1
|
Pakdel M, Moosavi-Nejad Z, Kermanshahi RK, Hosano N, Qamsari EM, Hosano H. Keratin nanoparticles derived from feather waste for novel antibacterial delivery. Int J Biol Macromol 2025; 298:139676. [PMID: 39800036 DOI: 10.1016/j.ijbiomac.2025.139676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The global rise of bacterial resistance demands innovative strategies to enhance antibiotic efficacy. This study investigates keratin nanoparticles (KNPs) derived from waste chicken feathers as sustainable drug carriers. Antibacterial activity of KNPs was evaluated against Staphylococcus aureus and Escherichia coli using antibacterial sensitivity assays, including disc diffusion and minimum inhibitory concentration tests, while cytotoxicity was evaluated on human lymphoma cells. KNPs exhibited excellent biocompatibility, showing no cytotoxic effects on human cells or bacteria. Penicillin and vancomycin were successfully loaded onto KNPs at 4 °C, 25 °C, and 50 °C temperatures for 2 and 20-hour. Loading onto KNPs enhanced the antibacterial efficacy of penicillin and vancomycin by 4-fold and 3.8-fold, respectively, against S. aureus at 37 °C. Enhanced antibacterial efficacy was attributed to molecular interactions between keratin and penicillin, as demonstrated by molecular docking analysis. The analysis revealed that the β-lactam ring of penicillin was encapsulated within the keratin matrix, potentially shielding it from enzymatic degradation by penicillinase. This protective mechanism preserves the antibiotic's structural integrity and antibacterial activity. These findings highlight the potential of KNPs as effective drug carriers in combating resistance mechanisms. This research underscores the transformative role of sustainable biological macromolecules in modern medicine, offering a promising approach to combat antibiotic resistance.
Collapse
Affiliation(s)
- Mona Pakdel
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, 1993893973 Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, 1993893973 Tehran, Iran.
| | - Rouha Kasra Kermanshahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, 1993893973 Tehran, Iran
| | - Nushin Hosano
- Biomaterials Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
| | - Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, 1993893973 Tehran, Iran
| | - Hamid Hosano
- Biomaterials Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
2
|
Souza GEDQ, Medeiros Burin GR, de Freitas RA, de Muniz GIB, Alves HJ. Recovery of keratin from feather meal: a new route to valorize an agro-industrial co-product. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 39581572 DOI: 10.1080/09593330.2024.2429044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The valorization of agro-industrial by-products/co-products represents a sustainable pathway to produce high-value biomaterials. Feather meal is an agro-industrial co-product derived from clean and undecomposed poultry feathers processed under high heat and pressure that offers an economically viable and scalable alternative for keratin extraction compared to native feathers. This study explores the recovery of keratin from feather meal through an optimized alkaline hydrolysis process, achieving a yield of 20 wt.% at 15°C and 90 min of extraction by using 2 mol L-1 sodium hydroxide solution. A negative temperature dependence was observed in keratin extraction yield, suggesting the occurrence of thermal degradation at elevated temperatures. Protein analyses by different techniques confirmed the characteristic diffraction peaks, functional groups, and elemental composition (carbon, nitrogen, oxygen, and sulphur) of feather keratin. The extracted keratin presented a low molar mass of 9 kg mol-1. Considering the circular economy principles, this work proposes a novel valorization route for feather meal and highlights its potential in creating value-added materials for several applications in medicine, pharmaceuticals, and engineering areas.
Collapse
Affiliation(s)
- Guilherme Emanuel de Queiros Souza
- Laboratory of Materials and Renewable Energy (LABMATER), Federal University of Paraná, Palotina, Brazil
- Central Laboratory of Nanotechnology (LCNano), Federal University of Paraná, Curitiba, Brazil
| | | | | | | | - Helton José Alves
- Laboratory of Materials and Renewable Energy (LABMATER), Federal University of Paraná, Palotina, Brazil
- Central Laboratory of Nanotechnology (LCNano), Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Qin X, Guo Y, Li R, Bitter JH, Scott EL, Zhang C. Enhanced Delivery of Biomolecules into Caco2 Cells Based on the Cell-Penetrating Ability of Keratin Peptides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56815-56825. [PMID: 39383509 DOI: 10.1021/acsami.4c13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/11/2024]
Abstract
Keratin, as a promising bioresource, possesses significant potential for diverse biological applications due to its favorable biocompatibility, low toxicity, biodegradability, and cell adhesion ability. However, there are few studies on the cell-penetrating ability of keratin peptides (KEPs) for biomolecule delivery. Therefore, this study explored the cell-penetrating ability of KEPs with different molecular weights (Mw) on Caco2 cells using fluorescein-labeled insulin (FITC-INS) as the target intracellular biomolecule. The potential cell-penetrating mechanism was elaborated by combining cellular investigation with the physicochemical characterization of KEPs. The result shows that the KEPs <3 kDa (KEP1) exhibited the highest cell-penetrating ability at 2 mg/mL, allowing efficient delivery of FITC-INS into Caco2 cells without covalent bonding. The cellular uptake mechanism was energy-dependent, mainly involving macropinocytosis. The further fractionation of KEP1 reveals that the most effective components consisted of 8-19 amino acids, including specific hydrophobic peptides (e.g., RVVIEPSPVVV and IIIQPSPVVV), PPII amphipathic peptides (e.g., PPPVVVTFP and FIQPPPVVV), and Cys-rich peptides (e.g., LCAPTPCGPTPL and CLPCRPCGPTPL). Additionally, analysis of the secondary and tertiary structure and amino acid composition illustrated that KEP1 exhibited rich hydrophobic residues and disulfide bonds, which probably contributed to its cell-penetrating ability, as opposed to its small particle size and electrostatic interactions. This study reveals the cell-penetrating ability of KEPs, thus highlighting their potential as biomaterials for noncovalently delivering biomolecules.
Collapse
Affiliation(s)
- Xiaojie Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Yujie Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruilin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Elinor L Scott
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Sun Y, Liu P, Zhang J, Wang L, Shang Y, Shen J, Yuan J. Multiresponsive Keratin-Polysulfobetaine Conjugate-Based Micelles as Drug Carriers with a Prolonged Circulation Time. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5418-5425. [PMID: 37014665 DOI: 10.1021/acs.langmuir.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/11/2023]
Abstract
A protein-polymer conjugate combines the chemical properties of a synthetic polymer chain with the biological properties of a protein. In this study, the initiator terminated with furan-protected maleimide was first synthesized through three steps. Then, a series of zwitterionic poly[3-dimethyl(methacryloyloxyethyl)ammonium propanesulfonate] (PDMAPS) was synthesized via atom transfer radical polymerization (ATRP) and optimized. Subsequently, well-controlled PDMAPS was conjugated with keratin via thiol-maleimide Michael addition. The keratin-PDMAPS conjugate (KP) could self-assemble in an aqueous solution to form micelles with low critical micelle concentration (CMC) values and good blood compatibility. The drug-loaded micelles exhibited triple responsiveness to pH, glutathione (GSH), and trypsin under tumor microenvironments. In addition, these micelles showed high toxicity against A549 cells while low toxicity on normal cells. Furthermore, these micelles performed prolonged blood circulation.
Collapse
Affiliation(s)
- Yu Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Pengcheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
5
|
Tuly JA, Ma H, Lee HJ, Song JW, Parvez A, Saqib MN, Yaseen W, Xinyan Z. Insights of Keratin geometry from Agro-industrial wastes: A comparative computational and experimental assessment. Food Chem 2023; 418:135854. [PMID: 37023668 DOI: 10.1016/j.foodchem.2023.135854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
Understanding the structural properties of keratin is of great importance to managing their potential application in keratin-inspired biomaterials and its management of wastes. In this work, the molecular structure of chicken feather keratin 1 was characterized by AlphaFold2 and quantum chemistry calculation. The predicted IR spectrum of the N-terminal region of feather keratin 1, consisting of 28 amino acid residues, was used to assign the Raman frequencies of the extracted keratin. The MW of experimental samples were 6 & 1 kDa while the predicted MW (∼10 kDa) of β-keratin. Experimental analysis shows the magnetic field treatment could affect the functional and surface structural properties of keratin. The particle size distribution curve illustrates the dispersion of particle size concentration, while TEM analysis demonstrates the reduction of particle diameter to 23.71 ± 1.1 nm following treatment. High-resolution XPS analysis confirmed the displacement of molecular elements from their orbital.
Collapse
Affiliation(s)
- Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, Zhenjiang, China.
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38134, USA
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
| | - Amresh Parvez
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Md Nazmus Saqib
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Waleed Yaseen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhang Xinyan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
6
|
Qin X, Yang C, Guo Y, Liu J, Bitter JH, Scott EL, Zhang C. Effect of ultrasound on keratin valorization from chicken feather waste: Process optimization and keratin characterization. ULTRASONICS SONOCHEMISTRY 2023; 93:106297. [PMID: 36641870 PMCID: PMC9860336 DOI: 10.1016/j.ultsonch.2023.106297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Revised: 01/01/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Chicken feather (CF) has been deemed as one of the main poultry byproducts with a large amount produced globally. However, the robust chemical nature of chicken feathers has been limiting in its wide-scale utilization and valorization. The study proposed a strategy of keratin regeneration from chicken feather combining ultrasound and Cysteine (Cys)-reduction for keratin regeneration. First, the ultrasonic effect on feather degradation and keratin properties was systematically explored based on Cys-reduction. Results showed that the feather dissolution was significantly improved by increasing both ultrasonic time and power, and the former had a greater impact on keratin yield. However, the treatment time over 4 h led to a decrease of keratin yield, producing more soluble peptides, > 9.7 % of which were < 0.5 kDa. Meanwhile, prolonging time decreased the thermal stability with weight loss at a lower temperature and amino acids content (e.g., Ser, Pro and Gly) of keratin. Conversely, no remarkable damage in chemical structure and thermal stability of regenerated keratin was observed by only increasing ultrasonic power, while the keratin solubility was notably promoted and reached 745.72 mg·g-1 in NaOH (0.1 M) solution (400 W, 4 h). The regenerated keratin under optimal conditions (130 W, 2.7 h, and 15 % of Cys) possessed better solubility while without obvious damage in chemical structure, thermal stability, and amino acids composition. The study illustrated that ultrasound physically improved CF degradation and keratin solubility without nature damage and provided an alternative for keratin regeneration involving no toxic reagent, probably holding promise in the utilization and valorization of feather waste.
Collapse
Affiliation(s)
- Xiaojie Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Xinjiang Taikun Group Co. Ltd, Xinjiang Uygur Autonomous Region, Changji 831100, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Johannes H. Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Elinor L. Scott
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Sleinus D, Sinka M, Korjakins A, Obuka V, Nikolajeva V, Brencis R, Savicka E. Properties of Sound Absorption Composite Materials Developed Using Flax Fiber, Sphagnum Moss, Vermiculite, and Sapropel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1060. [PMID: 36770067 PMCID: PMC9920241 DOI: 10.3390/ma16031060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
To address the need to reduce consumption and pollution in the industrial sector, composite materials were created using a new type of raw materials-organic lake sediments (sapropel) as a binder; sphagnum moss, flax fiber, and vermiculite as a filler. The main application of these composite materials is for sound absorption and moisture buffering, but since they contain bio-based binders and fillers, they also work as carbon storage. Within the framework of this work, a total of 100 samples of composite materials were created. Fungicides-a biocide quaternary ammonium compound and its natural substitute montmorillonite mineral material were also added to the materials to improve microbiological stability. The mechanical sound absorption and microbiological properties of materials were investigated and compared to similar environmentally friendly materials, such as hemp-lime concrete (FHL), hemp magnesium oxychloride composite (MOC), and hemp magnesium phosphate cement (MPC). The results showed that sound absorption and mechanical and microbial properties of the created composite materials are sufficient for their intended use, with flax fiber and vermiculite composites showing more stable mechanical, sound absorbing, and microbiological stability properties than materials containing flax fiber and moss.
Collapse
Affiliation(s)
- Daira Sleinus
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Maris Sinka
- 3D Concrete Printing Laboratory, Institute of Materials and Structures, Riga Technical University, 1 Paula Valdena Street, LV-1048 Riga, Latvia
| | - Aleksandrs Korjakins
- Department of Building Materials and Products, Faculty of Civil Engineering, Riga Technical University, 6A Kipsalas Street, LV-1048 Riga, Latvia
| | - Vaira Obuka
- Department of Environmental Science, University of Latvia, 1 Jelgavas Street, LV-1004 Riga, Latvia
| | - Vizma Nikolajeva
- Department of Microbiology and Biotechnology, University of Latvia, 1 Jelgavas Street, LV-1004 Riga, Latvia
| | - Raitis Brencis
- Scientific Laboratory of Building Materials, Department of Architecture and Building, Latvia University of Life Science and Technologies, 19 Akademijas Street, LV-3001 Jelgava, Latvia
| | - Estere Savicka
- Zaiga Gaile Office, 13/IV Marijas Street, LV-1050 Riga, Latvia
| |
Collapse
|
8
|
Trojanowska D, Suarato G, Braccia C, Armirotti A, Fiorentini F, Athanassiou A, Perotto G. Wool Keratin Nanoparticle-Based Micropatterns for Cellular Guidance Applications. ACS APPLIED NANO MATERIALS 2022; 5:15272-15287. [PMID: 36338329 PMCID: PMC9624257 DOI: 10.1021/acsanm.2c03116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The waste stream of low-grade wool is an underutilized source of keratin-rich materials with appropriate methods for upcycling into high value-added products still being an open challenge. In the present work, keratins were precipitated from their water solution to produce hierarchical keratin particles via isoelectric precipitation. Matrix-assisted laser desorption/ionization coupled with time-of-flight tandem mass spectrometry analysis (MALDI-TOF/TOF MS/MS) showed the presence of the amino acid sequence leucine-aspartic acid-valine (LDV) in the extracted keratin. This well-known cell adhesion motif is recognized by the cell adhesion molecule α4β1 integrin. We showed that keratin particles had this tripeptide exposed on the surface and that it could be leveraged, via patterns obtained with microcontact printing, to support and facilitate dermal fibroblast cell adhesion and direct their growth orientation. The zeta potential, isoelectric point, morphological structures, chemical composition, and biocompatibility of keratin particles and the influence of the surfactant sodium dodecyl sulfate (SDS) were investigated. An appropriate ink for microcontact printing of the keratin particles was developed and micron-sized patterns were obtained. Cells adhered preferentially to the patterns, showing how this strategy could be used to functionalize biointerfaces.
Collapse
Affiliation(s)
- Dagmara
J. Trojanowska
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
- Department
of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125Milan, Italy
| | - Giulia Suarato
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
- Istituto
Italiano di Tecnologia, Translational Pharmacology Facility, Via Morego, 30, 16163Genova, Italy
| | - Clarissa Braccia
- Istituto
Italiano di Tecnologia, Analytical Chemistry Facility, Via Morego, 30, 16163Genova, Italy
| | - Andrea Armirotti
- Istituto
Italiano di Tecnologia, Analytical Chemistry Facility, Via Morego, 30, 16163Genova, Italy
| | - Fabrizio Fiorentini
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
| | - Athanassia Athanassiou
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
| | - Giovanni Perotto
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
| |
Collapse
|
9
|
Sarma A. Biological importance and pharmaceutical significance of keratin: A review. Int J Biol Macromol 2022; 219:395-413. [DOI: 10.1016/j.ijbiomac.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
|
10
|
Qin X, Xu X, Guo Y, Shen Q, Liu J, Yang C, Scott E, Bitter H, Zhang C. A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:421-430. [PMID: 35452950 DOI: 10.1016/j.wasman.2022.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The study aimed to propose an efficient and eco-friendly strategy to improve the utilization of feather waste and converting it into high-valued antimicrobial products. Under the synergistic effect of instant catapult steam explosion (ICSE) (1.5 MPa-120 s), over 90% of chicken feather powder (CFP) was degraded into soluble peptides via keratinolysis within 3 h, about 90% of which were smaller than 3 kDa, indicating an overwhelming advantage than general proteolysis. Importantly, the keratinolysis hydrolysate of CFP was able to inhibit E. coli growth, among which the fraction < 3 kDa exhibited highest antimicrobial activity with a minimal inhibitory concentration of 30 mg/mL. Compared to other fractions, the fraction < 3 kDa contained higher content of hydrophobic amino acids (364.11 mg/g), in which about 79% of peptides had more than 60% hydrophobic ratio, potentially contributing to its antimicrobial activity. ICSE-keratinolysis process holds potential in reducing both protein resource waste and environmental pollution by valorizing feathers into antimicrobial product.
Collapse
Affiliation(s)
- Xiaojie Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Xiong Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingshan Shen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Elinor Scott
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Harry Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Giannelli M, Guerrini A, Ballestri M, Aluigi A, Zamboni R, Sotgiu G, Posati T. Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. NANOMATERIALS 2022; 12:nano12091406. [PMID: 35564115 PMCID: PMC9104131 DOI: 10.3390/nano12091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
In recent years, several studies have focused their attention on the preparation of biocompatible and biodegradable nanocarriers of potential interest in the biomedical field, ranging from drug delivery systems to imaging and diagnosis. In this regard, natural biomolecules—such as proteins—represent an attractive alternative to synthetic polymers or inorganic materials, thanks to their numerous advantages, such as biocompatibility, biodegradability, and low immunogenicity. Among the most interesting proteins, keratin extracted from wool and feathers, as well as fibroin extracted from Bombyx mori cocoons, possess all of the abovementioned features required for biomedical applications. In the present review, we therefore aim to give an overview of the most important and efficient methodologies for obtaining drug-loaded keratin and fibroin nanoparticles, and of their potential for biomedical applications.
Collapse
|
12
|
Anbesaw MS. Bioconversion of Keratin Wastes Using Keratinolytic Microorganisms to Generate Value-Added Products. Int J Biomater 2022; 2022:2048031. [PMID: 37251738 PMCID: PMC10212687 DOI: 10.1155/2022/2048031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2023] Open
Abstract
The management of keratinous wastes generated from different industries is becoming a major concern across the world. In each year, more than a billion tons of keratin waste is released into the environment. Despite some trials that have been performed and utilize this waste into valuable products, still a huge amount of keratin waste from different sources is a less explored biomaterial for making valuable products. This indicates that the huge amount of keratin waste is neither disposed properly nor converted into usable products rather thrown away to the environment that causes environmental pollution. Due to the introduction of this waste associated with different pathogenic organisms into soil and water bodies, human beings and other small and large animals are affected by different diseases. Therefore, there is a need for modern and ecofriendly approaches to dispose and convert this waste into usable products. Hence, the objective of this review is to give a concise overview regarding the degradation of keratin waste by biological approaches using keratinase producing microorganisms. The review also focuses on the practical use of keratinases and the economical importance of bioconverted products of keratinous wastes for different applications. Various researches have been studied about the source, disposal mechanisms, techniques of hydrolysis, potential use, and physical and chemical properties of keratin wastes. However, there is negligible information with regard to the use of keratin wastes as media supplements for the growth of keratinolytic microorganisms and silver retrieval from photographic and used X-ray films. Hence, this review differs from other similar reviews in the literature in that it discusses these neglected concerns.
Collapse
Affiliation(s)
- Muhammed Seid Anbesaw
- Wollo University, School of Bio-Science and Technology, Department of Biotechnology, Dessie, Ethiopia
| |
Collapse
|
13
|
Metcalf R, Oliver DM, Moresco V, Quilliam RS. Quantifying the importance of plastic pollution for the dissemination of human pathogens: The challenges of choosing an appropriate 'control' material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152292. [PMID: 34896491 DOI: 10.1016/j.scitotenv.2021.152292] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Discarded plastic wastes in the environment are serious challenges for sustainable waste management and for the delivery of environmental and public health. Plastics in the environment become rapidly colonised by microbial biofilm, and importantly this so-called 'plastisphere' can also support, or even enrich human pathogens. The plastisphere provides a protective environment and could facilitate the increased survival, transport and dissemination of human pathogens and thus increase the likelihood of pathogens coming into contact with humans, e.g., through direct exposure at beaches or bathing waters. However, much of our understanding about the relative risks associated with human pathogens colonising environmental plastic pollution has been inferred from taxonomic identification of pathogens in the plastisphere, or laboratory experiments on the relative behaviour of plastics colonised by human pathogens. There is, therefore, a pressing need to understand whether plastics play a greater role in promoting the survival and dispersal of human pathogens within the environment compared to other substrates (either natural materials or other pollutants). In this paper, we consider all published studies that have detected human pathogenic bacteria on the surfaces of environmental plastic pollution and critically discuss the challenges of selecting an appropriate control material for plastisphere experiments. Whilst it is clear there is no 'perfect' control material for all plastisphere studies, understanding the context-specific role plastics play compared to other substrates for transferring human pathogens through the environment is important for quantifying the potential risk that colonised plastic pollution may have for environmental and public health.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
14
|
Silva OA, Pellá MG, Popat KC, Kipper MJ, Rubira AF, Martins AF, Follmann HD, Silva R. Rod-shaped keratin nanoparticles extracted from human hair by acid hydrolysis as photothermally triggered berberine delivery system. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
|
15
|
Abstract
Keratin is a structural protein of mammalian tissues and birds, representing the principal constituent of hair, nails, skin, wool, hooves, horns, beaks, and feathers, and playing an essential role in protecting the body from external harassment. Due to its intrinsic features such as biocompatibility, biodegradability, responsiveness to specific biological environment, and physical–chemical properties, keratin has been extensively explored in the production of nanocarriers of active principles for different biomedical applications. In the present review paper, we aimed to give a literature overview of keratin-based nanoparticles produced starting from human hair, wool, and chicken feathers. Along with the chemical and structural description of keratin nanoparticles, selected in vitro and in vivo biological data are also discussed to provide a more comprehensive framework of possible fields of application of this protein. Despite the considerable number of papers describing the production and use of keratin nanoparticles as carries of anticancer and antimicrobial drugs or as hemostatic and wound healing materials, still, efforts are needed to implement keratin nanoparticles towards their clinical application.
Collapse
|
16
|
Noyes-Whitney Dissolution Model-Based pH-Sensitive Slow Release of Paclitaxel (Taxol) from Human Hair-Derived Keratin Microparticle Carriers. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6657482. [PMID: 34046500 PMCID: PMC8128610 DOI: 10.1155/2021/6657482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/03/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
This paper describes a convenient and straightforward method developed to extract keratin particles (KPs) from human hair. It also involves their characterization by several methods and encapsulation of the anticancer drug Paclitaxel (Taxol) within them, aiming for targeted delivery to cancerous sites and slow release at their vicinity. The KPs obtained were in micrometer in size. They are capable of encapsulating Taxol within them with a high encapsulation efficiency of 56% and a drug loading capacity of 2.360 g of Taxol per g keratin. As revealed by the SEM elemental analysis, KPs do not contain any toxic metal ion, and hence, they pose no toxicity to human cells. The pH-dependent release kinetics of the drug from KPs indicates that the drug is released faster when the pH of the solution is increased in the 5.0 to 7.0 pH range. The release kinetics obtained is impressive, and once targeted to the cancerous sites, using cancer directing agents, such as folic acid; a glutamate urea ligand known as DUPA; aminopeptidase N, also known as CD13; and FAP-α-targeting agents, the slow release of the drug is expected to destroy only the cancerous cells. The Noyes-Whitney dissolution model was used to analyze the release behavior of Taxol from KPs, which shows excellent fitting with experimental data. The pH dependence of drug release from keratin is also explained using the 3-D structures and keratin stability at different pH values.
Collapse
|
17
|
Farha AK, Gan RY, Li HB, Wu DT, Atanasov AG, Gul K, Zhang JR, Yang QQ, Corke H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit Rev Food Sci Nutr 2020; 62:832-859. [PMID: 33054344 DOI: 10.1080/10408398.2020.1829541] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| |
Collapse
|
18
|
Keratinous materials: Structures and functions in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110612. [PMID: 32204061 DOI: 10.1016/j.msec.2019.110612] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022]
Abstract
Keratins are a family of fibrous proteins anticipated to possess wide-ranging biomedical applications due to their abundance, physicochemical properties and intrinsic biological activity. This review mainly focuses on the biomaterials derived from three major sources of keratins; namely human hair, wool and feather, that have effective applications in tissue engineering, wound healing and drug delivery. This article offers five viewpoints regarding keratin i) an introduction to keratin protein extraction and keratin-based scaffold fabrication methods ii) applications in nerve and bone tissue engineering iii) a review on the keratin dressings applied to different types of wounds to facilitate wound healing and thereby repair the skin iv) the utilization of keratinous materials as a carrier system for therapeutics with a controlled manner v) a discussion regarding the main challenges for using keratin in biomedical applications as well as its future prospects.
Collapse
|
19
|
Comparative study of keratin extraction from human hair. Int J Biol Macromol 2019; 133:382-390. [DOI: 10.1016/j.ijbiomac.2019.04.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2018] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023]
|
20
|
Preparation of pH-responsive avermectin/feather keratin-hyaluronic acid with anti-UV and sustained-release properties. Colloids Surf B Biointerfaces 2019; 175:291-299. [DOI: 10.1016/j.colsurfb.2018.11.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 01/06/2023]
|
21
|
Perotto G, Sandri G, Pignatelli C, Milanesi G, Athanassiou A. Water-based synthesis of keratin micro- and nanoparticles with tunable mucoadhesive properties for drug delivery. J Mater Chem B 2019. [DOI: 10.1039/c9tb00443b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
A water-based synthesis to produce micro and nano particles of keratin, that can be easily loaded with drugs and showed a sustained release, is reported. The particles interaction with mucin could be altered to favor or decrease their mucoadhesion.
Collapse
|
22
|
Lin G, Chen X, Zhou H, Zhou X, Xu H, Chen H. Elaboration of a feather keratin/carboxymethyl cellulose complex exhibiting pH sensitivity for sustained pesticide release. J Appl Polym Sci 2018. [DOI: 10.1002/app.47160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Affiliation(s)
- G. Lin
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou People's Republic of China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals; Guangzhou People's Republic of China
| | - X. Chen
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou People's Republic of China
| | - H. Zhou
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou People's Republic of China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals; Guangzhou People's Republic of China
| | - X. Zhou
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou People's Republic of China
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals; Guangzhou People's Republic of China
| | - H. Xu
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou People's Republic of China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution; Guangzhou People's Republic of China
| | - H. Chen
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou People's Republic of China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution; Guangzhou People's Republic of China
| |
Collapse
|
23
|
Foglietta F, Spagnoli GC, Muraro MG, Ballestri M, Guerrini A, Ferroni C, Aluigi A, Sotgiu G, Varchi G. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Int J Nanomedicine 2018; 13:4847-4867. [PMID: 30214193 PMCID: PMC6122896 DOI: 10.2147/ijn.s159942] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Taxanes are highly effective cytotoxic drugs for progressing breast cancer treatment. However, their poor solubility and high toxicity urge the development of innovative formulations of potential clinical relevance. MATERIALS AND METHODS By using a simple and straightforward aggregation method, we have generated paclitaxel (PTX) loaded in keratin nanoparticles (KER-NPs-PTX). Their activities were tested against human breast cancer MCF-7 and MDA MB 231 cell lines in conventional two-dimensional (2D) cultures and in a dynamic three-dimensional (3D) model with perfused bioreactor (p3D). Moreover, KER-NPs-PTX activity was compared to free PTX and to PTX loaded in albumin nanoparticles (HSA-NPs-PTX). Cell viability, induction of apoptosis, and gene expression analysis were used as readouts. RESULTS In 2D cultures, KER-NPs-PTX was able to inhibit tumor cell viability and to induce apoptosis similarly to PTX and HSA-NPs-PTX. In the p3D model, a lower sensitivity of tumor cells to treatments was observed. Importantly, only KER-NPs-PTX was able to induce a statistically significant increase in apoptotic cell percentages following 24 h treatment for MCF-7 (16.7±4.0 early and 11.3±4.9 late apoptotic cells) and 48 h treatment for MDA MB 231 (21.3±11.2 early and 10.5±1.8 late apoptotic cells) cells. These effects were supported, at least for MCF-7 cells, by significant increases in the expression of proapoptotic BAX gene (5.8±0.5) 24 h after treatment and of cleaved caspase 3 (CC3) protein. CONCLUSION KER-NPs-PTX, generated by a simple procedure, is characterized by high water solubility and enhanced PTX-loading ability, as compared to HSA-NPs-PTX. Most importantly, it appears to be able to exert effective anticancer activities on breast cancer cells cultured in 2D or in p3D models.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science & Technology, University of Torino, Torino, Italy
| | - Giulio C Spagnoli
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland,
- Institute of Translational Pharmacology, CNR, Rome, Italy,
| | - Manuele Giuseppe Muraro
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland,
| | - Marco Ballestri
- Institute for Organic Synthesis & Photoreactivity, National Research Council, Bologna, Italy,
| | - Andrea Guerrini
- Institute for Organic Synthesis & Photoreactivity, National Research Council, Bologna, Italy,
| | - Claudia Ferroni
- Institute for Organic Synthesis & Photoreactivity, National Research Council, Bologna, Italy,
| | - Annalisa Aluigi
- Institute for Organic Synthesis & Photoreactivity, National Research Council, Bologna, Italy,
| | - Giovanna Sotgiu
- Institute for Organic Synthesis & Photoreactivity, National Research Council, Bologna, Italy,
| | - Greta Varchi
- Institute for Organic Synthesis & Photoreactivity, National Research Council, Bologna, Italy,
| |
Collapse
|
24
|
DeFrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int J Mol Sci 2018; 19:E1717. [PMID: 29890756 PMCID: PMC6032199 DOI: 10.3390/ijms19061717] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles are particles that range in size from about 1⁻1000 nanometers in diameter, about one thousand times smaller than the average cell in a human body. Their small size, flexible fabrication, and high surface-area-to-volume ratio make them ideal systems for drug delivery. Nanoparticles can be made from a variety of materials including metals, polysaccharides, and proteins. Biological protein-based nanoparticles such as silk, keratin, collagen, elastin, corn zein, and soy protein-based nanoparticles are advantageous in having biodegradability, bioavailability, and relatively low cost. Many protein nanoparticles are easy to process and can be modified to achieve desired specifications such as size, morphology, and weight. Protein nanoparticles are used in a variety of settings and are replacing many materials that are not biocompatible and have a negative impact on the environment. Here we attempt to review the literature pertaining to protein-based nanoparticles with a focus on their application in drug delivery and biomedical fields. Additional detail on governing nanoparticle parameters, specific protein nanoparticle applications, and fabrication methods are also provided.
Collapse
Affiliation(s)
- Kelsey DeFrates
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Theodore Markiewicz
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Pamela Gallo
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Aaron Rack
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Aubrie Weyhmiller
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Brandon Jarmusik
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
25
|
Kunjiappan S, Panneerselvam T, Somasundaram B, Sankaranarayanan M, Chowdhury R, Chowdhury A, Bhattacharjee C. Design,
in silico
modeling, biodistribution study of rutin and quercetin loaded stable human hair keratin nanoparticles intended for anticancer drug delivery. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa1cf] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
|
26
|
Rajabinejad H, Patrucco A, Caringella R, Montarsolo A, Zoccola M, Pozzo PD. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules. ULTRASONICS SONOCHEMISTRY 2018; 40:527-532. [PMID: 28946454 DOI: 10.1016/j.ultsonch.2017.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
The interest towards microcapsules based on non-toxic, biodegradable and biocompatible polymers, such as proteins, is increasing considerably. In this work, microcapsules were prepared using water soluble keratin, known as keratoses, with the aim of encapsulating hydrophilic molecules. Keratoses were obtained via oxidizing extraction of pristine wool, previously degreased by Soxhlet. In order to better understand the shell part of microcapsules, pristine wool and obtained keratoses were investigated by FT-IR, gel-electrophoresis and HPLC. Production of the microcapsules was carried out by a sonication method. Thermal properties of microcapsules were investigated by DSC. Microencapsulation and dye encapsulation yields were obtained by UV-spectroscopy. Morphological structure of microcapsules was studied by light microscopy, SEM, and AFM. The molecular weights of proteins analyzed using gel-electrophoresis resulted in the range of 38-62kDa. The results confirmed that the hydrophilic dye (Telon Blue) was introduced inside the keratoses shells by sonication and the final microcapsules diameter ranged from 0.5 to 4µm. Light microscope investigation evidenced the presence of the dye inside the keratoses vesicles, confirming their capability of encapsulating hydrophilic molecules. The microcapsule yield and dye encapsulation yield were found to be 28.87±3% and 83.62±5% respectively.
Collapse
Affiliation(s)
- Hossein Rajabinejad
- Politecnico di Torino, DISAT - Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Alessia Patrucco
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Rosalinda Caringella
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Alessio Montarsolo
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Marina Zoccola
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| | - Pier Davide Pozzo
- CNR-ISMAC National Research Council, Institute for Macromolecular Studies, C.so Pella 16, 13900 Biella, Italy
| |
Collapse
|
27
|
Wang J, Hao S, Luo T, Yang Q, Wang B. Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:768-773. [DOI: 10.1016/j.msec.2016.07.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/25/2016] [Revised: 06/28/2016] [Accepted: 07/16/2016] [Indexed: 11/25/2022]
|
28
|
Aluigi A, Sotgiu G, Ferroni C, Duchi S, Lucarelli E, Martini C, Posati T, Guerrini A, Ballestri M, Corticelli F, Varchi G. Chlorin e6 keratin nanoparticles for photodynamic anticancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra04208b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Chlorin e6-conjugated keratin nanoparticles were obtained and their effectiveness as carriers for cancer photodynamic therapy was demonstratedin vitro.
Collapse
Affiliation(s)
- A. Aluigi
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| | - G. Sotgiu
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| | - C. Ferroni
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| | - S. Duchi
- Osteoarticular Regeneration Laboratory
- Rizzoli Orthopaedic Institute
- 40136 Bologna
- Italy
| | - E. Lucarelli
- Osteoarticular Regeneration Laboratory
- Rizzoli Orthopaedic Institute
- 40136 Bologna
- Italy
| | - C. Martini
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| | - T. Posati
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| | - A. Guerrini
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| | - M. Ballestri
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| | - F. Corticelli
- Institute for Microelectronics and Microsystems
- National Research Council
- 40129 Bologna
- Italy
| | - G. Varchi
- Institute of Organic Synthesis and Photoreactivity – Italian National Research Council
- 40129 Bologna
- Italy
| |
Collapse
|
29
|
Reddy N. Non-food industrial applications of poultry feathers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 45:91-107. [PMID: 26092473 DOI: 10.1016/j.wasman.2015.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/15/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
Poultry feathers are one of the unique coproducts that have versatile applications ranging from composites, fibers, tissue engineering scaffolds, nano and micro particles, electronic devices and many others. Despite their low cost, abundant availability, wide applicability and unique properties, non-food industrial applications of feather keratin are very limited. Poor-thermoplasticity, difficulty in dissolving keratin and limited knowledge on the processability and properties of products developed are some of the limitations for the large scale use of feather/keratin. Nevertheless, increasing interests in using renewable and sustainable raw materials and need to decrease dependence on non-renewable petroleum resources make feathers an attractive raw material for bioproducts. This review provides an overview of the products developed from poultry feathers and their limitations and advantages.
Collapse
Affiliation(s)
- Narendra Reddy
- Center for Emerging Technologies, Jain University, Jain Global Campus, Jakkasandra Post, Ramanagara District, Bengaluru 562112, India.
| |
Collapse
|
30
|
Khajavi R, Rahimi MK, Abbasipour M, Brendjchi AH. Antibacterial nanofibrous scaffolds with lowered cytotoxicity using keratin extracted from quail feathers. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515598793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
This study aims to extract keratin from quail feather wastes and incorporate it with silver nanoparticles into a synthetic biodegradable polymer in order to fabricate a nanofibrous scaffold with improved biomedical properties. Polyvinyl alcohol was used as the host polymer and spinning dopes with different amounts (0, 0.15, and 0.75 wt %) of extracted keratin and the same amount of silver nanoparticles prepared in order to fabricate scaffolds. According to the results, the scaffolds with a higher amount of extracted keratin (i.e. 0.75 wt %) provided less bead formation and more uniformity; also, they gave 99.9% and 98% of the antibacterial activity against gram negative ( Escherichia coli) and gram positive ( Staphylococcus aureus) bacteria, respectively. The analysis of the biological response of fibroblast cells cultured on the synthetic scaffolds exhibited remarkable improvement in comparison to the pristine (polyvinyl alcohol-Ag) scaffolds. This article concludes that the addition of extracted keratin into a polymeric matrix (polyvinyl alcohol) can improve both antibacterial properties and cell viability for the resultant scaffolds, and this qualifies them as potent candidates for biomedical applications.
Collapse
Affiliation(s)
- Ramin Khajavi
- Department of Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Rahimi
- Department of Microbiology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mina Abbasipour
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Amir Hossein Brendjchi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Xu H, Yang Y. Nanoparticles derived from plant proteins for controlled release and targeted delivery of therapeutics. Nanomedicine (Lond) 2015; 10:2001-4. [DOI: 10.2217/nnm.15.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Helan Xu
- Department of Textiles, Merchandising & Fashion Design, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583–0802, USA
| | - Yiqi Yang
- Department of Textiles, Merchandising & Fashion Design, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583–0802, USA
- Department of Biological Systems Engineering, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583–0802, USA
- Nebraska Center for Materials & Nanoscience, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583–0802, USA
| |
Collapse
|