1
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
2
|
Wan X, Jia W, Wang Q, Chen X, Wang A, Zhu L, Liu X, Zhang L, Zhuang P, Jiao J, Zhang Y. Metabolomics strategy comprehensively unveils the effect of catechins intervention on the biomarkers of exposure to acrylamide and biomarkers of cardiometabolic risk. ENVIRONMENT INTERNATIONAL 2022; 169:107517. [PMID: 36191485 DOI: 10.1016/j.envint.2022.107517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Polyphenolic antioxidants have been suggested to control the generation of acrylamide during thermal reactions. However, their role in protecting against the toxicity of acrylamide and the mechanism of action regarding profile alteration of biomarkers and metabolome remains unclear. A total of 65 adults were randomized into tea polyphenols (TP) and control groups and served with potato chips, which corresponded to an intake level of 12.6 μg/kg·bw of acrylamide, followed by capsules containing 200 mg, 100 mg or 50 mg TP, or equivalent placebo. Moreover, nontargeted urinary metabolomics analysis in acrylamide exposed rats was conducted using ultra-high performance liquid chromatography linked with a quadrupole-orbitrap high-resolution mass spectrometry. Our results showed that supplementation with catechins promoted the excretion of N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine in both humans and rats. We also found that epigallocatechin gallate (EGCG) or epicatechin (EC) intervention attenuated the ratio of hemoglobin adduct of glycidamide to hemoglobin adduct of acrylamide in rat blood. Metabolomics analysis revealed that EGCG/EC intervention regulated the differential expressed metabolites, including l-glutamic acid, 2-oxoglutarate, citric acid, and cysteinylglycine. Kyoto Encyclopedia of Genes and Genomes pathway analysis further showed acrylamide-induced metabolic disorders were improved after EGCG/EC supplementation by glycolipid metabolism (alanine, aspartate and glutamate metabolism, and d-Glutamine and d-glutamate metabolism) and energy metabolism (tricarboxylic acid cycle). Notably, the supplement use of EGCG prevented the cardiometabolic risk after exposure to acrylamide by mediating the phenylalanine and hippuric acid in phenylalanine metabolism. Here we showed the beneficial effect of catechins as major polyphenolic antioxidant ingredients on the toxicity of acrylamide by the changes in biomarkers from metabolic profile analysis based on human and animal studies. These findings shed light into the catechins as natural polyphenolic antioxidants that could be a therapeutic ingredient for preventing acrylamide-induced cardiometabolic toxicity.
Collapse
Affiliation(s)
- Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wei Jia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qiao Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Anli Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Li Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lange Zhang
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Marković Filipović J, Karan J, Ivelja I, Matavulj M, Stošić M. Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity. Int J Mol Sci 2022; 23:6112. [PMID: 35682790 PMCID: PMC9181725 DOI: 10.3390/ijms23116112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a frequent endocrine disorder characterized by hyperglycemia. Acrylamide (AA) is food contaminant formed during the high-temperature processing of food rich in carbohydrates and low in proteins. Recent human epidemiological studies have shown a potential association between AA exposure and the prevalence of diabetes in the general population. In male rats, AA treatment promoted pancreatic islet remodeling, which was determined by alpha-cell expansion and beta-cell reduction, while in female rats AA caused hyperglycemia and histopathological changes in pancreatic islets. In vitro and in vivo rodent model systems have revealed that AA induces oxidative stress in beta cells and that AA impairs glucose metabolism and the insulin signaling pathway. Animal studies have shown that diabetic rodents are more sensitive to acrylamide and that AA aggravates the diabetic state. In this review, we provide an overview of human epidemiological studies that examined the relation between AA exposure and glucose disorders. In addition, the effects of AA treatment on pancreatic islet structure, beta-cell function and glucose metabolism in animal models are comprehensively analyzed with an emphasis on sex-related responses. Furthermore, oxidative stress as a putative mechanism of AA-induced toxicity in beta cells is explored. Finally, we discuss the effects of AA on diabetics in a rodent model system.
Collapse
Affiliation(s)
- Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Jelena Karan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Ivana Ivelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Milica Matavulj
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.K.); (I.I.); (M.M.)
| | - Milena Stošić
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Science, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia;
| |
Collapse
|
4
|
Blueberry Anthocyanins Extract Attenuates Acrylamide-Induced Oxidative Stress and Neuroinflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7340881. [PMID: 35651724 PMCID: PMC9151000 DOI: 10.1155/2022/7340881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Acrylamide (AA) is a widespread environmental and dietary-derived neurotoxin, which can induce oxidative stress and associated inflammation in the brain. Anthocyanins widely occur as natural antioxidant and anti-inflammatory phytochemicals. Herein, the protective effects of blueberry anthocyanins extract (BAE) against AA-induced neurotoxicity were investigated in rats. The rats were pretreated with BAE (175 mg/kg body weight/day) by oral gavage for the first 7 days, followed by the co-administration of BAE and AA (35 mg/kg body weight/day) by oral gavage for the next 12 days. Results showed that BAE significantly decreased the malondialdehyde (MDA) production, and increased glutathione (GSH) and antioxidant enzyme levels; and it also suppressed microglial activation, astrocytic reaction, and pro-inflammatory cytokine expressions. Furthermore, BAE elevated the extracellular signal-related kinase (ERK)/cAMP response elements binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathway, and relieved the accumulation of amyloid beta (Aβ) 1-42 and 1-40 after AA exposure. Consequently, AA-induced neuronal necrosis and downregulation of synaptosomal-associated protein 25 (SNAP-25) were attenuated by BAE in the hippocampus and cerebral cortex. In conclusion, BAE can exert a protective function on neurons and synapses against AA-induced oxidative stress and neuroinflammation.
Collapse
|
5
|
Zhang Y, Wang Q, Jia W, Cheng J, Zhu L, Ren Y, Zhang Y. Rapid Simultaneous Determination of Cascade Metabolites of Acrylamide in Urine for Toxicokinetics Profiles and Short-Term Dietary Internal Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6748-6758. [PMID: 32419456 DOI: 10.1021/acs.jafc.0c01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current study developed an ultrahigh-performance liquid chromatography tandem mass spectrometry method to simultaneously analyze cascade metabolites of acrylamide in urine of rats and humans, including acrylamide, glycidamide, N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA), N-acetyl-S-(2-carbamoylethyl)-l-cysteine-sulfoxide, N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine, and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine. A tandem solid-phase extraction procedure was novelly used to purify all metabolites at once from human urine. The rapid analysis showed high sensitivity with LOD and LOQ ranges of 0.1-0.8 and 0.4-5.8 ng/mL, respectively, and achieved acceptable within-laboratory reproducibility (RSD < 12.0%) and spiking recovery (92.2%-117.3%) within 8 min per sample. Approximately 70.7 and 63.0% of ingested acrylamide were recovered during the toxicokinetics analysis from urine of male and female rats, respectively. For nonsmoking participants, the urinary levels of acrylamide and glycidamide were higher in men than women, whereas the urinary concentration of AAMA showed the opposite behavior. The current analysis provides methodological support of cascade metabolites of acrylamide for the dietary short-term internal exposure assessment of acrylamide.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qiao Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jun Cheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Li Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiping Ren
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Effect of acrylamide on glucose homeostasis in female rats and its mechanisms. Food Chem Toxicol 2020; 135:110894. [DOI: 10.1016/j.fct.2019.110894] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
|
7
|
Pellè L, Carlsson H, Cipollini M, Bonotti A, Foddis R, Cristaudo A, Romei C, Elisei R, Gemignani F, Törnqvist M, Landi S. The polymorphism rs2480258 within CYP2E1 is associated with different rates of acrylamide metabolism in vivo in humans. Arch Toxicol 2018; 92:2137-2140. [PMID: 29748789 DOI: 10.1007/s00204-018-2211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
In a recent study, we demonstrated that the variant allele of rs2480258 within intron VIII of CYP2E1 is associated with reduced levels of mRNA, protein, and enzyme activity. CYP2E1 is the most important enzyme in the metabolism of acrylamide (AA) by operating its oxidation into glycidamide (GA). AA occurs in food, is neurotoxic and classified as a probable human carcinogen. The goal of the present study was to further assess the role of rs2480258 by measuring the rate of AA > GA biotransformation in vivo. In blood samples from a cohort of 120 volunteers, the internal doses of AA and GA were assessed by AA and GA adducts to hemoglobin (Hb) measured by mass spectrometry. The rate of biotransformation was assessed by calculating the GA-Hb/AA-Hb ratio. To maximize the statistical power, 60 TT was compared to 60 CC-homozygotes and the results showed that TT homozygotes had a statistically significant reduced rate of biotransformation. Present results reinforced the notion that T-allele of rs2480258 is a marker of low functional activity of CYP2E1. Moreover, we studied the role of polymorphisms (SNPs) within glutathione-S-transferases (GSTs) enzymes and epoxide hydrolase (EPHX), verifying previous findings that SNPs within GSTs and EPHX influence the metabolism rate.
Collapse
Affiliation(s)
- Lucia Pellè
- Department of Biology, University of Pisa, via Derna 1, 56126, Pisa, Italy
| | - Henrik Carlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Monica Cipollini
- Department of Biology, University of Pisa, via Derna 1, 56126, Pisa, Italy
| | - Alessandra Bonotti
- Operative Unit of Preventive and Occupational Medicine, University Hospital of Pisa, Via Paradisa, 2, 56124, Pisa, Italy
| | - Rudy Foddis
- Operative Unit of Preventive and Occupational Medicine, University Hospital of Pisa, Via Paradisa, 2, 56124, Pisa, Italy
| | - Alfonso Cristaudo
- Operative Unit of Preventive and Occupational Medicine, University Hospital of Pisa, Via Paradisa, 2, 56124, Pisa, Italy
| | - Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, via Paradisa 2, 56124, Pisa, Italy
| | - Federica Gemignani
- Department of Biology, University of Pisa, via Derna 1, 56126, Pisa, Italy
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 106 91, Stockholm, Sweden.
| | - Stefano Landi
- Department of Biology, University of Pisa, via Derna 1, 56126, Pisa, Italy.
| |
Collapse
|
8
|
Zhang Y, Wang Q, Zhang G, Jia W, Ren Y, Wu Y. Biomarker analysis of hemoglobin adducts of acrylamide and glycidamide enantiomers for mid-term internal exposure assessment by isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018; 178:825-833. [DOI: 10.1016/j.talanta.2017.09.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 11/26/2022]
|
9
|
Erhitzungsbedingte Kontaminanten in Lebensmitteln. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:737-744. [DOI: 10.1007/s00103-017-2564-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
|
11
|
Sweeney LM, Kirman CR, Gargas ML, Carson ML, Tardiff RG. Development of a physiologically-based toxicokinetic model of acrylamide and glycidamide in rats and humans. Food Chem Toxicol 2009; 48:668-85. [PMID: 19948202 DOI: 10.1016/j.fct.2009.11.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/09/2009] [Accepted: 11/24/2009] [Indexed: 01/06/2023]
Abstract
Physiologically-based toxicokinetic ("pharmacokinetic") (PBPK or PBTK) modeling can be used as a tool to compare internal doses of acrylamide (AA) and its metabolite glycidamide (GA) in humans and rats. An earlier PBTK model for AA and GA in rats was refined and extended to humans based on new data. With adjustments to the previous parameters, excellent fits to a majority of the data for male Fisher 344 rats were obtained. Kinetic parameters for the human model were estimated based on fit to available human data for urinary metabolites of AA, and levels of hemoglobin adducts of AA and GA measured in studies in which human volunteers ingested known doses of AA. The simulations conducted with the rat and human models predicted that rats and humans ingesting comparable levels of AA (in mg/kg day) would have similar levels of GA in blood and tissues. This finding stands in contrast to the default approach that assumes a 3.2-fold increase in human risk due to pharmacokinetic differences between rats and humans. This model was used in a companion paper to estimate safe levels of ingested AA.
Collapse
|