lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) on the rheology and enzymatic hydrolysis of high-solid corncob slurries were investigated. The application of 2.5% (w/w) SXSL increased the substrate enzymatic digestibility (SED) of high-solid corncob slurries at 72 h from 31.7 to 54.0%, but meanwhile it increased the slurry's yield stress and complex viscosity to make the slurry difficult to stir and pump. The smallest molecular weight (MW) SXSL fraction had the strongest enhancement on SED. The SXSL fraction with large MW had a negative effect on rheology. n-Octanol (C8) and n-decanol (C10) improved the rheological properties of high-solid slurry and are strong enough to counteract the negative effect of SXSL. Furthermore, C8 and C10 clearly enhanced the enzymatic hydrolysis of high-solid corncob slurries with and without SXSL. A mechanism was proposed to explain the observed negative effect of SXSL and the positive effect of LFAs on the rheological properties.
Collapse
Affiliation(s)
- Hongming Lou
- School of Chemistry and Chemical Engineering and ‡State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|