1
|
Dikmetas D, Devecioglu D, Karbancioglu-Guler F, Kahveci D. Sequential Extraction and Characterization of Essential Oil, Flavonoids, and Pectin from Industrial Orange Waste. ACS OMEGA 2024; 9:14442-14454. [PMID: 38559951 PMCID: PMC10976415 DOI: 10.1021/acsomega.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Orange is one of the primary fruits processed into juice and other products worldwide, leading to a vast amount of waste accumulation. Such waste has been considered as an attractive candidate for upcycling to obtain bioactive components remaining. The present study investigated the extraction of essential oil (EO), flavonoids, and pectin from industrial orange waste with a holistic approach. To maximize EO yield and d-limonene concentration, hydrodistillation (HD) conditions were selected to be 5.5 mL water/g solid for 180 min. Remaining solids were further used for flavonoid extraction where conventional solvent, sequential ultrasound + solvent, and ultrasound-assisted extraction (UE) were applied. UE applied for 50 min with 120 mL solvent/g solid yielded the highest total phenolic (TPCs) and total flavonoid contents (TFCs), antioxidant capacity, and hesperidin and neohesperidin concentrations. In terms of TPC, TFC, antioxidant capacity, and antibacterial activity, both EO and flavonoid fractions demonstrated moderate to high bioactivity. At the final step, ethanol precipitation was applied to obtain the pectin that was solubilized in hot water during HD and it was characterized by Fourier transform infrared, degree of esterification, and galacturonic acid content. Practical application: to ensure utilization in the food, pharmaceutical, and cosmetic industries, this study presents a combined method to obtain several value-added compounds from industrial orange waste. Bioactive EO and flavonoids obtained could have applications in functional food, supplements, or cosmetic formulations, whereas extracted pectin can be used in many formulated foods and drugs.
Collapse
Affiliation(s)
- Dilara
Nur Dikmetas
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Dilara Devecioglu
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Funda Karbancioglu-Guler
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Derya Kahveci
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
2
|
Galvan-Lima Â, Cunha SC, Martins ZE, Soares AG, Ferreira IMPLVO, Farah A. Headspace volatolome of peel flours from citrus fruits grown in Brazil. Food Res Int 2021; 150:110801. [PMID: 34863493 DOI: 10.1016/j.foodres.2021.110801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Citrus fruit peel comprises a pleasant mix of volatile compounds together with fibers, nutrients, and bioactive compounds. Therefore, it has great potential for use as a food ingredient. Studies evaluating the volatile composition of citrus peel flours are limited for most citruses. The goal of this study was to characterize, by HS-SPME/GC-MS, the volatile profile of citrus peel flours made from fruits commonly grown in Brazil. Two composite samples of ten types of citrus peel flours from consecutive harvests were evaluated. 69 volatile compounds were assigned, 49 in Tahiti acid lime, 49 in Sicilian lemon, 37 in Persian lime, 34 in Italian tangerine and oval kumquat, 33 in Valencia orange, 32 in Baia orange and round kumquat, 28 in Blood-of-Mombuca orange and 26 in Lima orange. 26 major compounds represented 93-99% of the total chromatogram peak area. Terpenic compounds were predominant in all samples, especially monoterpenes (about 48-97% of the total chromatogram peak area), while lower proportions of aldehydes (0.2-16.1%), monoterpene alcohols (0.4-11.8%) and esters (0.0-7.7%) were observed. Even though a few compounds like limonene, β-myrcene, linalool, α-pinene and valencene were detected in all citrus, volatile compounds followed specific patterns in the different citruses, with a clear distinction among them, especially between lemon flours and the remaining flours. The variety of volatile profiles and singular specific volatolomic signatures in citrus peels can be explored for different applications related to food flavoring and preservation, and promotion of good health. These aspects should be thoroughly investigated in future studies.
Collapse
Affiliation(s)
- Ângela Galvan-Lima
- Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brasil; Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 01, 96010-610, Pelotas, Rio Grande do Sul, Brasil; LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Sara C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Zita E Martins
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Antonio G Soares
- Embrapa Agroindústria de Alimentos: Av. das Américas, n° 29.501, Guaratiba/23020-470 Rio de Janeiro, RJ, Brasil.
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Adriana Farah
- Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brasil.
| |
Collapse
|
3
|
Untargeted Metabolomics of Rind Essential Oils Allowed to Differentiate Two Closely Related Clementine Varieties. PLANTS 2021; 10:plants10091789. [PMID: 34579322 PMCID: PMC8470288 DOI: 10.3390/plants10091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Chemical characterization of clementine varieties (Citrus clementina Hort. ex Tan.) essential oils (EO) can lead to variety identification and valorization of their potential use in food and aroma industries. The goal of this study was the chemometric discrimination between two very closely related and morphologically identical clementine varieties, Clemenules (NL) and Clemenpons (PO), based on their rind EO, to identify the differential volatile organic compounds (VOCs) and to determine their antioxidant capacity. EO rind volatile profile was determined by gas chromatography coupled to mass spectrometry in Citrus fruit at different ripening stages grown two independent years in two different locations. Untargeted metabolomics and multivariate data analysis showed an evolution of EO volatile profiles markedly parallel in both varieties. Although EO qualitative composition was identical in both varieties, PLS-DA allowed the identification of characteristic VOCs, quantitatively discriminating them along all the ripening process. PO showed higher accumulation of several mono- and sesquiterpene compounds such as trans-carveol, while NL showed higher levels of aldehyde and alcohol non-terpenoids like dodecanal. Both varieties evinced identical EO antioxidant activities, indicating a similar value for food preservation. Hence, untargeted metabolomics approach based on rind EO volatiles was revealed as a powerful technique able to differentiate between morphologically undistinguishable Citrus varieties.
Collapse
|
4
|
Li G, Xiang S, Pan Y, Long X, Cheng Y, Han L, Zhao X. Effects of Cold-Pressing and Hydrodistillation on the Active Non-volatile Components in Lemon Essential Oil and the Effects of the Resulting Oils on Aging-Related Oxidative Stress in Mice. Front Nutr 2021; 8:689094. [PMID: 34195220 PMCID: PMC8236505 DOI: 10.3389/fnut.2021.689094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the non-volatile composition and antioxidant differences of lemon essential oils (LEOs) obtained by cold-pressing vs. hydrodistillation. Pathological observations showed that LEO effectively inhibited liver injury caused by oxidative stress, and CPLEO was more effective than HDLEO. CPLEO increased serum T-AOC, SOD, GSH, and GSH-Px levels while decreasing NO, COX-2, IL-6, IL-1β, IFN-γ, and TNF-α levels in mice with oxidative damage. The effects of CPLEO were stronger than those of HDLEO and similar to those of vitamin C. CPLEO upregulated mRNA and protein expressions of Cu/Zn-SOD, Mn-SOD, CAT, HO-1, Nrf2, and NQO1 while downregulating nNOS, iNOS, IL-1β, COX-2, TNF-α, and NF-κB mRNA expression and nNOS, eNOS, iNOS, and COX-2 protein expression in mice with oxidative damage. The results demonstrate that LEO has good antioxidant effects and that CPLEO has a better antioxidant effect than HDLEO as it retains more active non-volatile substances.
Collapse
Affiliation(s)
- Guijie Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Sha Xiang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yujiao Cheng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Leng Han
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
5
|
Li G, Cheng Y, Zhang T, Li Y, Han L, Liang G. Characterization of Oxygenated Heterocyclic Compounds and in vitro Antioxidant Activity of Pomelo Essential Oil. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:937-947. [PMID: 33688168 PMCID: PMC7936692 DOI: 10.2147/dddt.s299678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/18/2021] [Indexed: 01/03/2023]
Abstract
Purpose Citrus essential oils are widely used for aromatherapy and the alternative treatment of chronic diseases. Beyond the aroma substances, they are known to contain bioactive nonvolatile components; however, little knowledge has been gained about nonvolatiles in the essential oil of pomelo (Citrus grandis Osbeck), the largest citrus fruit. The purpose of this study was to analyze the nonvolatile oxygenated heterocyclic compounds (OHCs) of pomelo essential oils and evaluate their in vitro antioxidant activities for further development. Methods Cold-pressed essential oil (CPEO) and distilled essential oil (DEO) were obtained from the peel of the Liangping pomelo cultivar. High-performance liquid chromatography (HPLC) coupled with a photodiode array and fluorescence detection method was developed to identify and quantify the OHCs of the two essential oils. Ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide (PTIO) radical scavenging assays were used to determine the antioxidative capabilities. Results Thirteen OHCs were identified in CPEO. Coumarins such as meranzin (2.0 mmol L−1) and furanocoumarins such as isoimperatorin (1.3 mmol L−1) composed the majority of nonvolatiles in CPEO. These OHCs were characterized by high proportion (58%) of side chain epoxides. Five OHCs, namely, auraptenol, 6ʹ,7ʹ-dihydroxybergamottin (6ʹ,7ʹ-DHB), imperatorin, isoimperatorin and 8-geranyloxypsoralen were first identified in pomelo CPEO. Eight OHCs were detected at trace amounts in pomelo DEO. Antioxidant assays showed that CPEO was multiple times more potent than DEO regarding the total reducing power and radical scavenging capacity. Clearance of PTIO, a stable reactive oxygen species, followed slow kinetics. Conclusion Coumarins and furanocoumarins, two families of OHCs, constituted most of the nonvolatile components in CPEO. The nonvolatiles contributed significantly to the in vitro antioxidant activity of CPEO. Pomelo CPEO showed good prospects as a potential long-lasting natural antioxidant.
Collapse
Affiliation(s)
- Guijie Li
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Yujiao Cheng
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Tenghui Zhang
- Chengdu Centre Testing International Group Co., Ltd., Chengdu, People's Republic of China
| | - Yingzhuo Li
- Chongqing Beibei Agricultural and Rural Committee, Chongqing, People's Republic of China
| | - Leng Han
- Citrus Research Institute, Southwest University, Chongqing, People's Republic of China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Luciardi MC, Blázquez MA, Alberto MR, Cartagena E, Arena ME. Grapefruit essential oils inhibit quorum sensing of Pseudomonas aeruginosa. FOOD SCI TECHNOL INT 2019; 26:231-241. [PMID: 31684768 DOI: 10.1177/1082013219883465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Citrus essential oils are used in food to confer flavor and aromas. The citrus essential oils have been granted as GRAS and could be used as antimicrobial additives to control bacterial quorum sensing from potential food bacterial pathogens. The chemical composition and inhibitory activity of Citrus paradisi (grapefruit) essential oils obtained by cold-pressed method (EOP) and cold-pressed method followed by steam distillation, against Pseudomonas aeruginosa were determined. The GC-MS analyses of the oil indicated the amount of the essential oil components was highest with D-limonene in both cases. However, the extraction method modified the chemical composition. EOP had higher amount of coumarins and flavonoid as well as less oxygenated terpenoids. At 0.1 mg/mL essential oils were not able to modify the bacterial development but inhibited the P. aeruginosa biofilm production between 52% and 55%, sessile viability between 45% and 48%, autoinducer production and elastase activity between 30% and 56%. Limonene was less effective at inhibiting P. aeruginosa than the essential oils, suggesting a synergistic effect of the minor components. According to our results, grapefruit essential oils could be used as a food preservative to control P. aeruginosa virulence.
Collapse
Affiliation(s)
- María C Luciardi
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - M Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - María R Alberto
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Elena Cartagena
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Mario E Arena
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) CONICET, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| |
Collapse
|
7
|
Brine Shrimp Toxicity of Essential Oils from Musa spp. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.33736/bjrst.1585.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Essential oils of seven Musa spp.’s fruits namely, Musa acuminata colla ‘gros michel’ (PE), Musa acuminata colla ‘lakatan’ (PB), Musa acuminata colla ‘sucrier’ (PM), Musa acuminata × balbisiana ‘horn plantain’ (PT), Musa acuminata × balbisiana colla ‘saba’ (PN), Musa acuminata colla 'inarnibal' (PO) and Musa acuminata colla ‘red’ (PJ) were extracted by hydrodistillation method using Clevenger apparatus. The essential oils were analysed using GC-FID and identified using Kovat Indeces compared with published information. PE gave the highest yields of oils compared to the other species with yield of 0.43% and 0.28% for its peels and flesh, respectively. The most abundant groups present in most of the essential oils are ester and alcohol groups. The brine shrimp toxicity of PT, PM, PN and PO essential oils were tested and showed toxicity against brine shrimp in dose dependent manner. It can be concluded that the essential oils showed some biological activities which may be a potent medicine in curing tumor. This study implies that the presence of ester and alcohol groups are a good marker for the biological activities of plants. Further studies should focus on the potential of the essential oils of Musa spp. as an antitumor medicine.
Collapse
|
8
|
González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2019; 10:12. [PMID: 30804951 PMCID: PMC6370709 DOI: 10.3389/fpls.2019.00012] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 05/09/2023]
Abstract
The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.
Collapse
Affiliation(s)
- M. Carmen González-Mas
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| |
Collapse
|
9
|
Considering Chemical Resemblance: a Possible Confounder in Olfactory Identification Tests. CHEMOSENS PERCEPT 2017. [DOI: 10.1007/s12078-017-9226-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Negro V, Mancini G, Ruggeri B, Fino D. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization. BIORESOURCE TECHNOLOGY 2016; 214:806-815. [PMID: 27237574 DOI: 10.1016/j.biortech.2016.05.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/16/2016] [Accepted: 05/04/2016] [Indexed: 05/27/2023]
Abstract
The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization.
Collapse
Affiliation(s)
- Viviana Negro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Giuseppe Mancini
- Department of Industrial Engineering, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Bernardo Ruggeri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Debora Fino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
11
|
Zeng QH, Zhao JB, Wang JJ, Zhang XW, Jiang JG. Comparative extraction processes, volatile compounds analysis and antioxidant activities of essential oils from Cirsium japonicum Fisch. ex DC and Cirsium setosum (Willd.) M.Bieb. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|