1
|
Bao L, Yang R, Diao D, Tian F, Chen Y, Zheng B, Gao P, Zhao Y. Reheating-induced gel properties change and flavor evolution of surimi-based seafood: Effects and mechanisms. Food Chem 2025; 464:141466. [PMID: 39406135 DOI: 10.1016/j.foodchem.2024.141466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
This study investigated the effect of different reheating treatments on gel properties and flavor changes of surimi products. As the reheating temperature increased from 90 °C to 121 °C, the heat-induced proteolysis produced more abundant umami and sweet amino acids, which took part in the conversion of IMP to AMP, thus enhancing the taste profiles. Reheating increased the exposure of active -NH2 terminals in proteins, which boosted Maillard and Strecker reactions with carbonyl compounds originated from fatty acid oxidation, thus not only reducing the aldehydes and esters contents but also lowering the whiteness of surimi products. Reheating at 90 °C prohibited the production of warmed-over flavor (WOF) and well-preserved the textural characteristics, but high temperatures ≥100 °C were prone to generate furan as the major WOF substance and to destroy gel structures. Collectively, this study provides new insights on understanding the role of reheating on sensory properties of surimi products.
Collapse
Affiliation(s)
- Lingxiang Bao
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Ruizhi Yang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Dieynabou Diao
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Fang Tian
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yingyun Chen
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bin Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Pingping Gao
- Faculty of Applied Sciences, Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
2
|
Effect of Lactose-Reduction in Murciano-Granadina Semi-Hard Goat Cheese on Physicochemical and Sensory Characteristics. Foods 2023; 12:foods12050996. [PMID: 36900513 PMCID: PMC10001238 DOI: 10.3390/foods12050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Semi-hard pressed goat's cheese, a traditional matured cheese in Andalusia, has a residual lactose content that may affect people with intolerance to that carbohydrate. Nowadays, lactose-free dairy products are characterized by presenting a scant sensory quality, far removed from their traditional profile for their pronounced sweet and bitter taste and aroma related to Maillard reactions. The aim of this work was to make a cheese with a similar sensory profile to that of the traditional Andalusian one but without lactose. For this purpose, the doses of the enzyme lactase that would be necessary to add to the milk were investigated so that, during the manufacturing of the cheese, there would remain enough lactose for the starter cultures to trigger lactic fermentation and, in turn, to spark the cheese's own maturity processes. The results show that the combined action of lactase (0.125 g/L, 0.250 g/L, 0.5 g/L, and 1 g/L) and of the lactic bacteria reduces the final content of lactose to below 0.01%, complying with the European Authority of Food Safety's recommendations for considering the cheeses as being under the denomination "lactose-free". The physicochemical and sensory values resulting from the different batches of cheese obtained indicate that the lowest dose studied (0.125 g/L) had very similar ones to those of the control cheese.
Collapse
|
3
|
The Impact of Low-Temperature Inactivation of Protease AprX from Pseudomonas on Its Proteolytic Capacity and Specificity: A Peptidomic Study. DAIRY 2023. [DOI: 10.3390/dairy4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The destabilization of UHT milk during its shelf life can be promoted by the residual proteolytic activity attributed to the protease AprX from Pseudomonas. To better understand the hydrolysis patterns of AprX, and to evaluate the feasibility of using low-temperature inactivation (LTI) for AprX, the release of peptides through AprX activity on milk proteins was examined using an LC-MS/MS-based peptidomic analysis. Milk samples were either directly incubated to be hydrolyzed by AprX, or preheated under LTI conditions (60 °C for 15 min) and then incubated. Peptides and parent proteins (the proteins from which the peptides originated) were identified and quantified. The peptides were mapped and the cleavage frequency of amino acids in the P1/P1′ positions was analyzed, after which the influence of LTI and the potential bitterness of the formed peptides were determined. Our results showed that a total of 2488 peptides were identified from 48 parent proteins, with the most abundant peptides originating from κ-casein and β-casein. AprX may also non-specifically hydrolyze other proteins in milk. Except for decreasing the bitterness potential in skim UHT milk, LTI did not significantly reduce the AprX-induced hydrolysis of milk proteins. Therefore, the inactivation of AprX by LTI may not be feasible in UHT milk production.
Collapse
|
4
|
Sensory Description and Consumer Hedonic Perception of Ultra-High Temperature (UHT) Milk. Foods 2022; 11:foods11091350. [PMID: 35564073 PMCID: PMC9104556 DOI: 10.3390/foods11091350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Sensory characteristics of products play an essential role on the consumer’ s acceptability, preference and consuming behavior choice. The sensory profiles and consumer hedonic perception for 14 UHT milk products using sensory quantitatively descriptive analysis and a 9-point hedonic scale were investigated in this study. There were significant differences in the sensory attributes intensity and liking scores among the organic whole milk, ordinary whole milk, low-fat milk, and skimmed milk (p < 0.05). Skimmed milk samples had lowest intensity scores of typical milk aroma, taste flavor and texture attributes, as well as had the lowest overall liking scores. Whole milk samples had higher sensory intensity scores than low-fat milk samples, even though no significant differences of overall liking scores were observed between whole milk and low-fat milk. Furthermore, the relationship between the sensory attribute and overall liking was demonstrated according to correlation analysis and partial least squares regression (PLSR) analysis. Overall liking increased significantly with the increasing of sweet, after milk aroma, protein-like, mellow and thick, while decreased significantly with the enhancement of cowy, cooked and whey (p < 0.05). These findings presented a potential strategy for identifying the key sensory attributes responsible for liking score differences among different kinds of UHT milk products.
Collapse
|
5
|
Varnaitė L, Keršienė M, Šipailienė A, Kazernavičiūtė R, Venskutonis PR, Leskauskaitė D. Fiber-Rich Cranberry Pomace as Food Ingredient with Functional Activity for Yogurt Production. Foods 2022; 11:foods11050758. [PMID: 35267391 PMCID: PMC8909558 DOI: 10.3390/foods11050758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, different amounts (from 2% to 4.5%) of dietary fiber-rich cranberry pomace (CP) were added to yogurt before or after fermentation to increase dietary fiber content without changing the textural properties of the product. The addition of CP reduced whey loss, improved the firmness and viscosity, increased the total phenol compound content and the antioxidant capacity values (DPPH•, ABTS, and ORAC) of the yogurt in a dose-dependent manner, and had no significant effect on the viability of the yogurt culture bacteria. For all CP-supplemented yogurt samples, the bioaccessibility index of the polyphenols after in vitro intestinal phase digestion was approximately 90%. However, yogurt with CP added before fermentation exhibited a significantly (p < 0.05) lower degree of protein hydrolysis post-gastric and post-intestinal than the yogurt with CP added after fermentation. Yogurt supplemented with 4.5% CP could be considered a good antioxidant dairy product and a good source of dietary fiber.
Collapse
|
6
|
Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods 2021; 10:foods10091998. [PMID: 34574107 PMCID: PMC8472807 DOI: 10.3390/foods10091998] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/13/2023] Open
Abstract
Milk has two main components that have high nutritional value—milk protein (casein and whey protein), and lactose. These components are extensively used in various areas, especially in food, i.e., as sweeteners, stabilizers, functional food ingredients, nutritional fortifiers, etc. Non-enzymatic browning refers to a series of chemical reactions between sugars and proteins that make food more appetizing. Non-enzymatic browning reactions include degradation of ascorbic acid, lipid peroxidation, caramel reaction, and the Maillard reaction (MR). The MR, as one of the four non-enzymatic browning reactions, has been well studied and utilized in food fields. Milk protein and lactose, as two main components of milk, have high chemical activities; they are used as reactants to participate in the MR, generating Maillard reaction products (MRPs). The MR involves a condensation reaction between carbonyl groups of various sugars and amino groups of amino acids/proteins. These MRPs have different applications in various areas, including food flavor, food oxidation resistance, drug carriers, etc. This work presents the positive and negative effects of the MR, based on the two main components of milk, used in food and medicine, as well as avoidance approaches to prevent the occurrence of negative effects.
Collapse
|
7
|
Extract isolated from cranberry pomace as functional ingredient in yoghurt production: Technological properties and digestibility studies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Cincotta F, Condurso C, Tripodi G, Merlino M, Prestia O, Stanton C, Verzera A. Comparison of lactose free and traditional mozzarella cheese during shelf-life by aroma compounds and sensory analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Soyler A, Cikrikci S, Cavdaroglu C, Bouillaud D, Farjon J, Giraudeau P, Oztop MH. Multi-scale benchtop 1H NMR spectroscopy for milk analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Amaya-Farfan J, Rodriguez-Amaya DB. The Maillard reactions. CHEMICAL CHANGES DURING PROCESSING AND STORAGE OF FOODS 2021:215-263. [DOI: 10.1016/b978-0-12-817380-0.00006-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Sen C, Ray PR, Bhattacharyya M. A critical review on metabolomic analysis of milk and milk products. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chandrakanta Sen
- Department of Dairy Chemistry West Bengal University of Animal and Fishery Sciences Mohanpur Nadia West Bengal 741252 India
| | - Pinaki Ranjan Ray
- Department of Dairy Chemistry West Bengal University of Animal and Fishery Sciences Mohanpur Nadia West Bengal 741252 India
| | - Mahasweta Bhattacharyya
- Department of Dairy Chemistry West Bengal University of Animal and Fishery Sciences Mohanpur Nadia West Bengal 741252 India
| |
Collapse
|
12
|
Bottiroli R, Zhang C, Aprea E, Fogliano V, Hettinga K, Gasperi F. Short communication: Short-time freezing does not alter the sensory properties or the physical stability of ultra-high-temperature hydrolyzed-lactose milk. J Dairy Sci 2020; 103:8822-8828. [PMID: 32773317 DOI: 10.3168/jds.2020-18415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022]
Abstract
In this study, the effect of milk freezing was studied, focusing on the changes in 1% and 3% fat UHT hydrolyzed-lactose milk after slow- (-20°C) and fast-rate freezing (-80°C) for 72 h. Changes on the sensory properties were first assessed by discriminant analysis (triangle test), and then by volatile organic compounds and color analysis. The milk emulsion stability was characterized by optical centrifugation, particle size analysis, and confocal microscopy. The sensory panel was not able to distinguish the milk subjected to freezing from the control (72 h at 20°C). The volatile organic compounds and color analysis demonstrated that both freezing rates did not cause any significant changes in the milk aroma or color characteristics. The results of physical properties confirmed that short-time freezing did not lead to a distinct destabilization, except for a slight increase in the mean particle diameter at -80°C. Taking all the results together, UHT hydrolyzed-lactose milk was not significantly altered during the operation of freezing and thawing and, therefore, short-time freezing at both -20°C and -80°C can be used for milk storage without altering the product.
Collapse
Affiliation(s)
- R Bottiroli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, TN, Italy; Department of Agriculture and Food Science, University of Naples, Federico II, 80055 Portici, NA, Italy
| | - C Zhang
- Dairy Science and Technology Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, the Netherlands
| | - E Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, TN, Italy; Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, TN, Italy.
| | - V Fogliano
- Food Quality and Design Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, the Netherlands
| | - K Hettinga
- Dairy Science and Technology Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, the Netherlands
| | - F Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, TN, Italy; Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, TN, Italy
| |
Collapse
|
13
|
Bottiroli R, Aprea E, Betta E, Fogliano V, Gasperi F. Application of headspace solid-phase micro-extraction gas chromatography for the assessment of the volatiles profiles of ultra-high temperature hydrolysed-lactose milk during production and storage. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Alinovi M, Mucchetti G, Wiking L, Corredig M. Freezing as a solution to preserve the quality of dairy products: the case of milk, curds and cheese. Crit Rev Food Sci Nutr 2020; 61:3340-3360. [PMID: 32715725 DOI: 10.1080/10408398.2020.1798348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
When thinking of the freezing process in dairy, products consumed in frozen state, such as ice creams come to mind. However, freezing is also considered a viable solutions for many other dairy products, due to increasing interest to reduce food waste and to create more robust supply chains. Freezing is a solution to production seasonality, or to extend the market reach for high-value products with otherwise short shelf life. This review focuses on the physical and chemical changes occurring during freezing of milk, curds and cheeses, critical to maintaining quality of the final product. However, freezing is energy consuming, and therefore the process needs to be optimized to maintain product's quality and reduce its environmental footprint. Furthermore, the processing steps leading to the freezing stage may require some changes compared to traditional, fresh products. Unwanted reactions occur at low water activity, and during modifications such as ice crystals growth and recrystallization. These events cause major physical destabilizations of the proteins due to cryoconcentration, including modification of the colloidal-soluble equilibrium. The presence of residual proteases and lipases also cause important modifications to the texture and flavor of the frozen dairy product.
Collapse
Affiliation(s)
| | | | - Lars Wiking
- Department of Food Science, Aarhus University, Skejby, Denmark.,iFood Center, Department of Food Science, Aarhus University, Skejby, Denmark
| | - Milena Corredig
- Department of Food Science, Aarhus University, Skejby, Denmark.,iFood Center, Department of Food Science, Aarhus University, Skejby, Denmark
| |
Collapse
|
15
|
Alinovi M, Wiking L, Corredig M, Mucchetti G. Effect of frozen and refrigerated storage on proteolysis and physicochemical properties of high-moisture citric mozzarella cheese. J Dairy Sci 2020; 103:7775-7790. [PMID: 32684456 DOI: 10.3168/jds.2020-18396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
High-moisture mozzarella is one of the most-exported Italian cheeses worldwide, but its quality is affected by storage. Freezing is regarded as a solution to decrease product waste, extend market reach, and increase convenience, but its effect on quality has to be estimated. In this study, the details related to proteolysis, physicochemical properties, and sensory quality parameters of high-moisture mozzarella as a function of frozen storage (1, 3, and 4 mo) and subsequent refrigerated storage after thawing (1, 3, and 8 d) were evaluated. Frozen cheeses stored at -18°C showed a higher extent of proteolysis, as well as different colorimetric and sensory properties, compared with the fresh, nonfrozen control. Sensory evaluation showed the emergence of oxidized and bitter taste after 1 mo of frozen storage, which supports the proteolysis data. The extent of proteolysis of frozen-stored cheese after thawing was greater than that measured in fresh cheese during refrigerated storage. These results help better understand the changes occurring during frozen storage of high-moisture mozzarella cheese and evaluate possible means to decrease the effect of freezing on the cheese matrix.
Collapse
Affiliation(s)
- Marcello Alinovi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 47/A, Parma, Italy 43124.
| | - Lars Wiking
- Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200; iFood Center, Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200; iFood Center, Department of Food Science, Aarhus University, Agro Food Park 48, Skejby, Denmark 8200
| | - Germano Mucchetti
- Food and Drug Department, University of Parma, Parco Area delle Scienze 47/A, Parma, Italy 43124
| |
Collapse
|
16
|
Chemical and sensory changes during shelf-life of UHT hydrolyzed-lactose milk produced by "in batch" system employing different commercial lactase preparations. Food Res Int 2020; 136:109552. [PMID: 32846602 DOI: 10.1016/j.foodres.2020.109552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/06/2023]
Abstract
Manufacturing shelf-stable Ultra-high temperature hydrolyzed-lactose milk (UHLM) is a challenge for dairy producers, as the product undergoes chemical changes during storage due to both reducing sugars reactivity and proteolysis arising from the impurity of the lactase preparations. In the present study, the "in batch" production system, which includes the addition of the lactase before the thermal treatment, was demonstrated a valuable alternative to the more popular "in pack" system, where lactase is added directly into each milk package after thermal sterilization. The features of the technology were investigated by monitoring the changes in free amino acids, volatile organic compounds, color and sensory properties of UHLMs produced with three different lactase preparations (LPs), up to 120 days at 20 °C. Upon UHT processing, the proteolytic side activity of lactases was minimized, so minimum breakdown of milk protein was achieved. The release of free amino acids was dependent on the lactase purity only in the early production phases, whereas it did not change over time. The Strecker aldehydes benzaldehyde and 2-methylbutanal resulted as effective markers to correlate with the initial lactase purity during storage. Color and sensory slightly changed during storage but were poorly correlated with the different lactases, resembling to phenomena typical of milk aging. This latter result suggested that production costs might be lowered by opting for less-purified lactases when considering the "in batch" technology, supporting the application of this production system for the design of UHLM with high-quality standards and low risk of alterations during shelf-life.
Collapse
|
17
|
Zhang W, Poojary MM, Rauh V, Ray CA, Olsen K, Lund MN. Limitation of Maillard Reactions in Lactose-Reduced UHT Milk via Enzymatic Conversion of Lactose into Galactooligosaccharides during Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3568-3575. [PMID: 32065525 DOI: 10.1021/acs.jafc.9b07824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lactose-hydrolyzed (LH) ultrahigh temperature (UHT) processed milk is more prone to Maillard reactions and formation of advanced glycation end products (AGEs) during processing and storage than conventional (CON) UHT milk because of the presence of free galactose and glucose. Commercially available β-d-galactosidases with transgalactosylating activity can incorporate galactose into galactooligosaccharides (GOSs) and potentially limit Maillard reactions in this lactose-reduced GOS-containing milk. The aim of this study was to examine the extent of Maillard reactions in a lactose-reduced GOS milk compared to LH and CON milk after UHT processing. The GOS milk had significant lower levels of lysine- and arginine-derived AGEs compared to LH milk, while their concentrations were similar to those found in CON milk. The total concentration of measured Arg-derived AGEs was similar to the total concentration of Lys-derived AGEs in the three types of milk, indicating that Arg is an important source of AGEs in milks. Interestingly, the GOS milk generated threefold higher concentrations (up to 330 ± 6 μM) of 3-deoxyglucosone (3-DG, a C6 α-dicarbonyl). These results demonstrate that GOS milk could be a potential alternative for LH milk for lactose-intolerant individuals, although further studies are needed to understand the increased formation of 3-DG in GOS-containing milk.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Valentin Rauh
- Arla Foods amba, Agro Food Park 19, 8200 Aarhus N, Denmark
| | - Colin A Ray
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Karsten Olsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
18
|
Zhang W, Poojary MM, Rauh V, Ray CA, Olsen K, Lund MN. Quantitation of α-Dicarbonyls and Advanced Glycation Endproducts in Conventional and Lactose-Hydrolyzed Ultrahigh Temperature Milk during 1 Year of Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12863-12874. [PMID: 31670949 DOI: 10.1021/acs.jafc.9b05037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A comprehensive quantitative characterization of Maillard reaction products was carried out for conventional (CON) and lactose-hydrolyzed (LH) ultrahigh temperature (UHT) milk during storage at 20, 30, and 40 °C for 1 year. The accumulation of 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal) in LH-UHT milk ranged from 20-fold (at 20 °C) to 44-fold (at 40 °C) higher than that in CON-UHT milk. High temperature storage (40 °C) significantly accelerated the accumulation of 3-DG, 3-DGal, and 5-hydroxymethyl furfural but not the majority of the analyzed advanced glycation endproducts (AGEs). The concentrations of major AGEs including N-ε-carboxymethyllysine (CML), N-ε-carboxyethyllysine (CEL), methylglyoxal-hydroimidazolone isomers (MG-H1/H3), glyoxal-hydroimidazolone isomers (G-H1/H3), and G-H2 detected in CON milk during storage were in the range 12-700, 1-14, 8-45, 4-13, and 1-30 μM, respectively, while they were 30-570, 2-88, 17-150, 9-20, and 5-34 μM, respectively, in LH milk. Pyrraline, S-(carboxymethyl)cysteine (CMC), and glyoxal-lysine dimer were detected in lower levels, while MG-H2, methylglyoxal-lysine dimer, argpyrimidine, glyoxal-lysine-amide, glycolic acid-lysine-amide, and pentosidine were not detected in any of the milk samples. This work demonstrates for the first time that five of the analyzed AGEs (CML, CEL, MG-H1/H3, G-H1/H3, and G-H2) could be selected as markers for evaluation of the extent of the Maillard reaction in UHT milk. These results contribute to a better understanding of how Maillard reactions progress during storage of UHT milk and can be used to develop strategies to inhibit Maillard reactions in LH milk.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Valentin Rauh
- Arla Foods Amba , Agro Food Park 19 , 8200 Aarhus N , Denmark
| | - Colin A Ray
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Karsten Olsen
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Blegdamsvej 3 , 2200 Copenhagen N , Denmark
| |
Collapse
|
19
|
Jia W, Zhang R, Shi L, Zhang F, Chang J, Chu X. Accurate determination of volatile-flavor components in bos grunniens milk by high-throughput dynamic headspace gas chromatographic-mass spectrometry. J Chromatogr A 2019; 1603:67-82. [DOI: 10.1016/j.chroma.2019.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
|
20
|
Interplay between Residual Protease Activity in Commercial Lactases and the Subsequent Digestibility of β-Casein in a Model System. Molecules 2019; 24:molecules24162876. [PMID: 31398828 PMCID: PMC6721707 DOI: 10.3390/molecules24162876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 01/16/2023] Open
Abstract
One of the conventional ways to produce lactose-hydrolyzed (LH) milk is via the addition of commercial lactases into heat-treated milk in which lactose is hydrolyzed throughout storage. This post-hydrolysis method can induce proteolysis in milk proteins due to protease impurities remaining in commercial lactase preparations. In this work, the interplay between lactose hydrolysis, proteolysis, and glycation was studied in a model system of purified β-casein (β-CN), lactose, and lactases using peptidomic methods. With a lactase presence, the proteolysis of β-CN was found to be increased during storage. The protease side-activities mainly acted on the hydrophobic C-terminus of β-CN at Ala, Pro, Ile, Phe, Leu, Lys, Gln, and Tyr positions, resulting in the formation of peptides, some of which were N-terminal glycated or potentially bitter. The proteolysis in β-CN incubated with a lactase was shown to act as a kind of “pre-digestion”, thus increasing the subsequent in vitro digestibility of β-CN and drastically changing the peptide profiles of the in vitro digests. This model study provides a better understanding of how the residual proteases in commercial lactase preparations affect the quality and nutritional aspects of β-CN itself and could be related to its behavior in LH milk.
Collapse
|
21
|
Dalabasmaz S, Dittrich D, Kellner I, Drewello T, Pischetsrieder M. Identification of peptides reflecting the storage of UHT milk by MALDI-TOF-MS peptide profiling. J Proteomics 2019; 207:103444. [PMID: 31323422 DOI: 10.1016/j.jprot.2019.103444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/16/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
Proteolysis during the storage of UHT milk is associated with major technological problems, particularly bitter off-flavors and age gelation limiting the shelf life of milk. In this study, untargeted peptide profiling by MALDI-TOF-MS identified peptides that were formed by proteolysis and reflected the storage of UHT milk. Analysis of nine different commercial UHT samples recorded peptide profiles during and at the end of their shelf life. Relative quantification and sequencing of the peptides revealed that the concentrations of 22 peptides increased significantly during the storage of UHT milk due to the activity of endogenous milk proteases and microbial proteases as well as other unidentified proteolytic mechanisms. Based on highly discriminative AUC values from receiver operator characteristic (ROC) curve analysis, we selected ten peptides as marker candidates. Among those, the peptide β-casein192-206 (m/z 1668.9) was the most suitable marker differentiating expired-UHT from regular-UHT samples with 100% accuracy. Additionally, β-casein191-206 (m/z 1782.0) showed 100% specificity and β-casein139-161 (m/z 2696.4) 100% sensitivity. Thus, β-casein192-206, either by itself or in combination with β-casein191-206 and β-casein139-161, presents a reliable marker to monitor the storage of UHT milk based on proteolytic mechanisms. SIGNIFICANCE: Enzymatic hydrolysis is the main reason why processed milk spoils during storage. The present study recorded peptide profiles to monitor the release or degradation of peptides in stored UHT milk. Among the detected peptides, statistical analysis revealed that the relative concentration of β-casein192-206 reflected those proteolytic processes most precisely. Food authorities can now refer to β-casein192-206 as a reliable marker to differentiate between freshly processed milk and products at the end of their shelf life. Furthermore, the food industry can use this marker peptide to improve production processes by monitoring the proteolysis during storage. The recorded peptide profile helps to explain the basic mechanisms leading to storage-induced proteolysis.
Collapse
Affiliation(s)
- Sevim Dalabasmaz
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Daniel Dittrich
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Ina Kellner
- Physical Chemistry I, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Thomas Drewello
- Physical Chemistry I, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
22
|
Lu J, Langton M, Sampels S, Pickova J. Lipolysis and Oxidation in Ultra-High Temperature Milk Depend on Sampling Month, Storage Duration, and Temperature. J Food Sci 2019; 84:1045-1053. [PMID: 31012969 DOI: 10.1111/1750-3841.14514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/29/2022]
Abstract
During storage, some factors (for example, storage duration and temperature) can affect milk stability and consumer acceptability. Thiobarbituric acid reactive substances (TBARSs), lipid classes, and fatty acid profiles in stored ultra-high temperature (UHT) milk were analyzed to assess the effects of storage time and temperature on lipid oxidation and lipolysis. With storage duration up to 12 months, the milk fat phase was separated and showed high levels of oxidation and lipolysis, manifested as increased levels of TBARS and free fatty acids. High oxidation levels decreased the percentage of unsaturated fatty acids (UFAs) in triacylglycerol and phospholipids. Higher storage temperatures (20, 30, and 37 °C) resulted in a higher degree of fat aggregation, oxidation, and lipolysis compared with refrigerated storage (4 °C). Additionally, sampling month of raw milk (May, July, and November) affected the lipid profiles of UHT milk during storage, with more UFA oxidized in July than in the other 2 months.
Collapse
Affiliation(s)
- Jing Lu
- Dept. of Molecular Sciences, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Maud Langton
- Dept. of Molecular Sciences, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Sabine Sampels
- Dept. of Molecular Sciences, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| | - Jana Pickova
- Dept. of Molecular Sciences, Swedish Univ. of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
23
|
Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019; 11:nu11030551. [PMID: 30841534 PMCID: PMC6471712 DOI: 10.3390/nu11030551] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
Lactose-free dairy is able to provide the essential nutrients present in regular dairy products, like calcium and vitamins, to those that are not able to digest lactose. This product category currently has a wide and growing health appeal to consumers. In recent years, the quality and product variety in the lactose-free dairy segment has been increasing significantly, giving consumers more tempting products to decide from. As a result, lactose-free dairy is now the fastest growing market in the dairy industry. This review discusses the market developments and production possibilities and issues related to the wide variation of lactose-free dairy products that are currently available. Additionally, the health benefits that lactose-free dairy may offer compared to dairy avoidance are illustrated.
Collapse
|
24
|
Abstract
NMR spectroscopy is one of the major analytical techniques used in the metabolomics studies of food. There are many applications of metabolomics on food-related topics and on the food itself. Here, we describe protocols for performing NMR-based metabolomics of foods ranging from simple beverages to solid foods and semisolid foods. Beverages can be analyzed either directly or after sample preprocessing to remove interfering macromolecules, muscle-based foods can be analyzed after extraction, and semisolid foods can be analyzed directly using high-resolution magic-angle spinning (HR-MAS) NMR. Finally, we discuss metabolomic data analysis as well as different procedures and strategies for targeted and untargeted approaches.
Collapse
Affiliation(s)
| | - Nina Eggers
- Department of Food Science, Aarhus University, Årslev, Denmark
| | | |
Collapse
|
25
|
Sundekilde UK, Jarno L, Eggers N, Bertram HC. Real-time monitoring of enzyme-assisted animal protein hydrolysis by NMR spectroscopy – An NMR reactomics concept. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
|
27
|
Jansson T, Rauh V, Danielsen BP, Poojary MM, Waehrens SS, Bredie WLP, Sørensen J, Petersen MA, Ray CA, Lund MN. Green Tea Polyphenols Decrease Strecker Aldehydes and Bind to Proteins in Lactose-Hydrolyzed UHT Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10550-10561. [PMID: 29119790 DOI: 10.1021/acs.jafc.7b04137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of epigallocatechin gallate enriched green tea extract (GTE) on flavor, Maillard reactions and protein modifications in lactose-hydrolyzed (LH) ultrahigh temperature (UHT) processed milk was examined during storage at 40 °C for up to 42 days. Addition of GTE inhibited the formation of Strecker aldehydes by up to 95% compared to control milk, and the effect was similar when GTE was added either before or after UHT treatment. Release of free amino acids, caused by proteolysis, during storage was also decreased in GTE-added milk either before or after UHT treatment compared to control milk. Binding of polyphenols to milk proteins was observed in both fresh and stored milk samples. The inhibition of Strecker aldehyde formation by GTE may be explained by two different mechanisms; inhibition of proteolysis during storage by GTE or binding of amino acids and proteins to the GTE polyphenols.
Collapse
Affiliation(s)
- Therese Jansson
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Valentin Rauh
- Arla Foods R&D , Agro Food Park 19, 8200 Aarhus N, Denmark
| | - Bente P Danielsen
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Sandra S Waehrens
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Wender L P Bredie
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - John Sørensen
- Arla Foods R&D , Agro Food Park 19, 8200 Aarhus N, Denmark
| | - Mikael A Petersen
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Colin A Ray
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen , Rolighedsvej 26, 1958 Frederiksberg C, Denmark
- Department of Biomedical Sciences, University of Copenhagen , Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
28
|
Zhao D, Le TT, Nielsen SD, Larsen LB. Effect of Storage on Lactase-Treated β-Casein and β-Lactoglobulin with Respect to Bitter Peptide Formation and Subsequent in Vitro Digestibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8409-8417. [PMID: 28885022 DOI: 10.1021/acs.jafc.7b02985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using active lactose to hydrolyze lactose during storage is a common process to produce lactose-hydrolyzed (LH) milk. Proteolysis induced by residual proteases in commercial lactase was studied in a system using purified β-casein or β-lactoglobulin during a 60-day storage period at 22 or 38 °C. The proteolysis of β-casein by residual proteases occurred more extensively than that of β-lactoglobulin. Peptidomic analysis by LC-ESI-MS/MS revealed that Ile, Leu, Tyr, and Phe residues near the C-terminus of β-casein were the main sites of cleavage by the residual proteases, generating assumed bitter peptides. In the subsequent in vitro digestion study, proteolysis during storage was shown to greatly affect the subsequent digestibility of β-casein, leading to an elevated degree of hydrolysis and the formation of new digested peptides. This study highlights the potential influence of residual proteases in commercial lactase on the storage quality and digestibility of LH milk containing active lactase.
Collapse
Affiliation(s)
- Di Zhao
- College of Food Science and Engineering, South China University of Technology , 381 Wushan Road, Tianhe District, Guangzhou 510640, China
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road, Guangzhou 510640, China
| | - Thao T Le
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
| | - Søren Drud Nielsen
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University , Blichers Allé 20, Tjele 8830, Denmark
| |
Collapse
|
29
|
Lund MN, Ray CA. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4537-4552. [PMID: 28535048 DOI: 10.1021/acs.jafc.7b00882] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.
Collapse
Affiliation(s)
- Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen , Frederiksberg 1958, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2200, Denmark
| | - Colin A Ray
- Department of Food Science, Faculty of Science, University of Copenhagen , Frederiksberg 1958, Denmark
| |
Collapse
|
30
|
Correlation between sensory properties and peptides derived from hydrolysed-lactose UHT milk during storage. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Milkovska-Stamenova S, Hoffmann R. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products. Food Chem 2016; 221:489-495. [PMID: 27979232 DOI: 10.1016/j.foodchem.2016.10.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023]
Abstract
Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing.
Collapse
Affiliation(s)
- Sanja Milkovska-Stamenova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany.
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
32
|
Troise AD, Bandini E, De Donno R, Meijer G, Trezzi M, Fogliano V. The quality of low lactose milk is affected by the side proteolytic activity of the lactase used in the production process. Food Res Int 2016; 89:514-525. [PMID: 28460946 DOI: 10.1016/j.foodres.2016.08.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 01/10/2023]
Abstract
Lactose intolerance syndrome can be efficiently tackled consuming low lactose products. Lactase is the key tool to manufacture low lactose milk (LLM): its addition during milk processing can be done "in batch", i.e. before thermal treatment, or directly "in pack" after sterilization. In this paper data on sensory properties, Maillard Reaction products (MRPs) and free amino acids formation were obtained on six commercial Italian LLMs over six months storage. They showed that the side proteolytic activity of lactase caused the release of amino acids with a significant higher MRPs and off-flavors formation in four out of five samples produced by adding the enzyme in the pack after thermal treatment. We concluded that the in pack addition of lactase after milk sterilization can have negative sensorial and nutritional consequences mainly related to the enzyme side proteolytic activity especially for prolonged storage time.
Collapse
Affiliation(s)
- Antonio Dario Troise
- Department of Agriculture and Food Science, University of Naples, Federico II, 80055 Portici, NA, Italy
| | - Enrica Bandini
- R&D Parmalat S.p.A., via San Vitale Baganza, 43038 Sala Baganza, PR, Italy
| | - Roberta De Donno
- R&D Parmalat S.p.A., via San Vitale Baganza, 43038 Sala Baganza, PR, Italy
| | - Geert Meijer
- Food Quality & Design Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Marco Trezzi
- R&D Parmalat S.p.A., via San Vitale Baganza, 43038 Sala Baganza, PR, Italy
| | - Vincenzo Fogliano
- Food Quality & Design Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| |
Collapse
|
33
|
Zamora R, León MM, Hidalgo FJ. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8037-8043. [PMID: 26189462 DOI: 10.1021/acs.jafc.5b02619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) , Carretera de Utrera, km 1, Campus Universitario, Edificio 46, 41013 Seville, Spain
| | - M Mercedes León
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) , Carretera de Utrera, km 1, Campus Universitario, Edificio 46, 41013 Seville, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC) , Carretera de Utrera, km 1, Campus Universitario, Edificio 46, 41013 Seville, Spain
| |
Collapse
|