1
|
Huang S, Li Y, Sun S, Liu TC, Xiao Q, Zhang Y. Prolamin and prolamin-polysaccharide composite nanoparticles for oral drug and nutrient delivery systems: A review. Int J Biol Macromol 2024; 283:137567. [PMID: 39549796 DOI: 10.1016/j.ijbiomac.2024.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Prolamin-based nanoparticles, particularly those composed of prolamin-polysaccharide composites, have garnered significant interest as oral delivery systems in recent research. This review provides a thorough analysis of the current advancements in these composite nanoparticles with prolamins derived from various cereals, including maize, wheat, sorghum, and millet, with a focus on their applications in oral drug delivery. It discusses the mechanisms by which these composites enhance nanoparticle performance, especially in terms of stability. The review also explores the differences among various prolamins and clarifies the reasons for their performance characteristics as encapsulants for nanoparticles. Additionally, it offers an in-depth examination of various preparation methods for these composite nanoparticles, such as the traditional anti-solvent method, pH-driven method, and several innovative techniques. The study highlights the physicochemical and encapsulation properties of these composite nanoparticles and underscores their novel applications, which hold promise for future use in the food and pharmaceutical sectors. The findings aim to support the integration of prolamin-polysaccharide composites into these industries, ultimately accelerating the development of new applications for these nanoparticles.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqian Sun
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Tristan C Liu
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
2
|
de Almeida CC, Baião DDS, da Silva DVT, da Trindade LR, Pereira PR, Conte-Junior CA, Paschoalin VMF. Dairy and nondairy proteins as nano-architecture structures for delivering phenolic compounds: Unraveling their molecular interactions to maximize health benefits. Compr Rev Food Sci Food Saf 2024; 23:e70053. [PMID: 39530635 DOI: 10.1111/1541-4337.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Phenolic compounds are recognized for their benefits against degenerative diseases. Clinical and nutritional applications are limited by their low solubility, stability, and bioavailability, compromising their efficacy. Natural macromolecules, such as lipids, polysaccharides, and proteins, employed as delivery systems can efficiently overcome these limitations. In this sense, proteins are attractive due to their biocompatibility and dynamic structure properties, functional adaptability and self-assembly capabilities, offering stability, efficient encapsulation, and controlled release. This review explores the potential use of dairy proteins, caseins, and whey proteins, and, alternatively, nondairy proteins, gelatin, human serum albumin, maize zein, and soybean proteins, in building wall materials for the delivery of phenolic compounds. To optimize performance, aspects, such as protein-phenolic affinity and complex stability/activity, should be considered when designing particle nano-architecture. Molecular interactions between protein-phenolic compound complexes are, thus, further discussed, as well as the effects of temperature and pH and strategies to stabilize and preserve nano-architecture and retain phenolic compound activity. All proteins harbor one or more putative binding sites, shared or not, depending on the phenolic compound. Preservation techniques are still a case-to-case study, as no behavior patterns among different complexes are noted. Safety aspects necessary for the marketing of nanoproducts, such as characterization, toxicity assessments, and post-market monitoring as defined by the European Food Safety Authority and the Food and Drug Administration, are discussed, evidencing the need for a unified regulation. This review broadens our understanding and opens new opportunities for the development of novel protein-based nanocarriers to obtain more effective and stable products, enhancing phenolic compound delivery and health benefits.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Diego Dos Santos Baião
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucileno Rodrigues da Trindade
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Ganguly SC, Sangram S, Paul S, Kundu M. Phyto-nanotechnology: A novel beneficial strategy for Alzheimer's disease therapy. Neurochem Int 2024; 180:105868. [PMID: 39326498 DOI: 10.1016/j.neuint.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Alzheimer's disease, a neurodegenerative condition, is characterized by the slow and progressive deterioration of the cognitive functions of geriatric patients. It occurs due to exacerbation of neurons in the brain, indicated by loss of memory, mood instability, and even death. The aggregation of amyloid β protein and neurofibrillary tangles-atypical forms of tau protein is the major cause of this disease. Phytoconstituents have been frequently employed in treating Alzheimer's disease. These natural compounds act through different molecular mechanisms to treat the disease. However, their potential in Alzheimer's disease therapy may be limited due to poor blood-brain barrier permeability, off-target effects, low bioavailability, etc. In recent times, nanotechnology has gained attraction to overcome these challenges. This article focuses on the potential phytoconstituents for Alzheimer's disease treatment and the associated limitations. Moreover, it highlights various nanoformulation strategies employed to penetrate the blood-brain barrier effectively, avoid side effects, improve bioavailability, and target specificity in treating Alzheimer's disease. The integration of nanotechnology with plant-derived compounds has the potential to revolutionize the therapeutic landscape for Alzheimer's disease.
Collapse
Affiliation(s)
| | - Sk Sangram
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology & Allied Health Sciences, West Bengal, India
| | - Sayani Paul
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology & Allied Health Sciences, West Bengal, India; Bengal School of Technology, Hooghly, West Bengal, India
| | - Moumita Kundu
- Department of Pharmaceutical Technology, Brainware University, West Bengal, India; Center for Multidisciplinary Research & Innovations, Brainware University, West Bengal, India.
| |
Collapse
|
4
|
Sherif AY, Alshora DH, Ibrahim MA, Jreebi A. Development and Evaluation of Solidified Supersaturated SNEDDS Loaded with Triple Combination Therapy for Metabolic Syndrome. AAPS PharmSciTech 2024; 25:209. [PMID: 39237698 DOI: 10.1208/s12249-024-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The present study aimed to develop and optimize solidified supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) for the combined administration of antihypertensive, antihyperglycemic, and antihyperlipidemic drugs to enhance their solubility and dissolution during the treatment of metabolic syndrome. Various SNEDDS formulations were prepared and subjected to pharmaceutical assessment. The solubility of candesartan (CC), glibenclamide (GB), and rosuvastatin (RC) in SNEDDS and supersaturated SNEDDS formulations was evaluated. The optimized formulation was solidified using Syloid adsorbent at different ratios. Pharmaceutical characterization of the formulations included particle size, zeta potential, in-vitro dissolution, PXRD, FTIR, and SEM analysis. The prepared optimized formulation (F6) was able to form homogeneous nanoemulsion droplets without phase separation, which is composed of Tween 20: PEG-400: Capmul MCM (4: 3: 3). It was mixed with 5% PVP-K30 to prepare a supersaturated liquid SNEDDS formulation (F9). In addition, it was found that the addition of PVP-K30 significantly increased solubility CC and GB from 20.46 ± 0.48 and 6.73 ± 0.05 to 27.67 ± 1.72 and 9.45 ± 0.32 mg/g, respectively. In-vitro dissolution study revealed that liquid and solid SNEDD formulations remarkably improved the dissolution rates of CC, GB, and RC compared to pure drugs. XRPD and FTIR analysis revealed that all drugs present in an amorphous state within prepared solidified supersaturated SNEDDS formulation. SEM images showed that liquid SNEDDS formulation was successfully adsorbed on the surface of Syloid. Overall, optimized F9 and solidified supersaturated SNEDDS formulations showed superior performance in enhancing drug solubility and dissolution rate. The present study revealed that the proposed triple combination therapy of metabolic syndrome holds a promising strategy during the treatment of metabolic syndrome. Further in-vivo studies are required to evaluate the therapeutic efficacy of prepared solidified supersaturated SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Adel Jreebi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ahmadzadeh S, Ubeyitogullari A. Lutein encapsulation into dual-layered starch/zein gels using 3D food printing: Improved storage stability and in vitro bioaccessibility. Int J Biol Macromol 2024; 266:131305. [PMID: 38569990 DOI: 10.1016/j.ijbiomac.2024.131305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
The ability of 3D printing to encapsulate, protect, and enhance lutein bioaccessibility was investigated under various printing conditions. A spiral-cube-shaped geometry was used to investigate the effects of printing parameters, namely zein concentration (Z; 20, 40, and 60 %) and printing speed (PS; 4, 8, 14, and 20 mm/s). Coaxial extrusion 3D printing was used with lutein-loaded zein as the internal flow material, and corn starch paste as the external flow material. The viscosities of the inks, microstructural properties, storage stability, and bioaccessibility of encapsulated lutein were determined. The sample printed with a zein concentration of 40 % at a printing speed of 14 mm/s (Z-40/PS-14) exhibited the best shape integrity. When lutein was entrapped in starch/zein gels (Z-40/PS-14), only 39 % of lutein degraded after 21 days at 25 °C, whereas 78 % degraded at the same time when crude lutein was studied. Similar improvements were also observed after storing at 50 °C for 21 days. Furthermore, after simulated digestion, the bioaccessibility of encapsulated lutein (9.8 %) was substantially higher than that of crude lutein (1.5 %). As a result, the developed delivery system using 3D printing could be an effective strategy for enhancing the chemical stability and bioaccessibility of bioactive compounds (BCs).
Collapse
Affiliation(s)
- Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
6
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
7
|
Zhong W, Wang Q, Li M, Deng X, Shen X. Co-assembled whey protein and proanthocyanidins as a promising biocarrier for hydrophobic pterostilbene: Fabrication, characterization, and cellular antioxidant potential. J Dairy Sci 2024; 107:2690-2705. [PMID: 37949399 DOI: 10.3168/jds.2023-23925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The usage of food-derived polyphenols with different polarities has been limited by their instability and incompatibility. Therefore, a biocarrier was developed by co-assembly of whey protein isolate (WPI) and hydrophilic proanthocyanidin (PC) for loading hydrophobic pterostilbene (PTE). Such biocarrier has superior affinity for PTE than WPI alone, as determined by encapsulation efficiency and loading capacity assay, fluorescence quenching analysis, and molecular docking, whereas the assembly process was characterized by particle size and zeta potential, 3-dimensional fluorescence, and scanning electron microscopy. Circular dichroism and Fourier transform infrared spectroscopy spectra confirmed the α-helix to β-sheet and random coil transition of proteins during the formation of nanocomplexes. Whey protein isolate acted as a mediator through altering the binding mode of PC and PTE, allowing them to perform significant synergistic effects in enhancing 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging and reducing H2O2-induced cell damage. This research may serve to develop new protein/polyphenol co-loading systems and offer a reliable nutritional fortification.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Qi Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Min Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
8
|
Zhang L, Chen L, Li S, Yu Z, Zhou Y, Wang Y. Fabrication and characterization of novel prolamin nanoparticle-filled starch gels incorporating resveratrol. Int J Biol Macromol 2024; 268:131764. [PMID: 38657935 DOI: 10.1016/j.ijbiomac.2024.131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This study aimed to improve the mechanical properties of wheat starch gels (WSG) and the stability and bioaccessibility of resveratrol (Res) in prolamin nanoparticles. Res-loaded gliadin (Gli), zein, deamidated gliadin (DG) and deamidated zein (DZ) nanoparticles were filled in WSG. The hardness, G' and G'' of WSG were notably increased. It can be attributed to the more ordered and stable structure induced by the interaction of prolamin nanoparticles and starch. The Res retention of nanoparticles and nanoparticle-filled starch gels was at least 24.6 % and 36.0 % higher than free Res upon heating. When exposed to ultraviolet, the Res retention was enhanced by over 6.1 % and 37.5 %. The in-vitro digestion demonstrated that the Res releasing percentage for nanoparticle-filled starch gels was 25.8 %-38.7 % lower than nanoparticles in the simulated stomach, and more Res was released in the simulated intestine. This resulted in a higher bioaccessibility of 82.1 %-93.2 %. The bioaccessibility of Res in Gli/Res/WSG and DG/Res/WSG was greater than that of Zein/Res/WSG and DZ/Res/WSG. More hydrophobic interactions occurred between Res and Gli, DG. The interactions between Res and zein, DZ were mainly hydrogen bonding. The microstructure showed that nanoparticles exhibited dense spherical structures and were uniformly embedded in the pores of starch gels.
Collapse
Affiliation(s)
- Lin Zhang
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Luzhen Chen
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiyi Li
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongquan Wang
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Preetam S, Duhita Mondal D, Mukerjee N, Naser SS, Tabish TA, Thorat N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater Sci Eng 2024; 10:1946-1965. [PMID: 38427627 PMCID: PMC11005017 DOI: 10.1021/acsbiomaterials.3c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Collapse
Affiliation(s)
- Subham Preetam
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Deb Duhita Mondal
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata, West Bengal 700107, India
| | - Nobendu Mukerjee
- Centre
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
- Department
of Science and Engineering, Novel Global
Community and Educational Foundation, Hebasham 2770, NSW, Australia
| | | | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford, OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick
Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
10
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Zhang K, Huang J, Wang D, Wan X, Wang Y. Covalent polyphenols-proteins interactions in food processing: formation mechanisms, quantification methods, bioactive effects, and applications. Front Nutr 2024; 11:1371401. [PMID: 38510712 PMCID: PMC10951110 DOI: 10.3389/fnut.2024.1371401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins and polyphenols are abundant in the daily diet of humans and their interactions influence, among other things, the texture, flavor, and bioaccessibility of food. There are two types of interactions between them: non-covalent interactions and covalent interactions, the latter being irreversible and more powerful. In this review, we systematically summarized advances in the investigation of possible mechanism underlying covalent polyphenols-proteins interaction in food processing, effect of different processing methods on covalent interaction, methods for characterizing covalent complexes, and impacts of covalent interactions on protein structure, function and nutritional value, as well as potential bioavailability of polyphenols. In terms of health promotion of the prepared covalent complexes, health effects such as antioxidant, hypoglycemic, regulation of intestinal microbiota and regulation of allergic reactions have been summarized. Also, the possible applications in food industry, especially as foaming agents, emulsifiers and nanomaterials have also been discussed. In order to offer directions for novel research on their interactions in food systems, nutritional value, and health properties in vivo, we considered the present challenges and future perspectives of the topic.
Collapse
Affiliation(s)
- Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Tang T, Lv Y, Su Y, Li J, Gu L, Yang Y, Chang C. The differential non-covalent binding of epicatechin and chlorogenic acid to ovotransferrin and the enhancing efficiency of immunomodulatory activity. Int J Biol Macromol 2024; 259:129298. [PMID: 38199555 DOI: 10.1016/j.ijbiomac.2024.129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Seeking safe and environmentally friendly natural immunomodulators is a pressing requirement of humanity. This study investigated the differential binding characteristics of two polar polyphenols (PP), namely epicatechin (EC) and chlorogenic acid (CA), to ovotransferrin (OVT), and explored the relationship between structural transformations and immunomodulatory activity of OVT-PP complexes. Results showed that CA exhibited a stronger affinity for OVT than EC, mainly driven by hydrogen bonds and van der Waals forces. Complexation-induced conformational variations in OVT, including static fluorescence quenching, increased microenvironment polarity surrounding tryptophan and tyrosine residues, and the transition from disordered α-helix to stable β-sheet. Furthermore, the structural conformation transformation of OVT-PP complexes facilitated the enhancement of immunomodulatory activity, with the OVT-CA (10:2) complex demonstrating the best immunomodulatory activity. Principal component analysis (PCA) and Pearson correlation analysis revealed the immunomodulatory activities of the OVT-PP complexes were influenced by surface hydrophobicity (negatively correlated), β-sheet percentage and polyphenol binding constants. It could be inferred that PP complexation increased the surface polarity of OVT, consequently enhancing its immunomodulatory activity by promoting cell membrane affinity and antigen recognition. This study provides valuable guidance for effectively utilizing polyphenol-protein complexes in enhancing immunomodulatory activity.
Collapse
Affiliation(s)
- Tingting Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanqi Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Kaag S, Lorentz A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023; 12:2602. [PMID: 37998337 PMCID: PMC10670325 DOI: 10.3390/cells12222602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Allergic diseases affect an estimated 30 percent of the world's population. Mast cells (MC) are the key effector cells of allergic reactions by releasing pro-inflammatory mediators such as histamine, lipid mediators, and cytokines/chemokines. Components of the daily diet, including certain fatty acids, amino acids, and vitamins, as well as secondary plant components, may have effects on MC and thus may be of interest as nutraceuticals for the prevention and treatment of allergies. This review summarizes the anti-inflammatory effects of dietary components on MC, including the signaling pathways involved, in in vitro and in vivo models. Butyrate, calcitriol, kaempferol, quercetin, luteolin, resveratrol, curcumin, and cinnamon extract were the most effective in suppressing the release of preformed and de novo synthesized mediators from MC or in animal models. In randomized controlled trials (RCT), vitamin D, quercetin, O-methylated epigallocatechin gallate (EGCG), resveratrol, curcumin, and cinnamon extract improved symptoms of allergic rhinitis (AR) and reduced the number of inflammatory cells in patients. However, strategies to overcome the poor bioavailability of these nutrients are an important part of current research.
Collapse
Affiliation(s)
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
14
|
Zimath P, Pinto S, Dias S, Rafacho A, Sarmento B. Zein nanoparticles as oral carrier for mometasone furoate delivery. Drug Deliv Transl Res 2023; 13:2948-2959. [PMID: 37208563 PMCID: PMC10545574 DOI: 10.1007/s13346-023-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Mometasone furoate (MF) is a synthetic glucocorticoid used clinically to treat specific inflammatory disorders including superior and inferior respiratory tract. Due to its poor bioavailability we further investigated whether nanoparticles (NPs) made of zein protein may constitute a safe and effective choice to incorporate MF. Thus, in this work, we loaded MF into zein NPs aiming to evaluate possible advantages that could result from oral delivery and extend the range of MF application such as inflammatory gut diseases. MF-loaded zein NPs presented an average size in the range of 100 and 135 nm, narrow size distribution (polydispersity index < 0.300), zeta potential of around + 10 mV and association efficiency of MF over 70%. Transmission electron microscopy imaging revealed that NPs had a round shape and presented a smooth surface. The zein NPs showed low MF release in a buffer that mimics the gastric condition (pH = 1.2) and slower and controlled MF release in the intestinal condition (pH = 6.8). The short and intermediate safety of zein NPs was confirmed assessing the incubation against Caco-2 and HT29-MTX intestinal cells up to 24 h. Permeability studies of MF across Caco-2/HT29-MTX co-culture monolayer evidenced that zein NPs modulated MF transport across cell monolayer resulting in a stronger and prolonged interaction with mucus, potentially extending the time of absorption and overall local and systemic bioavailability. Overall, zein NPs showed to be suitable to carry MF to the intestine and future studies can be developed to investigate the use of MF-loaded zein NPs to treat intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Priscila Zimath
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal.
- IUCS - CESPU, Gandra, Portugal.
| |
Collapse
|
15
|
Üstündağ H, Danişman Kalindemirtaş F, Doğanay S, Demir Ö, Kurt N, Tahir Huyut M, Özgeriş B, Kariper İA. ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATION. Shock 2023; 60:688-697. [PMID: 37695728 DOI: 10.1097/shk.0000000000002218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
ABSTRACT Sepsis-induced acute liver injury is a life-threatening condition involving inflammation, oxidative stress, and endothelial dysfunction. In the present study, the preventive effects of resveratrol (RV) alone and RV-loaded silver nanoparticles (AgNPs + RV) against sepsis-induced damage were investigated and compared in a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Rats were divided into four groups: Sham, CLP, RV, and AgNPs + RV. Pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, presepsin, procalcitonin (PCT), 8-hydroxy-2'-deoxyguanosine (8-OHDG), vascular endothelial growth factor (VEGF), and sirtuin-1 (SIRT1) levels were assessed to determine the treatments' effects. AgNPs + RV treatment significantly reduced pro-inflammatory cytokines, NF-κB activation, presepsin, PCT, 8-OHDG, and VEGF levels compared with the CLP group, indicating attenuation of sepsis-induced liver injury. Both RV and AgNPs + RV treatments increased SIRT1 levels, suggesting a potential role of SIRT1 activation in mediating the protective effects. In conclusion, AgNPs + RV treatment demonstrated extremely enhanced efficacy in alleviating sepsis-induced liver injury by modulating inflammation, oxidative stress, and endothelial dysfunction, potentially mediated through SIRT1 activation. In this study, the effect of AgNPs + RV on sepsis was evaluated for the first time, and these findings highlight AgNPs + RV as a promising therapeutic strategy for managing sepsis-induced liver injury, warranting further investigation.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 2400, Türkiye
| | | | - Songül Doğanay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Özlem Demir
- Department of Histology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 2400, Türkiye
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Türkiye
| | - İshak Afşin Kariper
- Education Faculty, Erciyes University, Department of Science Education, Kayseri, Türkiye
| |
Collapse
|
16
|
Wang G, Han J, Meng X, Kang SS, Liu X, Sun YE, Luo Q, Ye K. Zein-Based Nanoparticles Improve the Therapeutic Efficacy of a TrkB Agonist toward Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3249-3264. [PMID: 37583253 PMCID: PMC10734774 DOI: 10.1021/acschemneuro.3c00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF)/TrkB pathway plays a crucial role in neural plasticity and neuronal survival but is often deficient in neurodegenerative diseases like Alzheimer's disease (AD). CF3CN acts as a specific TrkB agonist that displays therapeutic effects in the AD mouse model, but its brain/plasma ratio (B/P ratio) distribution is not satisfactory. To increase its brain exposure, we synthesized several derivatives and employed nanoparticle (NP) formulation to optimize the most potent #2 derivative's in vivo PK profiles. We generated stable #2-loaded zein/lactoferrin composite NPs (#2/zein/LF) using the antisolvent co-precipitation method. In vivo PK studies revealed that nanoencapsulation improved #2's oral bioavailability by approximately 2-fold and significantly enhanced its plasma Cmax and t1/2, but the brain profiles were comparable. Pharmacodynamics showed that #2/zein/LF activates TrkB signaling that phosphorylates asparagine endopeptidase (AEP) T322 and decreases its enzymatic activity, resulting in reduced AEP-cleaved amyloid precursor protein and Tau fragments in the brains of AD mice, correlating with its PK profiles. After 3 months of treatment in 3xTg mice, #2/zein/LF decreased AD pathologies and alleviated cognitive dysfunction. Hence, zein/LF composite nanoencapsulation is a promising drug delivery method for improving the PK profiles of a potential preclinical candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangxing Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jianxin Han
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yi Eve Sun
- School of Medicine, Tongji University, Shanghai 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
17
|
Rosas-Val P, Adhami M, Brotons-Canto A, Gamazo C, Irache JM, Larrañeta E. 3D printing of microencapsulated Lactobacillus rhamnosus for oral delivery. Int J Pharm 2023; 641:123058. [PMID: 37207858 DOI: 10.1016/j.ijpharm.2023.123058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
3D Printing is an innovative technology within the pharma and food industries that allows the design and manufacturing of novel delivery systems. Orally safe delivery of probiotics to the gastrointestinal tract faces several challenges regarding bacterial viability, in addition to comply with commercial and regulatory standpoints. Lactobacillus rhamnosus CNCM I-4036 (Lr) was microencapsulated in generally recognised as safe (GRAS) proteins, and then assessed for robocasting 3D printing. Microparticles (MP-Lr) were developed and characterised, prior to being 3D printed with pharmaceutical excipients. MP-Lr showed a size of 12.3 ± 4.1 µm and a non-uniform wrinkled surface determined by Scanning Electron Microscopy (SEM). Bacterial quantification by plate counting accounted for 8.68 ±0.6 CFU/g of live bacteria encapsulated within. Formulations were able to keep the bacterial dose constant upon contact with gastric and intestinal pH. Printlets consisted in oval-shape formulations (15 mm × 8 mm × 3.2 mm) of ca. 370 mg of total weight, with a uniform surface. After the 3D printing process, bacterial viability remained even as MP-Lr protected bacteria alongside the process (log reduction of 0.52, p>0.05) in comparison with non-encapsulated probiotic (log reduction of 3.05). Moreover, microparticle size was not altered during the 3D printing process. We confirmed the success of this technology for developing an orally safe formulation, GRAS category, of microencapsulated Lr for gastrointestinal vehiculation.
Collapse
Affiliation(s)
- Pablo Rosas-Val
- Nucaps Nanotechnology S.L., Spain; Department of Microbiology & Parasitology, University of Navarra, Spain
| | | | | | - Carlos Gamazo
- Department of Microbiology & Parasitology, University of Navarra, Spain
| | - Juan M Irache
- Department of Technology & Pharmaceutical Chemistry, University of Navarra, Spain
| | | |
Collapse
|
18
|
Zein nanoparticles for drug delivery: Preparation methods and biological applications. Int J Pharm 2023; 635:122754. [PMID: 36812950 DOI: 10.1016/j.ijpharm.2023.122754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Zein, a vegetable protein extracted from corn (Zea mays L.), forms a gastro-resistant and mucoadhesive polymer that is cheap and easy to obtain and facilitates the encapsulation of bioactives with hydrophilic, hydrophobic, and amphiphilic properties. The methods used for synthesizing these nanoparticles include antisolvent precipitation/nanoprecipitation, pH-driven, electrospraying, and solvent emulsification-evaporation methods. Each method has its advantages in the preparation of nanocarriers, nevertheless, all of them enable the production of zein nanoparticles that are stable and resistant to environmental factors, with different biological activities required in the cosmetic, food, and pharmaceutical industries. Therefore, zein nanoparticles are promising nanocarriers that can encapsulate various bioactives with anti-inflammatory, antioxidant, antimicrobial, anticancer, and antidiabetic properties. This article reviews the principal methods for obtaining zein nanoparticles containing bioactives, the advantages and characteristics of each method, as well as the main biological applications of nanotechnology-based formulations.
Collapse
|
19
|
Nanospanlastics as a Novel Approach for Improving the Oral Delivery of Resveratrol in Lipopolysaccharide-Induced Endotoxicity in Mice. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Purpose
Resveratrol (RSV) is a natural polyphenolic compound that has numerous biological effects. Owing to its poor bioavailability, only trace concentrations of RSV could be found at the site of action. Therefore, the present study was aimed at developing RSV-loaded nanospanlastics to improve its oral delivery and therapeutic activity.
Methods
RSV-loaded nanospanlastics were prepared using the thin film hydration technique. The developed formulations were characterized via vesicular size (VS), polydispersity index (PDI), zeta potential (ZP) measurements, fourier transform infrared (FT-IR) spectroscopy analysis and transmission electron microscopy (TEM). In vitro release profile was carried out using dialysis bag diffusion technique. In vivo study was carried out using lipopolysaccharide (LPS)-induced endotoxicity model in mice to evaluate the formulations activity.
Results
The results revealed the successful development of RSV-loaded nanospanlastics which exhibited EE% ranging from 45 to 85%, particle sizes ranging from 260.5 to 794.3 nm; negatively charged zeta potential (≤ − 20 mV) and TEM revealed their spherical shape. An in vitro release study showed biphasic pattern with sustained release of drug up to 24 h. In vivo results showed the superiority of RSV-loaded nanospanlastics over conventional niosomes in attenuating serum levels of liver and kidney functions (aspartate transaminase (AST), alanine transaminase (ALT), and creatinine) in LPS-induced endotoxic mice. Furthermore, both of them suppressed the elevated oxidative stress and inflammatory markers (malondialdehyde (MDA), nitric oxide (NO), and interleukin-1beta (IL-1β)) estimated in the liver and kidney tissues. However, the nanospanlastics showed a prevalence effect over conventional niosomes in kidney measurements and the histopathological examinations.
Conclusions
These findings reveal the potential of nanospanlastics in improving the oral delivery and therapeutic efficacy of RSV.
Collapse
|
20
|
Enhanced oral bioavailability from food protein nanoparticles: A mini review. J Control Release 2023; 354:146-154. [PMID: 36566844 DOI: 10.1016/j.jconrel.2022.12.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The oral route is the most desirable drug administration path. The oral bioavailability is always compromised from the poor physicochemical and/or biopharmaceutical properties of the active pharmaceutical ingredients. Food protein nanoparticles show promise for oral drug delivery, with improved biosafety and cost-effectiveness compared to polymeric nanoparticles. More importantly, diverse food proteins provide "choice and variety" to meet the challenges faced by different drugs in oral delivery resulting from low solubility, poor permeability, and gastrointestinal stability. The abundance of hydroxyl, amino, and carboxyl groups in food proteins allows easy surface modification of the nanoparticles to impart unique functions. Albeit being in its infancy, food protein nanoparticles exhibit high capability to enhance oral bioavailability of a wide range of drugs from small molecules to biomacromolecules. Considering the rapid growth of the field, the achievements and mechanisms of food protein nanoparticles in enhancing oral bioavailability are reviewed. Factors affecting the performance of food protein nanoparticles are discussed with the purpose to inspire the development of food protein nanoparticle-based oral drug delivery systems.
Collapse
|
21
|
Shahidi F, Dissanayaka CS. Phenolic-protein interactions: insight from in-silico analyses – a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-022-00121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractPhenolic compounds are ubiquitous plant secondary metabolites that possess various biological activities and are known to interact with proteins, altering their structure and properties. Therefore, interactions between these compounds and proteins has gained increasing attention due to their potential benefits to human health and for exploitation by the food industry. Phenolic compounds and proteins can form complexes via covalent linkages and/or non-covalent interactions through hydrophobic, electrostatic, van der Waals forces and hydrogen bonding. This review describes possible mechanisms of phenol-protein complex formation, their physiological action and activities that are important in the food industry, and possible outcomes in the terms of molecular docking and simulation analysis. The conformational changes of the protein upon binding with polyphenols can lead to the folding or unfolding of the protein molecules, forming insoluble or soluble complexes. The concentration of polyphenols, their molecular weight and structure, ions/cofactors and conditions of the system determine the precipitation or solubilization of the complex, affecting their nutritional and functional properties as well as their bioactivities. In this regard, molecular docking and simulation studies of phenolic-protein interactions allows comprehensive virtual screening of competitive/non-competitive and site-specific/non-specific conjugation of phenolics with different protein targets and facilitates understanding the observed effects. The docking analysis of flavonoids with enzymes and milk proteins has indicated their potential application in producing nutraceuticals and functional foods. Thus, combining molecular docking and simulation studies with experimental techniques is vital for better understanding the reactions that take place during digestion to engineer and manufacture novel food ingredients with desirable pharmacological properties and as potential food additives.
Graphical Abstract
Collapse
|
22
|
Harwansh RK, Yadav P, Deshmukh R. Current Insight into Novel Delivery Approaches of Resveratrol for Improving Therapeutic Efficacy and Bioavailability with its Clinical Updates. Curr Pharm Des 2023; 29:2921-2939. [PMID: 38053352 DOI: 10.2174/0113816128282713231129094715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin, and belongs to the stilbene family. RSV has several therapeutic activities such as cardioprotective, anticancer, and antioxidant. Apart from its therapeutic benefits, its pharmacological uses are limited due to low solubility, poor bioavailability, and short biological halflife. A researcher continuously focuses on overcoming the limitations of RSV through nanotechnology platforms to get the optimum health benefits. In this context, nanocarriers are pioneering to overcome these drawbacks. Nanocarriers possess high drug loading capacity, thermal stability, low production cost, longer shelflife, etc. Fortunately, scientists were proficient in delivering resveratrol-based nanocarriers in the present scenario. Nanocarriers can deliver drugs to the target sites without compromising the bioavailability. Thus, this review highlights how the latest nanocarrier systems overcome the shortcomings of RSV, which will be good for improving therapeutic efficacy and bioavailability. Moreover, recent updates on resveratrol-based novel formulations and their clinical trials have been addressed to manage several health-related problems.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Paras Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
23
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Liu Q, Sun Y, Zhang J, Zhang M, Cheng J, Guo M. Physicochemical and in vitro digestion properties of soy isoflavones loaded whey protein nanoparticles using a pH-driven method. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
26
|
Garavand F, Khodaei D, Mahmud N, Islam J, Khan I, Jafarzadeh S, Tahergorabi R, Cacciotti I. Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:3639-3659. [PMID: 36222362 DOI: 10.1080/10408398.2022.2133080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biopolymers are important due to their exceptional functional and barrier properties and also their non-toxicity and eco-friendly nature for various food, biomedical, and pharmaceutical applications. However, biopolymers usually need reinforcement strategies to address their poor mechanical, thermal, and physical properties as well as processability aspects. Several natural nanoparticles have been proposed as reinforcing agents for biopolymeric food packaging materials. Among them, zein nanoparticles (ZNPs) have attracted a lot of interest, being an environmentally friendly material. The purpose of the present review paper is to provide a comprehensive overview of the ZNPs-loaded nanocomposites for food packaging applications, starting from the synthesis, characteristics and properties of ZNPs, to the physicochemical properties of the ZNPs-loaded nanocomposites, in terms of morphology, permeability, solubility, optical features, hydrophobic/hydrophilic behavior, structural characteristics, thermal features, and mechanical attributes. Finally, at the end of this review, some considerations about the safety issues and gastrointestinal fate of ZNPs, as well as the use of ZNPs-based nanocomposites as food packaging, are reported, taking into account that, despite the enormous benefits, nanotechnology also presents some risks associated to the use of nanometric materials.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Co. Cork, Ireland
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Atlantic Technological University, Galway, Ireland
| | - Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Injeela Khan
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy
| |
Collapse
|
27
|
In Vivo Assessment of the Effects of Mono-Carrier Encapsulated Fucoxanthin Nanoparticles on Type 2 Diabetic C57 Mice and Their Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11101976. [PMID: 36290699 PMCID: PMC9598562 DOI: 10.3390/antiox11101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoxanthin (FX) is a carotenoid from a marine origin that has an important role in our health, especially in the regulation and alleviation of type 2 diabetes. Its specific molecular structure makes it very unstable, which greatly affects its delivery in the body. In this study, FX was encapsulated in a mono-carrier using a hydrolyzed zein to form a nanocomplex with a stable structure and chemical properties (FZNP). Its stability was demonstrated by characterization and the efficacy of FX before and after encapsulation in alleviating diabetes in mice, which was evaluated by in vivo experiments. FZNP reduced the level of fasting blood glucose and restored it to normal levels in T2DM mice, which was not caused by a decrease in food intake, and effectively reduced oxidative stress in the organism. Both FX and FZNP repaired the hepatocyte and pancreatic β-cell damage, increased serum SOD and reduced INS values significantly, upregulated PI3K-AKT genes as well as CaMK and GNAs expression in the pancreas. FZNP increased ADPN and GSH-PX values more significantly and it decreased serum HOMA-IR and MDA values, upregulated GLUT2 expression, promoted glucose transport in pancreatic and hepatocytes, regulated glucose metabolism and glycogen synthesis with much superior effects than FX.
Collapse
|
28
|
Silva AF, Monteiro M, Nunes R, Baião A, Braga SS, Sarmento B, Coimbra MA, Silva AM, Cardoso SM. Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Wu B, Li Y, Li Y, Li H, Li L, Xia Q. Encapsulation of resveratrol-loaded Pickering emulsions in alginate/pectin hydrogel beads: Improved stability and modification of digestive behavior in the gastrointestinal tract. Int J Biol Macromol 2022; 222:337-347. [PMID: 36152701 DOI: 10.1016/j.ijbiomac.2022.09.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
In this study, alginate/pectin hydrogel beads were prepared with different mixing ratios (9:1, 8:2, 7:3, 6:4, and 5:5) to encapsulate resveratrol-loaded Pickering emulsions using Ca2+ crosslinking. The system with a suitable ratio of pectin and alginate can enhance the encapsulation efficiency and loading capacity. Scanning electron microscopy (SEM) study confirmed that the hydrogel beads were spherical, in which Pickering emulsion was distributed evenly within the polymer network. Fourier Transform Infrared Spectroscopy (FTIR) study indicated that the hydrogel beads were formed by physical cross-linking. X-ray diffraction (XRD) study demonstrated that resveratrol existed in hydrogel beads with an amorphous or dissolved form. Besides, the stability and antioxidant capacity suggested that hydrogel beads could offer protection to resveratrol by preventing degradation through environmental stresses, while maintaining its antioxidant capacity. Importantly, hydrogels significantly reduced the release of free fatty acids and resveratrol during in vitro digestion compared to emulsions, especially with the appropriate ratio of sodium alginate and pectin. Overall, Pickering emulsions-loaded alginate/pectin hydrogel beads could offer a novel option for the preparation of low-calorie foods and a potential substitute model for controlling the release of free fatty acids contributing to the transportation of resveratrol.
Collapse
Affiliation(s)
- Bi Wu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150000, China
| | - Yuanyuan Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; School of Pharmacy Administration, Southeast University Chengxian Colleague, Nanjing 210096, China
| | - Heng Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Lele Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
30
|
Formulation, Characterisation and Evaluation of the Antihypertensive Peptides, Isoleucine-Proline-Proline and Leucine-Lysine-Proline in Chitosan Nanoparticles Coated with Zein for Oral Drug Delivery. Int J Mol Sci 2022; 23:ijms231911160. [PMID: 36232463 PMCID: PMC9570432 DOI: 10.3390/ijms231911160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Isoleucine-Proline-Proline (IPP) and Leucine-Lysine-Proline (LKP) are food-derived tripeptides whose antihypertensive functions have been demonstrated in hypertensive rat models. However, peptides display low oral bioavailability due to poor intestinal epithelial permeability and instability. IPP and LKP were formulated into nanoparticles (NP) using chitosan (CL113) via ionotropic gelation and then coated with zein. Following addition of zein, a high encapsulation efficiency (EE) (>80%) was obtained for the NP. In simulated gastric fluid (SGF), 20% cumulative release of the peptides was achieved after 2 h, whereas in simulated intestinal fluid (SIF), ~90% cumulative release was observed after 6 h. Higher colloidal stability (39−41 mV) was observed for the coated NP compared to uncoated ones (30−35 mV). In vitro cytotoxicity studies showed no reduction in cellular viability of human intestinal epithelial Caco-2 and HepG2 liver cells upon exposure to NP and NP components. Administration of NP encapsulating IPP and LKP by oral gavage to spontaneously hypertensive rats (SHR) attenuated systolic blood pressure (SBP) for 8 h. This suggests that the NP provide appropriate release to achieve prolonged hypotensive effects in vivo. In conclusion, chitosan-zein nanoparticles (CZ NP) have potential as oral delivery system for the encapsulation of IPP and LKP.
Collapse
|
31
|
Reboredo C, González-Navarro CJ, Martínez-López AL, Irache JM. Oral administration of zein-based nanoparticles reduces glycemia and improves glucose tolerance in rats. Int J Pharm 2022; 628:122255. [DOI: 10.1016/j.ijpharm.2022.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
|
32
|
Gastrointestinal Tract Stabilized Protein Delivery Using Disulfide Thermostable Exoshell System. Int J Mol Sci 2022; 23:ijms23179856. [PMID: 36077259 PMCID: PMC9456531 DOI: 10.3390/ijms23179856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thermostable exoshells (tES) are engineered proteinaceous nanoparticles used for the rapid encapsulation of therapeutic proteins/enzymes, whereby the nanoplatform protects the payload from proteases and other denaturants. Given the significance of oral delivery as the preferred model for drug administration, we structurally improved the stability of tES through multiple inter-subunit disulfide linkages that were initially absent in the parent molecule. The disulfide-linked tES, as compared to tES, significantly stabilized the activity of encapsulated horseradish peroxidase (HRP) at acidic pH and against the primary human digestive enzymes, pepsin, and trypsin. Furthermore, the disulfide-linked tES (DS-tES) exhibited significant intestinal permeability as evaluated using Caco2 cells. In vivo bioluminescence assay showed that encapsulated Renilla luciferase (rluc) was ~3 times more stable in mice compared to the free enzyme. DS-tES collected mice feces had ~100 times more active enzyme in comparison to the control (free enzyme) after 24 h of oral administration, demonstrating strong intestinal stability. Taken together, the in vitro and in vivo results demonstrate the potential of DS-tES for intraluminal and systemic oral drug delivery applications.
Collapse
|
33
|
Abdullah, Fang J, Liu X, Javed HU, Cai J, Zhou Q, Huang Q, Xiao J. Recent advances in self-assembly behaviors of prolamins and their applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:1015-1042. [PMID: 36004584 DOI: 10.1080/10408398.2022.2113031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prolamins are a group of storage proteins (zeins, kafirins, hordeins, secalins, gliadins, glutenins, and avenins) found in the endosperm of cereal grains and characterized by high glutamine and proline content. With the high proportion of nonpolar amino acids (40-80%) and peculiar solubility (alcohol (60-90%), acetic acid, and alkaline solutions), prolamins exhibit tunable self-assembly behaviors. In recent years, research practices of utilizing prolamins as green building materials of functional delivery vehicles to improve the health benefits of bioactive compounds have surged due to their attractive advantages (e.g. sustainability, biocompatibility, fabrication potential, and cost-competitiveness). This article covers the recent advances in self-assembly behaviors leading to the fabrication of nanoparticles, fibers, and films in the bulk water phase, at the air-liquid interface, and under the electrostatic field. Different fabrication methods, including antisolvent precipitation, evaporation induced self-assembly, thermal treatment, pH-modulation, electrospinning, and solvent casting for assembling nanoarchitectures as functional delivery vehicles are highlighted. Emerging industrial applications by mapping patents, including encapsulation and delivery of bioactive compounds and probiotics, active packaging, Pickering emulsions, and as functional additives to develop safer, healthier, and sustainable food products are discussed. A future perspective concerning the fabrication of prolamins as advanced materials to promote their commercial food applications is proposed.
Collapse
Affiliation(s)
- Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jieping Fang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xidong Liu
- National Intellectual Property Information Service Center of Universities, Library, South China Agricultural University, Guangdong, China
| | - Hafiz Umer Javed
- School of Chemistry and Chemical Engineering, Zhongkai University of Agricultural and Engineering, Guangzhou, Guangdong, China
| | - Jiyang Cai
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qize Zhou
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
35
|
Hassan EA, Hathout RM, Gad HA, Sammour OA. A holistic review on zein nanoparticles and their use in phytochemicals delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Xing Y, Li X, Cui W, Xue M, Quan Y, Guo X. Glucose-Modified Zein Nanoparticles Enhance Oral Delivery of Docetaxel. Pharmaceutics 2022; 14:pharmaceutics14071361. [PMID: 35890256 PMCID: PMC9324692 DOI: 10.3390/pharmaceutics14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Based on glucose (G) transporters (GLUTs), structuring nanoparticles with G as a target are an effective strategy to enhance oral bioavailability and anti-tumor effects of drugs. A novel drug delivery system using G-modified zein (GZ) nanoparticles loaded with docetaxel (DTX) (DTX-GNPs) was prepared and characterized in vitro and in vivo via assessment of cellular uptake, absorption site, pharmacokinetics, ex vivo distribution, and anti-tumor effects. The DTX-GNPs were approximately 120 nm in size. Compared with DTX-NPs, G modification significantly enhanced cellular uptake of DTX-GNPs by 1.22 times in CaCo-2 cells, which was related to GLUT mediation and the enhancement of endocytosis pathways via clathrin, micropinocytosis, and caveolin. Compared to DTX-NPs, G modification significantly enhanced DTX-NP absorption in the jejunum and ileum, delayed plasma concentration peak time, prolonged the average residence time in vivo, and increased oral bioavailability (from 43.82% to 96.04%). Cellular uptake and oral bioavailability of DTX were significantly affected by the G modification ratio. Compared with DTX-NPs, G modification significantly reduced drug distribution in the liver, lungs, and kidneys and increased tumor distribution and tumor growth inhibition rate without obvious systemic toxicity. This study demonstrated the potential of GZ-NPs as nanocarriers for DTX to enhance oral bioavailability and anti-tumor effects.
Collapse
Affiliation(s)
- Yabing Xing
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
| | - Xiao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (W.C.); (M.X.); (Y.Q.)
| | - Weiwei Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (W.C.); (M.X.); (Y.Q.)
| | - Meng Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (W.C.); (M.X.); (Y.Q.)
| | - Yanan Quan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (W.C.); (M.X.); (Y.Q.)
| | - Xinhong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (W.C.); (M.X.); (Y.Q.)
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-6778-1910
| |
Collapse
|
37
|
De Marco I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14112172. [PMID: 35683844 PMCID: PMC9182932 DOI: 10.3390/polym14112172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zein is a natural, biocompatible, and biodegradable polymer widely used in the pharmaceutical, biomedical, and packaging fields because of its low water vapor permeability, antibacterial activity, and hydrophobicity. It is a vegetal protein extracted from renewable resources (it is the major storage protein from corn). There has been growing attention to producing zein-based drug delivery systems in the recent years. Being a hydrophobic biopolymer, it is used in the controlled and targeted delivery of active principles. This review examines the present-day landscape of zein-based microparticles and nanoparticles, focusing on the different techniques used to obtain particles, the optimization of process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
38
|
Scalable Manufacture of Curcumin-Loaded Chitosan Nanocomplex for pH-Responsive Delivery by Coordination-Driven Flash Nanocomplexation. Polymers (Basel) 2022; 14:polym14112133. [PMID: 35683806 PMCID: PMC9182672 DOI: 10.3390/polym14112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Metal coordination-driven nanocomplexes are known to be responsive to physiologically relevant stimuli such as pH, redox, temperature or light, making them well-suited for antitumor drug delivery. The ever-growing demand for such nanocomplexes necessitates the design of a scalable approach for their production. In this study, we demonstrate a novel coordination self-assembly strategy, termed flash nanocomplexation (FNC), which is rapid and efficient for the fabrication of drug-loaded nanoparticles (NPs) in a continuous manner. Based on this strategy, biocompatible chitosan (CS) and Cu2+ can be regarded anchors to moor the antitumor drug (curcumin, Cur) through coordination, resulting in curcumin-loaded chitosan nanocomplex (Cur-loaded CS nanocomplex) with a narrow size distribution (PDI < 0.124) and high drug loading (up to 41.75%). Owing to the excellent stability of Cur-loaded CS nanocomplex at neutral conditions (>50 days), premature Cur leakage was limited to lower than 1.5%, and pH-responsive drug release behavior was realized in acidic tumor microenvironments. An upscaled manufacture of Cur-loaded CS nanocomplex is demonstrated with continuous FNC, which shows an unprecedented method toward practical applications of nanomedicine for tumor therapy. Furthermore, intracellular uptake study and cytotoxicity experiments toward H1299 cells demonstrates the satisfied anticancer efficacy of the Cur-loaded CS nanocomplex. These results confirm that coordination-driven FNC is an effective method that enables the rapid and scalable fabrication of antitumor drugs.
Collapse
|
39
|
Teimouri S, Kasapis S, Dokouhaki M. Diffusional characteristics of food protein-based materials as nutraceutical delivery systems: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Yuan Y, Ma M, Wang D, Xu Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: from construction to application. Crit Rev Food Sci Nutr 2022; 63:7529-7545. [PMID: 35253532 DOI: 10.1080/10408398.2022.2047881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zein-based nanoparticles loaded with bioactive compounds have positive prospects in the food industry, but an important limiting factor for development is colloidal instability. Currently, extensive researches are focused on solving the instability of zein nanoparticles, but since the beginning of the studies, there has not been a summary of the factors affecting the stability of zein-based nanoparticles. In the present work, the factors were reviewed comprehensively from the perspective of carrier construction and application evaluation. The former mainly includes type, quantity, and characteristics of biopolymer, the mass ratio of biopolymer/bioactive compound to zein, blending sequence of biopolymer, and location of encapsulated bioactive compounds. The latter mainly includes pH, heating, ionic strength, storage, freeze-drying, and gastrointestinal digestion. The former is the prerequisite for the success of the latter. The challenge is that stability research is limited to the laboratory level, and it is difficult to ensure that the stability results are suitable for commercial food matrices due to their complexity. At the laboratory level, the future trends are the influence of external energy and the cross-complexity and uniformity of stability research. The review is expected to provide systematic understanding and guidance for the development of zein-based nanoparticles stability.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
41
|
Leena MM, Anukiruthika T, Moses J, Anandharamakrishnan C. Co-delivery of curcumin and resveratrol through electrosprayed core-shell nanoparticles in 3D printed hydrogel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Hathout RM. Do Polymeric Nanoparticles Really Enhance the Bioavailability of Oral Drugs? A Quantitative Answer Using Meta-Analysis. Gels 2022; 8:gels8020119. [PMID: 35200500 PMCID: PMC8872407 DOI: 10.3390/gels8020119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022] Open
Abstract
The oral route remains one of the most popular and important routes of administration for drugs—one that warrants the development of advanced drug delivery systems, such as polymeric nanoparticles capable of enhancing the absorption and bioavailability of the used drugs. In this work, a systematic review of published works on several databases, followed by a meta-analysis, were utilized in order to navigate the published studies and access literature-based evidence about the capability of polymeric nanoparticulate systems to augment the absorption and bioavailability of orally administered drugs. The pharmacokinetic parameter of the area under the curve (AUC) was utilized as the “effect” of this meta-analytical study. The meta-analysis demonstrated a significant increase in AUC compared to conventional formulations. Furthermore, comparing the synthetic polymeric nanoparticles, versus their naturally-based administered counterparts, as subgroups of the meta-analysis, revealed no significant differences.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
43
|
Chen Y, Gao X, Liu S, Cai Q, Wu L, Sun Y, Xia G, Wang Y. Establishment and Characterization of Stable Zein/Glycosylated Lactoferrin Nanoparticles to Enhance the Storage Stability and in vitro Bioaccessibility of 7,8-Dihydroxyflavone. Front Nutr 2022; 8:806623. [PMID: 35047548 PMCID: PMC8763018 DOI: 10.3389/fnut.2021.806623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
In this work, the lactoferrin (LF) was glycosylated by dextran (molecular weight 10, 40, and 70 kDa, LF 10K, LF 40K, and LF 70K) via Maillard reaction as a stabilizer to establish zein/glycosylated LF nanoparticles and encapsulate 7,8-dihydroxyflavone (7,8-DHF). Three zein/glycosylated LF nanoparticles (79.27–87.24 nm) with low turbidity (<0.220) and polydispersity index (PDI) (<0.230) were successfully established by hydrophobic interactions and hydrogen bonding. Compared with zein/LF nanoparticles, zein/glycosylated LF nanoparticles further increased stability to ionic strength (0–500 mM NaCl) at low pH conditions. Zein/glycosylated LF nanoparticles had nanoscale spherical shape and glycosylated LF changed surface morphology of zein nanoparticles. Besides, encapsulated 7,8-DHF exhibited an amorphous state inside zein/glycosylated LF nanoparticles. Most importantly, zein/glycosylated LF nanoparticles had good water redispersibility, high encapsulation efficiency (above 98.50%), favorable storage stability, and bioaccessibility for 7,8-DHF, particularly LF 40K. Collectively, the above research provides a theoretical reference for the application of zein-based delivery systems.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaojing Gao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Qiuxing Cai
- College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Lijun Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Guobin Xia
- Department of Pediatrics Section of Neonatology, Texas Children's Hospital, Houston, TX, United States
| | - Yueqi Wang
- College of Food Engineering, Beibu Gulf University, Qinzhou, China.,Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
44
|
Nishimoto-Sauceda D, Romero-Robles LE, Antunes-Ricardo M. Biopolymer nanoparticles: a strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:41-52. [PMID: 34460939 DOI: 10.1002/jsfa.11512] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds are abundant in nature and have multiple beneficial effects on human health due to their antioxidant, anti-inflammatory, antithrombotic, antiallergenic, anticancer, and antiatherosclerotic properties. For this reason, phenolics are becoming relevant functional ingredients for several industries, mainly the food industry, derived from food consumer exigencies and regulations. However, the use of their beneficial properties still presents some limitations, such as chemical instability under environmental and processing conditions, which leads to structural changes and compromises their biological activities. They also present poor water solubility and sensitivity to pH changes, decreasing their bioavailability in the organism. The technologies for extraction and stabilization of these compounds have evolved rapidly in the development of different delivery systems to encapsulate sensitive active molecules. Biopolymeric nanoparticles are biodegradable polymer-based colloidal systems with sizes ranging from 1 to 1000 nm, and different techniques can be carried out to develop them. These systems have emerged as a green and effective alternative to improve stability, bioavailability, and biological effects of phenolic compounds. This comprehensive review aims to present an overview of recent advances in encapsulation processes of phenolic compounds within biopolymer nanoparticles as delivery systems and the impact on their physicochemical properties and biological effects after encapsulation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| |
Collapse
|
45
|
Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery. Pharmaceutics 2021; 14:pharmaceutics14010039. [PMID: 35056935 PMCID: PMC8779360 DOI: 10.3390/pharmaceutics14010039] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Zein, the major storage protein from corn, has a GRAS (Generally Regarded as Safe) status and may be easily transformed into nanoparticles, offering significant payloads for protein materials without affecting their stability. In this work, the capability of bare zein nanoparticles (mucoadhesive) and nanoparticles coated with poly(ethylene glycol) (mucus-permeating) was evaluated as oral carriers of insulin (I-NP and I-NP-PEG, respectively). Both nanocarriers displayed sizes of around 270 nm, insulin payloads close to 80 µg/mg and did not induce cytotoxic effects in Caco-2 and HT29-MTX cell lines. In Caenorhabditis elegans, where insulin decreases fat storage, I-NP-PEG induced a higher reduction in the fat content than I-NP and slightly lower than the control (Orlistat). In diabetic rats, nanoparticles induced a potent hypoglycemic effect and achieved an oral bioavailability of 4.2% for I-NP and 10.2% for I-NP-PEG. This superior effect observed for I-NP-PEG would be related to their capability to diffuse through the mucus layer and reach the surface of enterocytes (where insulin would be released), whereas the mucoadhesive I-NP would remain trapped in the mucus, far away from the absorptive epithelium. In summary, PEG-coated zein nanoparticles may be an interesting device for the effective delivery of proteins through the oral route.
Collapse
|
46
|
Tortorella S, Maturi M, Vetri Buratti V, Vozzolo G, Locatelli E, Sambri L, Comes Franchini M. Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Adv 2021; 11:39004-39026. [PMID: 35492476 PMCID: PMC9044754 DOI: 10.1039/d1ra07424e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
In recent years, the interest regarding the use of proteins as renewable resources has deeply intensified. The strongest impact of these biomaterials is clear in the field of smart medicines and biomedical engineering. Zein, a vegetal protein extracted from corn, is a suitable biomaterial for all the above-mentioned purposes due to its biodegradability and biocompatibility. The controlled drug delivery of small molecules, fabrication of bioactive membranes, and 3D assembly of scaffold for tissue regeneration are just some of the topics now being extensively investigated and reported in the literature. Herein, we review the recent literature on zein as a biopolymer and its applications in the biomedical world, focusing on the different shapes and sizes through which it can be manipulated. Zein a versatile biomaterial in the biomedical field. Easy to chemically functionalize with good emulsification properties, can be employed in drug delivery, fabrication of bioactive membranes and 3D scaffolds for tissue regeneration.![]()
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy .,Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR) Via S. Pansini 5 80131 Naples Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giulia Vozzolo
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
47
|
Design and characterization of ellagic acid-loaded zein nanoparticles and their effect on the antioxidant and antibacterial activities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Li Y, Zhang R, Zhang Q, Luo M, Lu F, He Z, Jiang Q, Zhang T. Dual Strategy for Improving the Oral Bioavailability of Resveratrol: Enhancing Water Solubility and Inhibiting Glucuronidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9249-9258. [PMID: 34357767 DOI: 10.1021/acs.jafc.1c02602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Resveratrol (RES) suffers from poor water solubility and extensive metabolism, which lead to low bioavailability. A phospholipid complex (PC) containing RES and a UDP-glucuronosyltransferase (UGT) inhibitor was prepared to address these two limiting factors, thereby improving RES bioavailability. First, 11 natural active ingredients metabolized by similar enzyme subtypes to RES were screened in a glucuronidation assay in liver microsomes. Then, glycyrrhetinic acid (GA), the strongest inhibitor, was prepared with RES in a PC. RES-PC was prepared as a control. As expected, the water solubility and the cumulative dissolution of RES were significantly enhanced by RES-PC and RES/GA-PC. Compared with the RES group, the AUC0-10 of RES and resveratrol-3-glucuronide (R-3-G) in the RES/GA-PC group showed increases of 2.49- and 1.70-fold, respectively, with the proportion of RES absorption to total absorption increasing 1.45 times. These results demonstrated that RES/GA-PC could improve the bioavailability of RES by increasing its water solubility and inhibiting its glucuronidation.
Collapse
Affiliation(s)
- Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ran Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Qi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Meiling Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Farong Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
49
|
Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021; 26:molecules26154621. [PMID: 34361774 PMCID: PMC8347607 DOI: 10.3390/molecules26154621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.
Collapse
|