1
|
Realini FM, Escobedo VM, Ueno AC, Bastías DA, Schardl CL, Biganzoli F, Gundel PE. Anti-herbivory defences delivered by Epichloë fungal endophytes: a quantitative review of alkaloid concentration variation among hosts and plant parts. ANNALS OF BOTANY 2024; 133:509-520. [PMID: 38320313 PMCID: PMC11037487 DOI: 10.1093/aob/mcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.
Collapse
Affiliation(s)
- Florencia M Realini
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Laboratorio de Citogenética y Evolución (LaCyE), Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Víctor M Escobedo
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Chile
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Andrea C Ueno
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Chile
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | | - Fernando Biganzoli
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro E Gundel
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Gropp J, Mulder P, Oswald IP, Woutersen R, Gómez Ruiz JÁ, Rovesti E, Hoogenboom L(R. Risks for animal health related to the presence of ergot alkaloids in feed. EFSA J 2024; 22:e8496. [PMID: 38264299 PMCID: PMC10804272 DOI: 10.2903/j.efsa.2024.8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
The European Commission requested EFSA to provide an update of the 2012 Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on the risks for animal health related to the presence of ergot alkaloids (EAs) in feed. EAs are produced by several fungi of the Claviceps and Epichloë genera. This Opinion focussed on the 14 EAs produced by C. purpurea (ergocristine, ergotamine, ergocornine, α- and β-ergocryptine, ergometrine, ergosine and their corresponding 'inine' epimers). Effects observed with EAs from C. africana (mainly dihydroergosine) and Epichloë (ergovaline/-inine) were also evaluated. There is limited information on toxicokinetics in food and non-food producing animals. However, transfer from feed to food of animal origin is negligible. The major effects of EAs are related to vasoconstriction and are exaggerated during extreme temperatures. In addition, EAs cause a decrease in prolactin, resulting in a reduced milk production. Based on the sum of the EAs, the Panel considered the following as Reference Points (RPs) in complete feed for adverse animal health effects: for pigs and piglets 0.6 mg/kg, for chickens for fattening and hens 2.1 and 3.7 mg/kg, respectively, for ducks 0.2 mg/kg, bovines 0.1 mg/kg and sheep 0.3 mg/kg. A total of 19,023 analytical results on EAs (only from C. purpurea) in feed materials and compound feeds were available for the exposure assessment (1580 samples). Dietary exposure was assessed using two feeding scenarios (model diets and compound feeds). Risk characterisation was done for the animals for which an RP could be identified. The CONTAM Panel considers that, based on exposure from model diets, the presence of EAs in feed raises a health concern in piglets, pigs for fattening, sows and bovines, while for chickens for fattening, laying hens, ducks, ovines and caprines, the health concern related to EAs in feed is low.
Collapse
|
3
|
Quantitation and Distribution of Epichloë-Derived Alkaloids in Perennial Ryegrass Tissues. Metabolites 2023; 13:metabo13020205. [PMID: 36837825 PMCID: PMC9966479 DOI: 10.3390/metabo13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Perennial ryegrass (Lolium perenne L.), an economically important pasture and turf grass, is commonly infected with asexual Epichloë species endophytes. Endophytes provide enhanced bioprotection by producing alkaloids, and research often focusses on the negative impact on grazing animals. However, alkaloid distribution throughout the plant and their role in biocontrol of insect pests and diseases are less well understood. Additionally, intermediate compounds have not been investigated for their impacts on animal welfare and biological control in pasture-based scenarios. Here, a single liquid chromatography-mass spectrometry (LC-MS) method was used to measure seven alkaloids in different perennial ryegrass tissues infected with SE or NEA12 endophytes. High alkaloid recoveries and a clear plant matrix effect emphasize the importance of using matrix-matched standards for accurate quantitation. The method is sensitive, detecting alkaloids at low concentrations (nanogram levels), which is important for endophyte strains that produce compounds detrimental to livestock. Concentrations were generally highest in seeds, but distribution differed in the shoots/roots: peramine, terpendole E, terpendole C and lolitrem B were higher in shoots, whilst ergovaline, paxilline and epoxy-janthitrem I were more evenly distributed throughout the two tissues. Knowledge of alkaloid distribution may allow for concentrations to be predicted in roots based on concentrations in the shoots, thereby assisting future determinations of resistance to insects, especially subterranean root-feeding pests.
Collapse
|
4
|
Lin W, Gao C, Wang J, Xu W, Wang M, Li M, Ma B, Tian P. Effects of Drought Stress on Peramine and Lolitrem B in Epichloë-Endophyte-Infected Perennial Ryegrass. Life (Basel) 2022; 12:life12081207. [PMID: 36013386 PMCID: PMC9410104 DOI: 10.3390/life12081207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) infected by Epichloë endophytes contains alkaloids that are responsible for toxicosis in many countries. Drought may greatly affect the alkaloids contents of symbionts. The E+ perennial ryegrass was grown in pots with different soil moisture conditions (15%, 30%, 45% and 60% relative saturation moisture content, RSMC) for four months in a greenhouse of Lanzhou University, and then, the aboveground tissues were collected. The levels of peramine and lolitrem B in all plant samples were determined. The results showed that the drought stress significantly (p < 0.05) increased the peramine concentrations of perennial ryegrass but did not affect the lolitrem B concentrations. In addition, the drought stress significantly (p < 0.05) reduced the plant height and dry matter of perennial ryegrass. In conclusion, drought stress affects the peramine concentration in the perennial ryegrass−endophyte symbiont but may not affect the lolitrem B concentration.
Collapse
Affiliation(s)
- Weihu Lin
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Institute of Rural Development, Gansu Provincial Academy of Social Sciences, Lanzhou 730071, China
| | - Chengfen Gao
- Gansu Grassland Technical Extension Station, Lanzhou 730010, China
| | - Jianjun Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wenbo Xu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Meining Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Miaomiao Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Bihua Ma
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Pei Tian
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Correspondence:
| |
Collapse
|
5
|
Fernando K, Reddy P, Vassiliadis S, Spangenberg GC, Rochfort SJ, Guthridge KM. The Known Antimammalian and Insecticidal Alkaloids Are Not Responsible for the Antifungal Activity of Epichloë Endophytes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112486. [PMID: 34834850 PMCID: PMC8624124 DOI: 10.3390/plants10112486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Asexual Epichloë sp. endophytes in association with pasture grasses produce agronomically important alkaloids (e.g., lolitrem B, epoxy-janthitrems, ergovaline, peramine, and lolines) that exhibit toxicity to grazing mammals and/or insect pests. Novel strains are primarily characterised for the presence of these compounds to ensure they are beneficial in an agronomical setting. Previous work identified endophyte strains that exhibit enhanced antifungal activity, which have the potential to improve pasture and turf quality as well as animal welfare through phytopathogen disease control. The contribution of endophyte-derived alkaloids to improving pasture and turf grass disease resistance has not been closely examined. To assess antifungal bioactivity, nine Epichloë related compounds, namely peramine hemisulfate, n-formylloline-d3, n-acetylloline hydrochloride, lolitrem B, janthitrem A, paxilline, terpendole E, terpendole C, and ergovaline, and four Claviceps purpurea ergot alkaloids, namely ergotamine, ergocornine, ergocryptine, and ergotaminine, were tested at concentrations higher than observed in planta in glasshouse and field settings using in vitro agar well diffusion assays against three common pasture and turf phytopathogens, namely Ceratobasidium sp., Drechslera sp., and Fusarium sp. Visual characterisation of bioactivity using pathogen growth area, mycelial density, and direction of growth indicated no inhibition of pathogen growth. This was confirmed by statistical analysis. The compounds responsible for antifungal bioactivity of Epichloë endophytes hence remain unknown and require further investigation.
Collapse
Affiliation(s)
- Krishni Fernando
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (S.V.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Priyanka Reddy
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (S.V.); (G.C.S.); (S.J.R.)
| | - Simone Vassiliadis
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (S.V.); (G.C.S.); (S.J.R.)
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (S.V.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (S.V.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (S.V.); (G.C.S.); (S.J.R.)
| |
Collapse
|
6
|
Duringer JM, Blythe LL, Estill CT, Moon A, Murty L, Livesay S, Galen A, Craig AM. Determination of a sub-chronic threshold for lolitrem B and perennial ryegrass toxicosis in Angus cattle consuming endophyte-infected perennial ryegrass (Lolium perenne) straw over 64 days. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
8
|
|
9
|
Vikuk V, Fuchs B, Krischke M, Mueller MJ, Rueb S, Krauss J. Alkaloid Concentrations of Lolium perenne Infected with Epichloë festucae var. lolii with Different Detection Methods-A Re-Evaluation of Intoxication Risk in Germany? J Fungi (Basel) 2020; 6:jof6030177. [PMID: 32961967 PMCID: PMC7558822 DOI: 10.3390/jof6030177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022] Open
Abstract
Mycotoxins in agriculturally used plants can cause intoxication in animals and can lead to severe financial losses for farmers. The endophytic fungus Epichloë festucae var. lolii living symbiotically within the cool season grass species Lolium perenne can produce vertebrate and invertebrate toxic alkaloids. Hence, an exact quantitation of alkaloid concentrations is essential to determine intoxication risk for animals. Many studies use different methods to detect alkaloid concentrations, which complicates the comparability. In this study, we showed that alkaloid concentrations of individual plants exceeded toxicity thresholds on real world grasslands in Germany, but not on the population level. Alkaloid concentrations on five German grasslands with high alkaloid levels peaked in summer but were also below toxicity thresholds on population level. Furthermore, we showed that alkaloid concentrations follow the same seasonal trend, regardless of whether plant fresh or dry weight was used, in the field and in a common garden study. However, alkaloid concentrations were around three times higher when detected with dry weight. Finally, we showed that alkaloid concentrations can additionally be biased to different alkaloid detection methods. We highlight that toxicity risks should be analyzed using plant dry weight, but concentration trends of fresh weight are reliable.
Collapse
Affiliation(s)
- Veronika Vikuk
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany; (S.R.); (J.K.)
- Correspondence:
| | - Benjamin Fuchs
- Biodiversity Unit, University of Turku, 20014 Turku, Finland;
| | - Markus Krischke
- Department of Pharmaceutical Biology, Metabolomics Core Unit, University of Würzburg, 97074 Würzburg, Germany; (M.K.); (M.J.M.)
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Metabolomics Core Unit, University of Würzburg, 97074 Würzburg, Germany; (M.K.); (M.J.M.)
| | - Selina Rueb
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany; (S.R.); (J.K.)
| | - Jochen Krauss
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany; (S.R.); (J.K.)
| |
Collapse
|
10
|
Tremorgenic Mycotoxins: Structure Diversity and Biological Activity. Toxins (Basel) 2019; 11:toxins11050302. [PMID: 31137882 PMCID: PMC6563255 DOI: 10.3390/toxins11050302] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/23/2022] Open
Abstract
Indole-diterpenes are an important class of chemical compounds which can be unique to different fungal species. The highly complex lolitrem compounds are confined to Epichloë species, whilst penitrem production is confined to Penicillium spp. and Aspergillus spp. These fungal species are often present in association with pasture grasses, and the indole-diterpenes produced may cause toxicity in grazing animals. In this review, we highlight the unique structural variations of indole-diterpenes that are characterised into subgroups, including paspaline, paxilline, shearinines, paspalitrems, terpendoles, penitrems, lolitrems, janthitrems, and sulpinines. A detailed description of the unique biological activities has been documented where even structurally related compounds have displayed unique biological activities. Indole-diterpene production has been reported in two classes of ascomycete fungi, namely Eurotiomycetes (e.g., Aspergillus and Penicillium) and Sordariomycetes (e.g., Claviceps and Epichloë). These compounds all have a common structural core comprised of a cyclic diterpene skeleton derived from geranylgeranyl diphosphate (GGPP) and an indole moiety derived from tryptophan. Structure diversity is generated from the enzymatic conversion of different sites on the basic indole-diterpene structure. This review highlights the wide-ranging biological versatility presented by the indole-diterpene group of compounds and their role in an agricultural and pharmaceutical setting.
Collapse
|
11
|
Toxic Indole Diterpenes from Endophyte-Infected Perennial Ryegrass Lolium perenne L.: Isolation and Stability. Toxins (Basel) 2019; 11:toxins11010016. [PMID: 30609849 PMCID: PMC6356652 DOI: 10.3390/toxins11010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 11/17/2022] Open
Abstract
The most potent of the indole diterpenes, lolitrem B, is found in perennial ryegrass (Lolium perenne L.) infected with the endophyte Epichloë festucae var. lolii (also termed LpTG-1). Ingestion causes a neurological syndrome in grazing livestock called ryegrass staggers disease. To enable the rapid development of new forage varieties, the toxicity of lolitrem B and its biosynthetic intermediates needs to be established. However, most of these indole diterpenes are not commercially available; thus, isolation of these compounds is paramount. A concentrated endophyte-infected perennial ryegrass seed extract was subjected to silica flash chromatography followed by preparative HPLC and purification by crystallization resulting in lolitrem B and the intermediate compounds lolitrem E, paspaline and terpendole B. The four-step isolation and purification method resulted in a 25% yield of lolitrem B. After isolation, lolitrem B readily degraded to its biosynthetic intermediate, lolitriol. We also found that lolitrem B can readily degrade depending on the solvent and storage conditions. The facile method which takes into consideration the associated instability of lolitrem B, led to the purification of indole diterpenes in quantities sufficient for use as analytical standards for identification in pastures, and/or for toxicity testing in pasture development programs.
Collapse
|
12
|
Murty LD, Duringer JM, Craig AM. Co-exposure of the Mycotoxins Lolitrem B and Ergovaline in Steers Fed Perennial Ryegrass ( Lolium perenne) Straw: Metabolic Characterization of Excreta. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6394-6401. [PMID: 29847929 DOI: 10.1021/acs.jafc.8b00963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Past research showed a strong linear correlation between levels of the mycotoxins lolitrem B (LB, a tremorgen) and ergovaline (EV, an ergot alkaloid and potent vasoconstrictor) in perennial ryegrass (PRG) forage. The purpose of this study was to characterize the excretion of these two compounds in beef cattle consuming PRG straw and to utilize liquid chromatography-tandem mass spectrometry to investigate the metabolism of LB and EV in excreta. Four groups of steers ( n = 6/group) were fed endophyte-infected PRG for 64 days (2256/638, 1554/373, 1012/259, or 247/<100 μg/kg LB/EV). Concentrations of LB and EV in both PRG straw and feces showed a linear relationship to each other. Feces reflected a dose-response for both mycotoxins, with values increasing most rapidly through 21 days then plateauing. Urine contained no detectable level of either compound or the ergoline lysergic acid. Screening for metabolites showed oxidation and reduction biotransformations for both toxins, with additional conjugation products detected for ergovaline.
Collapse
Affiliation(s)
- Lia D Murty
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Jennifer M Duringer
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - A Morrie Craig
- Department of Biomedical Sciences, College of Veterinary Medicine , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
13
|
Bauer JI, Gross M, Cramer B, Humpf HU, Hamscher G, Usleber E. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:315-322. [PMID: 29237259 DOI: 10.1021/acs.jafc.7b05580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.
Collapse
Affiliation(s)
- Julia I Bauer
- Dairy Sciences, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| | - Madeleine Gross
- Junior Professorship of Veterinary Food Diagnostics, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, Münster 48149, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, Münster 48149, Germany
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen , Heinrich-Buff-Ring 17-19, Giessen 35392, Germany
| | - Ewald Usleber
- Dairy Sciences, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| |
Collapse
|
14
|
Soto-Barajas MC, Zabalgogeazcoa I, González-Martin I, Vázquez-de-Aldana BR. Qualitative and quantitative analysis of endophyte alkaloids in perennial ryegrass using near-infrared spectroscopy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5028-5036. [PMID: 28417464 DOI: 10.1002/jsfa.8383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Near-infrared reflectance spectroscopy (NIRS) has been widely used in forage quality control because it is faster, cleaner and less expensive than conventional chemical procedures. In Lolium perenne (perennial ryegrass), one of the most important forage grasses, the infection by asymptomatic Epichloë fungal endophytes alters the plant nutritional quality due to the production of alkaloids. In this research, we developed a rapid method based on NIRS to detect and quantify endophyte alkaloids (peramine, lolitrem B and ergovaline) using a heterogeneous set of L. perenne plants obtained from wild grasslands and cultivars. RESULTS NIR spectra from dried grass samples were recorded and classified according to the absence or presence of alkaloids, based on reference methods. The best discriminant equations for detection of alkaloids classified correctly 94.4%, 87.5% and 92.9% of plants containing peramine, lolitrem B and ergovaline, respectively. The quantitative NIR equations obtained by modified partial least squares (MPLS) algorithm had coefficients of correlation of 0.93, 0.41, and 0.76 for peramine, lolitrem B and ergovaline respectively. CONCLUSION NIRS is a suitable tool for qualitative analysis of endophyte alkaloids in grasses and for the accurate quantification of peramine and ergovaline. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Milton C Soto-Barajas
- Institute of Natural Resources and Agrobiology (IRNASA-CSIC), Cordel de Merinas, Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology (IRNASA-CSIC), Cordel de Merinas, Salamanca, Spain
| | - Inmaculada González-Martin
- Department of Analytical Chemistry, Nutrition and Bromatology, University of Salamanca, Plaza de los Caidos s/n, Salamanca, Spain
| | | |
Collapse
|
15
|
Fuchs B, Krischke M, Mueller MJ, Krauss J. Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Morris CA, Wheeler TT, Henderson HV, Towers NR, Phua SH. Animal physiology and genetic aspects of ryegrass staggers in grazing sheep. N Z Vet J 2017; 65:171-175. [PMID: 28316260 DOI: 10.1080/00480169.2017.1301229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ryegrass staggers (RGS) is a metabolic disease of herbivores, caused by the ingestion of perennial ryegrass (Lolium perenne L.) containing a fungal endophyte (Neotyphodium lolii) which produces a tremorgenic toxin, lolitrem B. RGS has a major economic impact for agriculture in New Zealand as well as internationally. Management of RGS in grazing sheep can be problematic, and there is an incomplete knowledge of the interaction between the toxin and the grazing animal. This review is focused on recent advances in understanding the molecular physiology of RGS in the affected animal as well as the influence of animal genetics on the degree of susceptibility to RGS. Investigations to date suggest that the primary target for toxin is the large conductance, calcium-activated, potassium (BK) channel, resulting in disruption of neuromuscular junction signalling. Genetic investigation has established the existence of genes influencing resistance to RGS, however their identity has not been confirmed and their impact has not been established. Studies to date suggest that a multi-gene selection approach will be necessary in order to develop an effective selection tool for use in the agricultural industries.
Collapse
Affiliation(s)
- C A Morris
- a Deceased. Formerly of Animal Genetics , AgResearch, Ruakura Research Centre , Private Bag 3123, Hamilton , New Zealand
| | - T T Wheeler
- b Cawthron Institute , Private Bag 2, Nelson 7010 , New Zealand
| | - H V Henderson
- c Bioinformatics and Statistics , AgResearch, Ruakura Research Centre , Private Bag 3123, Hamilton , New Zealand
| | - N R Towers
- d 27 Mansel Avenue, Hamilton 3216 , New Zealand
| | - S H Phua
- e 153 Evans Street, Dunedin 9010 , New Zealand
| |
Collapse
|
17
|
Fuchs B, Krischke M, Mueller MJ, Krauss J. Herbivore‐specific induction of defence metabolites in a grass–endophyte association. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12755] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Benjamin Fuchs
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Am Hubland D‐97074 Würzburg Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology Biocenter University of Würzburg Julius von Sachs Platz 2 D‐97082 Würzburg Germany
| | - Martin J. Mueller
- Department of Pharmaceutical Biology Biocenter University of Würzburg Julius von Sachs Platz 2 D‐97082 Würzburg Germany
| | - Jochen Krauss
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Am Hubland D‐97074 Würzburg Germany
| |
Collapse
|
18
|
Zbib N, Repussard C, Tardieu D, Priymenko N, Domange C, Guerre P. Toxicity of endophyte-infected ryegrass hay containing high ergovaline level in lactating ewes. J Anim Sci 2016; 93:4098-109. [PMID: 26440189 DOI: 10.2527/jas.2014-8848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The symbiotic association of var. (formerly named ) with perennial ryegrass () leads to the production of ergovaline (EV) and lolitrem B (LB) that are toxic for livestock. The objectives of this study were to determine the effects of feeding endophyte-infected ryegrass (SE+) hay on 16 lactating ewes (BW 80 ± 10 kg) in comparison with endophyte-free ryegrass (SE-) hay to investigate the putative mechanisms of action of EV and LB and to evaluate their persistence in milk and animal tissues. The mean EV and LB concentrations in SE+ hay were 851 and 884 μg/kg DM, respectively, whereas these alkaloids were below the limit of detection in SE- hay. No effect of SE+ was observed on animal health and skin temperature whereas prolactin decreased and significant differences between hays were observed from d 7 to 28 of the study ( < 0.03) but had no effect on milk production. Hematocrit and biochemical analyses of plasma revealed no significant difference between SE+ and SE-, whereas cortisol concentration differed significantly on d 28 ( = 0.001). Measurement of oxidative damage and antioxidant enzyme activities in plasma, liver, and kidneys revealed a slight increase in some enzyme activities involved in defense against oxidative damage in the SE+ fed ewes. Slight variations in the activities of hepatic and kidney flavin monooxygenase enzymes were observed, whereas in the kidney, glutathione -transferase activity decreased significantly ( = 0.002) in the SE+ fed ewes, whereas uridine diphosphate glucuronosyltransferase activity increased ( = 0.001). After 28 d of exposure of ewes to the SE+ hay, low EV and LB concentrations were measured in tissues. The highest concentration of EV was observed in the liver (0.68 μg/kg) whereas fat contained the highest concentration of LB (2.39 μg/kg). Both toxins were also identified at the trace level in milk.
Collapse
|
19
|
Philippe G. Lolitrem B and Indole Diterpene Alkaloids Produced by Endophytic Fungi of the Genus Epichloë and Their Toxic Effects in Livestock. Toxins (Basel) 2016; 8:47. [PMID: 26891327 PMCID: PMC4773800 DOI: 10.3390/toxins8020047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 01/12/2023] Open
Abstract
Different group of alkaloids are produced during the symbiotic development of fungal endophytes of the genus Epichloë in grass. The structure and toxicity of the compounds vary considerably in mammalian herbivores and in crop pests. Alkaloids of the indole-diterpene group, of which lolitrem B is the most toxic, were first characterized in endophyte-infected perennial ryegrass, and are responsible for “ryegrass staggers.” Ergot alkaloids, of which ergovaline is the most abundant ergopeptide alkaloid produced, are also found in ryegrass, but generally at a lower rate than lolitrem B. Other alkaloids such as lolines and peramine are toxic for crop pests but have weak toxicological properties in mammals. The purpose of this review is to present indole-diterpene alkaloids produced in endophyte infected ryegrass from the first characterization of ryegrass staggers to the determination of the toxicokinetics of lolitrem B and of their mechanism of action in mammals, focusing on the different factors that could explain the worldwide distribution of the disease. Other indole diterpene alkaloids than lolitrem B that can be found in Epichloë infected ryegrass, and their tremorgenic properties, are presented in the last section of this review.
Collapse
Affiliation(s)
- Guerre Philippe
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| |
Collapse
|
20
|
Guerre P. Ergot alkaloids produced by endophytic fungi of the genus Epichloë. Toxins (Basel) 2015; 7:773-90. [PMID: 25756954 PMCID: PMC4379524 DOI: 10.3390/toxins7030773] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 01/23/2023] Open
Abstract
The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for "fescue toxicosis" in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for "ryegrass staggers". In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the "sleepy grass" and "drunken horse grass" diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity.
Collapse
Affiliation(s)
- Philippe Guerre
- Département des Sciences Biologiques et Fonctionnelles, Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| |
Collapse
|