1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Ramírez-Esparza U, Agustín-Chávez MC, Ochoa-Reyes E, Alvarado-González SM, López-Martínez LX, Ascacio-Valdés JA, Martínez-Ávila GCG, Prado-Barragán LA, Buenrostro-Figueroa JJ. Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products. Antioxidants (Basel) 2024; 13:1142. [PMID: 39334801 PMCID: PMC11428609 DOI: 10.3390/antiox13091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Maize comes in a variety of colors, including white, yellow, red, blue, and purple, which is due to the presence of phytochemicals such as carotenoids, anthocyanins, flavonoids, phytosterols, and some hydroxycinnamic acid derivatives. In Mexico, maize is primarily grown for human consumption; however, maize residues comprise 51-58% of the total maize plant weight (stalks, leaves, ears, and husks) and are mainly used as livestock feed. These residues contain numerous bioactive compounds that interest the industry for their potential health benefits in preventing or treating degenerative diseases. This review explores the current knowledge and highlights key aspects related to the extraction methods and different techniques for identifying the bioactive compounds found in maize by-products.
Collapse
Affiliation(s)
- Ulises Ramírez-Esparza
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| | - María Cristina Agustín-Chávez
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| | - Emilio Ochoa-Reyes
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| | - Sandra M. Alvarado-González
- Microbiology and Molecular Biology Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico;
| | | | - Juan A. Ascacio-Valdés
- Bioprocesses and Bioproducts Group, Department of Food Research, Faculty of Chemical Sciences, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | | | - Lilia Arely Prado-Barragán
- Solid Fermentations Pilot Plant, Biotechnology Department, Universidad Autónoma Metropolitana–Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - José Juan Buenrostro-Figueroa
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| |
Collapse
|
3
|
Razgonova MP, Nawaz MA, Sabitov AS, Golokhvast KS. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha-Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int J Mol Sci 2024; 25:10085. [PMID: 39337572 PMCID: PMC11432568 DOI: 10.3390/ijms251810085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents the metabolomic profiles of the four Ribes species (Ribes pauciflorum Turcz., Ribes triste Pall., Ribes dicuscha Fisch., and Ribes aureum Purch.). The plant material was collected during two expeditions in the Russian Far East. Tandem mass spectrometry was used to detect target analytes. A total of 205 bioactive compounds (155 compounds from polyphenol group and 50 compounds from other chemical groups) were tentatively identified from the berries and extracts of the four Ribes species. For the first time, 29 chemical constituents from the polyphenol group were tentatively identified in the genus Ribes. The newly identified polyphenols include flavones, flavonols, flavan-3-ols, lignans, coumarins, stilbenes, and others. The other newly detected compounds in Ribes species are the naphthoquinone group (1,8-dihydroxy-anthraquinone, 1,3,6,8-tetrahydroxy-9(10H)-anthracenone, 8,8'-dihydroxy-2,2'-binaphthalene-1,1',4,4'-tetrone, etc.), polyhydroxycarboxylic acids, omega-3 fatty acids (stearidonic acid, linolenic acid), and others. Our results imply that Ribes species are rich in polyphenols, especially flavanols, anthocyanins, flavones, and flavan-3-ols. These results indicate the utility of Ribes species for the health and pharmaceutical industry.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | - Andrey S. Sabitov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
4
|
Magalhães D, Gonçalves R, Rodrigues CV, Rocha HR, Pintado M, Coelho MC. Natural Pigments Recovery from Food By-Products: Health Benefits towards the Food Industry. Foods 2024; 13:2276. [PMID: 39063360 PMCID: PMC11276186 DOI: 10.3390/foods13142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.M.); (R.G.); (C.V.R.); (H.R.R.); (M.P.)
| |
Collapse
|
5
|
Klementaviciute J, Zavistanaviciute P, Klupsaite D, Rocha JM, Gruzauskas R, Viskelis P, El Aouad N, Bartkiene E. Valorization of Dairy and Fruit/Berry Industry By-Products to Sustainable Marinades for Broilers' Wooden Breast Meat Quality Improvement. Foods 2024; 13:1367. [PMID: 38731738 PMCID: PMC11083194 DOI: 10.3390/foods13091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The study aims to improve the quality of wooden breast meat (WBM) via the use of newly developed marinades based on selected strains of lactic acid bacteria (LAB) in combination with the by-products of the dairy and fruit/berry industries. Six distinct marinades were produced based on milk permeate (MP) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu) with the addition of apple (ApBp) and blackcurrant (BcBp) processing by-products. The microbiological and acidity parameters of the fermented marinades were evaluated. The effects of marinades on the microbiological, technical, and physicochemical properties of meat were assessed following 24 and 48 h of WBM treatment. It was established that LAB viable counts in marinades were higher than 7.00 log10 colony-forming units (CFU)/mL and, after 48 h of marination, enterobacteria and molds/yeasts in WBM were absent. Marinated (24 and 48 h) WBM showed lower dry-matter and protein content, as well as water holding capacity, and exhibited higher drip loss (by 8.76%) and cooking loss (by 12.3%) in comparison with controls. After WBM treatment, biogenic amines decreased; besides, the absence of spermidine and phenylethylamine was observed in meat marinated for 48 h with a marinade prepared with Lu. Overall, this study highlights the potential advantages of the developed sustainable marinades in enhancing the safety and quality attributes of WBM.
Collapse
Affiliation(s)
- Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Romas Gruzauskas
- Artificial Intelligence Centre, Kaunas University of Technology, K. Donelaicio Str. 73, LT-44249 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy, Route de rabat km 15 Gzenaya BP 365 Tanger, University Abdelmalek Essaâdi, Tetouan 92000, Morocco;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
6
|
Pandey P, Grover K, Dhillon TS, Chawla N, Kaur A. Development and quality evaluation of polyphenols enriched black carrot (Daucus carota L.) powder incorporated bread. Heliyon 2024; 10:e25109. [PMID: 38322869 PMCID: PMC10844063 DOI: 10.1016/j.heliyon.2024.e25109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Black carrot is a prominent source of polyphenols and the cheapest source of anthocyanins in India. In this study, an attempt has been made to examine the feasibility of black carrot powder as an ingredient in bread. Black carrot bread was prepared by incorporating different concentrations of black carrot powder (BCP) at 2.5, 5.0, 7.5 and 10 %. The developed bread samples were analyzed for physical and textural quality, proximate composition, bioactive compounds, antioxidant properties, sensory characteristics, mineral content and storage quality. The results revealed that loaf volume and specific volume decreased (1995-1254 mL, 5.25-3.28 mL/g) with the incorporation of BCP into bread. Textural analysis revealed that the addition of BCP led to increased hardness in the bread (0.110-12 0.151 N), whereas the resilience (43.64-35.10 %), cohesion and springiness (89.930-13 82.146 %) decreased significantly. The content of bioactive compounds such as total phenols, anthocyanins (29.63-112.68 mg/100 g) and flavonoids increased to exceptionally high levels in BCP-incorporated bread and showed high antioxidant activity. Incorporation of BCP up to 7.5 % showed the most acceptable sensory analysis score (7.85) with a significant increase in dietary fiber (40 %) and total mineral content (50 %), which revealed that black carrot powder could be used up to 7.5 % as an ingredient into bread with high acceptability. The present study revealed significant enhancement in bioactive compounds and mineral content of bread after the incorporation of black carrot powder, which supports its immense potential in preventing hunger and oxidative stress-induced disorders in developing countries.
Collapse
Affiliation(s)
- Pragya Pandey
- Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, 224229, India
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kiran Grover
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Tarsem Singh Dhillon
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Neena Chawla
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
7
|
Fočak M, Mitrašinović-Brulić M, Suljević D. Aronia melanocarpa (Michx.) Elliott 1821 Extract Has Moderate Ameliorative Influence on Biochemical and Hematological Parameters in Gentamicin-Induced Nephropathy in Wistar Rats. Appl Biochem Biotechnol 2024; 196:896-908. [PMID: 37256488 DOI: 10.1007/s12010-023-04573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic used to treat bacterial infections. Nephrotoxicity refers to the impairments of the kidneys caused by the use of GM and can result in decreased kidney function and in severe cases, kidney failure. Aronia melanocarpa extract (AME), also known as the black chokeberry, has been used for its protective effects on the kidneys. AME concentration of 3.38 mg/kg (max antioxidant activity in vitro) was used to determine its effectiveness against induced nephropathy during 30 days. GM treatment caused significant hypoalbuminemia and high values of globulins, creatinine, and urea compared to the control group. GM application lead to hemolysis occurrence, echinocytosis, and platelets aggregation. Significantly high values of segmented neutrophils and low values of non-segmented neutrophils were recorded in the blood of rats treated with chokeberry extract (AME). In the pre-treatment (AME + GM), severe hypochromic anemia and a significant improvement in hematological parameters, as well as a reduction of anemia in the post-treatment (GM + AME), were noted. Post-treatment AME also significantly regulates urea and creatinine values. Statistically significantly low hemoglobin values were found in all groups treated with AME. Current study suggests that compounds in the AME have a moderate beneficial effect against renal injury and anti-inflammatory properties that may help protect the kidneys from injury caused by GM.
Collapse
Affiliation(s)
- Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina.
| | - Maja Mitrašinović-Brulić
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
Zhu B, Zhong Y, Wang D, Deng Y. Active and Intelligent Biodegradable Packaging Based on Anthocyanins for Preserving and Monitoring Protein-Rich Foods. Foods 2023; 12:4491. [PMID: 38137296 PMCID: PMC10742553 DOI: 10.3390/foods12244491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, active and intelligent packaging has been developed to solve the spoilage problem for protein-rich foods during storage, especially by adding anthocyanin extracts. In such a film system, the antioxidant and antibacterial properties were dramatically increased by adding anthocyanins. The physicochemical properties were enhanced through interactions between the active groups in the anthocyanins and reactive groups in the polymer chains. Additionally, the active and intelligent film could monitor the spoilage of protein-rich foods in response to pH changes. Therefore, this film could monitor the sensory acceptance and extend the shelf life of protein-rich foods simultaneously. In this paper, the structural and functional properties of anthocyanins, composite actions of anthocyanin extracts and biomass materials, and reinforced properties of the active and intelligent film were discussed. Additionally, the applications of this film in quality maintenance, shelf-life extension, and quality monitoring for fresh meat, aquatic products, and milk were summarized. This film, which achieves high stability and the continuous release of anthocyanins on demand, may become an underlying trend in packaging applications for protein-rich foods.
Collapse
Affiliation(s)
| | | | | | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (B.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
9
|
Zhang N, Jing P. Red Cabbage Anthocyanins Attenuate Cognitive Impairment By Attenuating Neuroinflammation and Regulating Gut Microbiota in Aging Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15064-15072. [PMID: 37781995 DOI: 10.1021/acs.jafc.3c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Red cabbage anthocyanins may provide health benefits that may be associated with antiaging. The protection of red cabbage anthocyanin-rich extract (ARE) and cyanidin-3-diglucoside-5-glucoside-rich extract (CY3D5G) against age-related cognitive dysfunction was investigated in normal aging mice (male C57BL/6J, 12 months old) administered orally for 12 weeks. Behavioral tests showed that ARE and CY3D5G significantly decreased cognitive impairment (p < 0.05) and had no effect on motor disorder. ARE and CY3D5G increased superoxide dismutase activity by 29.18 and 23.09% and decreased malondialdehyde by 15.74 and 10.05%, respectively, compared to the control. Histological staining showed that ARE and CY3D5G treatment reduced hippocampal neuronal damage and brain-derived neurotrophic factor degeneration. ARE and CY3D5G significantly reduced IL-1β and IL-6 levels in serum and brain (p < 0.05) by promoting the MAPK signaling pathway while enriching the abundance of butyrate-producing bacteria and altering the functional profile of the microbial community. In conclusion, ARE and CY3D5G may attenuate age-related cognitive dysfunction by reducing neuroinflammation and regulating the gut-brain axis.
Collapse
Affiliation(s)
- Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
11
|
Chen L, Chen W, Li D, Liu X. Anthocyanin and proanthocyanidin from Aronia melanocarpa (Michx.) Ell.: Purification, fractionation, and enzyme inhibition. Food Sci Nutr 2023; 11:3911-3922. [PMID: 37457197 PMCID: PMC10345685 DOI: 10.1002/fsn3.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Aronia melanocarpa (Michx.) Ell. is a rich source of anthocyanins and proanthocyanidins with confirmed health benefits. Individual cyanidin glucosides (cyanidin 3-galactoside, cyanidin 3-arabinoside, cyanidin 3-xyloside, and cyanidin 3-glucoside) of anthocyanins (calculated by individual cyanin glycoside fractions was 419.9 mg/100 g FW) were isolated by Sephadex LH-20 column and different parts of proanthocyanidins with a different mean degree of polymerization (mDP) were fractionated by the solubility differences in different solvents. The composition of different mDP of proanthocyanidins was as follows: monomers (1.51%), oligomer (mDP of 4.2 ± 0.9, 20.57%), CPP-50 (mDP of 78.9 ± 4.1, 22.17%), CPP-60 (mDP of 66.1 ± 1.2, 27.94%), CPP-70 (mDP of 36.8 ± 3.9, 36.8%), CPP-75 (mDP of 25.2 ± 1.3, 6.14%), CPP-L (mDP of 10.2 ± 2.6, 6.95%), and there were recycling loss of 0.34%. Cyanidin 3-glucoside showed the strongest inhibition effects on α-amylase and lipase and cyanidin 3-arabinoside showed the strongest inhibition effect on α-glucosidase, while cyanidin 3-xyloside has no inhibition effect on the α-amylase, and cyanidin 3-galactoside, cyanidin 3-arabinoside, and cyanidin 3-xyloside have no inhibition effects on lipase. The inhibition effect of proanthocyanidins with different mDP to the enzymes all showed high negative correlations between the mDP and IC50 (half-maximal inhibitory concentration). This study suggests that A. melanocarpa (Michx.) Ell. can have beneficial effects due to inhibition of the digestion enzyme.
Collapse
Affiliation(s)
- Limei Chen
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing EngineeringTianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Innovation Centre for Synthetic BiologyTianjinChina
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing EngineeringTianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Innovation Centre for Synthetic BiologyTianjinChina
| | - Demao Li
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing EngineeringTianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Innovation Centre for Synthetic BiologyTianjinChina
| | - Xiumin Liu
- Hebei Jiaotong Vocational and Technical CollegeHebeiShijiazhuangChina
| |
Collapse
|
12
|
Zeng S, Lin S, Wang Z, Zong Y, Wang Y. The health-promoting anthocyanin petanin in Lycium ruthenicum fruit: a promising natural colorant. Crit Rev Food Sci Nutr 2023; 64:10484-10497. [PMID: 37351558 DOI: 10.1080/10408398.2023.2225192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Acylated anthocyanins derived from dietary sources have gained significant attention due to their health-promoting properties and potential as natural colorants with high stability. However, exploration of the functional food products using acylated anthocyanins enriched in fruits and vegetables remains largely delayed in food industries. The black goji (Lycium ruthencium) fruit (LRF) is a functional food that is extensively used due to its exceptionally high levels of acylated anthocyanins, including petanin. This review provides a comprehensive summary of the functional properties and anthocyanin components of LRF. The stability, bioaccessibility, bioavailability, and bioactivities of petanin, the major anthocyanin component, are compared with those of LRF anthocyanin extracts and other food sources. Furthermore, the biosynthetic pathway and regulatory network of petanin in LRF are proposed and constructed, respectively. The key genes that could be potentially used for metabolic engineering to produce petanin are predicted. Finally, the potential application of petanin derivatives in the food industry is also discussed. This review presents comprehensive and systematic information about the dual-function of petanin as a bioactive component and a promising natural colorant for future food industrial applications.
Collapse
Affiliation(s)
- Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Li Y, Xing M, Yang Q, Wang Y, Jiang J, Zhao Y, Zhao X, Shen A, Feng Y, Zhao X, Zhao Q, Hu C, Wang Y, Zhang B, Zhou S, Gu H, Huang J, Zhang Y. SmCIP7, a COP1 interactive protein, positively regulates anthocyanin accumulation and fruit size in eggplant. Int J Biol Macromol 2023; 234:123729. [PMID: 36801296 DOI: 10.1016/j.ijbiomac.2023.123729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
In higher plants, COP1 (Constitutively Photomorphogenic 1) acts as a central regulator of light-signaling networks and globally conditions the target proteins via the ubiquitin-proteasome pathway. However, the function of COP1-interacting proteins in light-regulated fruit coloration and development remains unknown in Solanaceous plants. Here, a COP1-interacting protein-encoding gene, SmCIP7, expressed specifically in the eggplant (Solanum melongena L.) fruit, was isolated. Gene-specific silencing of SmCIP7 using RNA interference (RNAi) significantly altered fruit coloration, fruit size, flesh browning, and seed yield. SmCIP7-RNAi fruits showed evident repression of the accumulation of anthocyanins and chlorophyll, indicating functional similarities between SmCIP7 and AtCIP7. However, the reduced fruit size and seed yield indicated SmCIP7 had evolved a distinctly new function. With the comprehensive application of HPLC-MS, RNA-seq, qRT-PCR, Y2H, BiFC, LCI, and dual-luciferase reporter system (DLR™), it was found that SmCIP7, a COP1 interactive protein in light signaling promoted anthocyanin accumulation, probably by regulating the transcription of SmTT8. Additionally, the drastic up-regulation of SmYABBY1, a homologous gene of SlFAS, might account for the strongly retarded fruit growth in SmCIP7-RNAi eggplant. Altogether, this study proved that SmCIP7 is an essential regulatory gene to modulate fruit coloration and development, serving as a key gene locus in eggplant molecular breeding.
Collapse
Affiliation(s)
- Yan Li
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Minghui Xing
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China; State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Qiu Yang
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yong Wang
- Henan Engineering Technology Research Center of New Germplasm Creation and Utilization for Solanaceous Vegetable Crops, Zhumadian Academy of Agricultural Sciences, Fuqiang Road 51, Zhumadian 463000, China
| | - Jun Jiang
- Henan Engineering Technology Research Center of New Germplasm Creation and Utilization for Solanaceous Vegetable Crops, Zhumadian Academy of Agricultural Sciences, Fuqiang Road 51, Zhumadian 463000, China
| | - Yingkai Zhao
- Zhengzhou Institute of Vegetable Research, Zhengzhou 450015, China
| | - Xiangmei Zhao
- Zhengzhou Institute of Vegetable Research, Zhengzhou 450015, China
| | - Aimin Shen
- Zhengzhou Institute of Vegetable Research, Zhengzhou 450015, China
| | - Youwei Feng
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Xuejie Zhao
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Qing Zhao
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Chunhua Hu
- Henan Youmei Agricultural Technology Co., Ltd, Zhoukou 466100, China
| | - Yunxing Wang
- Henan Youmei Agricultural Technology Co., Ltd, Zhoukou 466100, China
| | - Bing Zhang
- Henan Vocational College of Agriculture, Zhengzhou, China
| | - Shifeng Zhou
- Henan Vocational College of Agriculture, Zhengzhou, China
| | - Huihui Gu
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yanjie Zhang
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Molina AK, Corrêa RCG, Prieto MA, Pereira C, Barros L. Bioactive Natural Pigments' Extraction, Isolation, and Stability in Food Applications. Molecules 2023; 28:1200. [PMID: 36770869 PMCID: PMC9920834 DOI: 10.3390/molecules28031200] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Color in food has multiple effects on consumers, since this parameter is related to the quality of a product, its freshness, and even its nutrient content. Each food has a characteristic color; however, this can be affected by the technological treatments that are applied during its manufacturing process, as well as its storage. Therefore, the development of new food products should take into account consumer preferences, the physical properties of a product, food safety standards, the economy, and applications of technology. With all of this, the use of food additives, such as dyes, is increasingly important due to the interest in the natural coloring of foods, strict regulatory pressure, problems with the toxicity of synthetic food colors, and the need for globally approved colors, in addition to current food market trends that focus on the consumption of healthy, organic, and natural products. It is for this reason that there is a growing demand for natural pigments that drives the food industry to seek or improve extraction techniques, as well as to study different stability processes, considering their interactions with the food matrix, in order to meet the needs and expectations of consumers.
Collapse
Affiliation(s)
- Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-390, Brazil
| | - Miguel A. Prieto
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
15
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
Comparative study on alleviating effect of kiwi berry (Actinidia arguta) polysaccharide and polyphenol extracts on constipated mice. Food Res Int 2022; 162:112037. [DOI: 10.1016/j.foodres.2022.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
|
17
|
Traditional rice-based fermented products: Insight into their probiotic diversity and probable health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Cranberry and black chokeberry extracts isolated with pressurized ethanol from defatted by supercritical CO2 pomace inhibit colorectal carcinoma cells and increase global antioxidant response of meat products during in vitro digestion. Food Res Int 2022; 161:111803. [DOI: 10.1016/j.foodres.2022.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
20
|
Aboufarrag H, Hollands WJ, Percival J, Philo M, Savva GM, Kroon PA. No Effect of Isolated Anthocyanins from Bilberry Fruit and Black Rice on LDL Cholesterol or other Biomarkers of Cardiovascular Disease in Adults with Elevated Cholesterol: A Randomized, Placebo-Controlled, Cross-Over Trial. Mol Nutr Food Res 2022; 66:e2101157. [PMID: 35385209 PMCID: PMC9788215 DOI: 10.1002/mnfr.202101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Some dietary interventions with berry fruits, berry fruit extracts, and purified anthocyanins have been reported to beneficially alter lipoprotein profiles in hyperlipidemic participants. The major anthocyanins in human diets are glycosides of cyanidin and delphinidin, and structure can influence both absorption and bioactivity. The aim of this study is to determine the effects of two major types of anthocyanins on low-density lipoprotein cholesterol and other cardiometabolic markers for cardiovascular disease (CVD) risk in hyperlipidemic individuals. METHODS AND RESULTS Fifty-two hyperlipidemic participants complete this randomized, placebo-controlled, double-blind, three arm crossover trial. Participants ingest capsules containing 320 mg of anthocyanins (bilberry trihydroxy-type or black rice dihydroxy-type) or placebo once daily for 28 days. Biomarkers of CVD risk are measured before and after the intervention period. Compared to the placebo, neither anthocyanin treatment significantly (p < 0.05) changes circulating levels of lipoproteins (total-/high-density lipoprotein (HDL)-/low-density lipoprotein (LDL)-cholesterol, triglycerides, Apolipoprotein B (ApoB)), biomarkers of glycemic control (fasting glucose, fructosamine), biomarkers of HDL function (ApoA1, HDL3, paraoxonase-1 (PON1) arylesterase, and lactonase activities), or plasma bile acids. CONCLUSIONS These data do not support the notion that regular consumption of anthocyanins beneficially affects glycemic control or lipoprotein profiles or functions. It is possible the no effect observation is due to the relatively short duration of treatments.
Collapse
Affiliation(s)
- Hassan Aboufarrag
- Quadram Institute BioscienceNorwich Research ParkNorwichNR4 7UQUK,Food Science and Technology DepartmentFaculty of AgricultureAlexandria UniversityAlexandria23511Egypt
| | | | - Jasmine Percival
- Quadram Institute BioscienceNorwich Research ParkNorwichNR4 7UQUK
| | - Mark Philo
- Quadram Institute BioscienceNorwich Research ParkNorwichNR4 7UQUK
| | - George M. Savva
- Quadram Institute BioscienceNorwich Research ParkNorwichNR4 7UQUK
| | - Paul A. Kroon
- Quadram Institute BioscienceNorwich Research ParkNorwichNR4 7UQUK
| |
Collapse
|
21
|
Sharma A, Yadav M, Sharma N, Kumari A, Kaur S, Meenu M, Garg M. Comparison of wheatgrass juices from colored wheat (white, black, blue, and purple) for health promoting phytochemicals. Food Res Int 2022; 161:111833. [DOI: 10.1016/j.foodres.2022.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
22
|
Kitano A, Norikura T, Matsui-Yuasa I, Shimakawa H, Kamezawa M, Kojima-Yuasa A. Phosphodiesterase 4 mRNA Level Suppression is Important for Extract of Black Carrot to Protect Against Hepatic Injury Induced by Ethanol. J Med Food 2022; 25:982-992. [PMID: 36201260 DOI: 10.1089/jmf.2021.k.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Excessive alcohol use often results in alcoholic liver disease (ALD). An early change in the liver due to excessive drinking is hepatic steatosis, which may ultimately progress to hepatitis, liver fibrosis, cirrhosis, and liver cancer. Among these debilitating processes, hepatic steatosis is reversible with the appropriate treatment. Therefore, it is important to find treatments and foods that reverse hepatic steatosis. Black carrot has antioxidant and anti-inflammatory effects. In this study, we examined the effectiveness of black carrot extract (BCE) on hepatic steatosis in in vivo and in vitro ethanol-induced liver injury models. For the in vivo experiments, serum aminotransferase activities enhanced by ethanol- and carbon tetrachloride were significantly suppressed by the BCE diet. Furthermore, morphological changes in the liver hepatic steatosis and fibrosis were observed in the in vivo ethanol-induced liver injury model, however, BCE feeding resulted in the recovery to an almost normal liver morphology. In the in vitro experiments, ethanol treatment induced reactive oxygen species (ROS) levels in hepatocytes at 9 h. Conversely, ROS production was suppressed to control levels and hepatic steatosis was suppressed when hepatocyte culture with ethanol were treated with BCE. Furthermore, we investigated enzyme activities, enzyme protein levels, and messenger RNA levels of alcohol dehydrogenase (ADH), cytochrome p450 2E1 (CYP2E1), and aldehyde dehydrogenase (ALDH) using enzyme assays, western blot, and quantitative reverse transcription-polymerase chain reaction analyses. We found that the activities of ADH, CYP2E1, and ALDH were regulated through the cAMP-PKA pathway at different levels, namely, translational, posttranslational, and transcriptional levels, respectively. The most interesting finding of this study is that BCE increases cAMP levels by suppressing the Pde4b mRNA and PDE4b protein levels in ethanol-treated hepatocytes, suggesting that BCE may prevent ALD.
Collapse
Affiliation(s)
- Atsuko Kitano
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Toshio Norikura
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | | | - Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| |
Collapse
|
23
|
Fuentes-Cardenas IS, Cuba-Puma R, Marcilla-Truyenque S, Begazo-Gutiérrez H, Zolla G, Fuentealba C, Shetty K, Ranilla LG. Diversity of the Peruvian Andean maize ( Zea mays L.) race Cabanita: Polyphenols, carotenoids, in vitro antioxidant capacity, and physical characteristics. Front Nutr 2022; 9:983208. [PMID: 36225880 PMCID: PMC9549777 DOI: 10.3389/fnut.2022.983208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
The high diversity of the Peruvian Andean maize (Zea mays L.) represents a biological and genetic heritage relevant for food security, but few studies are targeted toward its characterization and consequent valorization and preservation. The objective of this study was to evaluate the potential of the Peruvian Andean maize race Cabanita with respect to its bioactive profiles (free and bound phenolic and carotenoid composition), physical characteristics, and in vitro antioxidant properties. Maize landraces with variable kernel pigmentation were collected from two provinces (Caylloma and Castilla) within the Arequipa region (among ten Andean sites) and the phytochemical profile was evaluated by Ultra High-Performance Liquid Chromatography with diode array detector (UHPLC-DAD). All maize samples were important sources of phenolic compounds mainly soluble p-coumaric and ferulic acid derivatives whereas anthocyanins were only detected in maize with partially red pigmented kernels. Major phenolic compounds in the bound phenolic fractions were ferulic acid and its derivatives along with p-coumaric acid. Carotenoid compounds including xanthophylls such as lutein, lutein isomers, and zeaxanthin were only detected in orange and white-yellow pigmented maize and are reported for the first time in Peruvian landraces. The multivariate analysis using Principal Components Analysis (PCA) revealed low variability of all data which may indicate a level of similarity among maize samples based on evaluated variables. However, maize grown in Caylloma province showed more homogeneous physical characteristics and higher yield, whereas higher phenolic contents and antioxidant capacity were observed in maize from Castilla. Samples CAY (yellow-pigmented kernel, Castilla) and COM (orange-pigmented kernel, Caylloma) had the highest total phenolic (246.7 mg/100 g dried weight basis, DW) and carotenoid (1.95 μg/g DW) contents among all samples. The variable Andean environmental conditions along with differences in farming practices may play a role and should be confirmed with further studies. Current results provide the metabolomic basis for future research using integrated omics platforms targeted toward the complete characterization of the ethnic-relevant maize race Cabanita.
Collapse
Affiliation(s)
| | - Rody Cuba-Puma
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
| | | | - Huber Begazo-Gutiérrez
- Estación Experimental Agraria Arequipa, Instituto Nacional de Innovación Agraria (INIA), Arequipa, Perú
| | - Gastón Zolla
- Laboratorio de Fisiologia Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomia, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Claudia Fuentealba
- Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
- Escuela Profesional de Ingeniería de Industria Alimentaria, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, Arequipa, Perú
| |
Collapse
|
24
|
Acylation of Anthocyanins and Their Applications in the Food Industry: Mechanisms and Recent Research Advances. Foods 2022; 11:foods11142166. [PMID: 35885408 PMCID: PMC9316909 DOI: 10.3390/foods11142166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Anthocyanins are extensively used as natural non-toxic compounds in the food industry due to their unique biological properties. However, the instability of anthocyanins greatly affects their industrial application. Studies related to acylated anthocyanins with higher stability and increased solubility in organic solvents have shown that the acylation of anthocyanins can improve the stability and fat solubility of anthocyanins. However, relevant developments in research regarding the mechanisms of acylation and applications of acylated anthocyanins are scarcely reviewed. This review aims to provide an overview of the mechanisms of acylation and the applications of acylated anthocyanins in the food industry. In the review, acylation methods, including biosynthesis, semi-biosynthesis, and chemical and enzymatic acylation, are elaborated, physicochemical properties and biological activities of acylated anthocyanins are highlighted, and their application as colourants, functionalizing agents, intelligent indicators, and novel packaging materials in the food industry are summarized. The limitations encountered in the preparation of acylated anthocyanins and future prospects, their applications are also presented. Acylated anthocyanins present potential alternatives to anthocyanins in the food industry due to their functions and advantages as compared with non-acylated analogues. It is hoped that this review will offer further information on the effective synthesis and encourage commercialization of acylated anthocyanins in the food industry.
Collapse
|
25
|
Zhang Y, Zhao Q, Feng Y, Dong Y, Zhang T, Yang Q, Gu H, Huang J, Li Y. Integrated Transcriptomic and Metabolomic Analyses Reveal the Mechanisms Underlying Anthocyanin Coloration and Aroma Formation in Purple Fennel. Front Nutr 2022; 9:875360. [PMID: 35571884 PMCID: PMC9093692 DOI: 10.3389/fnut.2022.875360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
The color and aroma are the significant traits of vegetables and fruits, but the metabolic and molecular mechanisms underlying anthocyanin accumulation and aroma formation remain almost unknown in fennel (Anethum foeniculum L.), which is a crucial vegetable crop and grown widely for aromatic leaves and bulbs. Here, ten major anthocyanins identified and quantified by ultra-high performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) were mainly responsible for the coloration of purple fennel leaf. With the application of GC-MS, it was found that the reduced volatile phenylpropanoids including isoeugenol, trans-isoeugenol, and apiol chiefly account for the characteristic aroma changes of the purple fennel. Moreover, the characteristic anthocyanin coloration and aroma formation in purple fennel were systematically studied with the integrated transcriptomics and metabolomics. The critical genes associated with the biosynthesis and regulation of anthocyanins and volatile phenylpropanoids were isolated and studied carefully in transiently transfected tobacco cells and transgenic tomato plants. Together with the results of UHPLC-Q-Orbitrap HRMS, RT-qPCR, and yeast two hybrid (Y2H), it is proved that the metabolic flux redirection of phenylpropanoid pathway primarily regulated by a functional MYB-bHLH-WD40 complex consisting of AfTT8, AfMYB7, and AfTTG1 accounts for the characteristic anthocyanin coloration and aroma formation in purple fennel leaf. The systematic understanding of the anthocyanin accumulation and aroma formation will assist in the improvement of fennel resource utilization and breeding.
Collapse
Affiliation(s)
- Yanjie Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Youwei Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanhang Dong
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianjiao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiu Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huihui Gu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,The Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Characteristics of effervescent tablets of Aronia melanocarpa: response surface design and antioxidant activity evaluation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Perez MB, Da Peña Hamparsomian MJ, Gonzalez RE, Denoya GI, Dominguez DLE, Barboza K, Iorizzo M, Simon PW, Vaudagna SR, Cavagnaro PF. Physicochemical properties, degradation kinetics, and antioxidant capacity of aqueous anthocyanin-based extracts from purple carrots compared to synthetic and natural food colorants. Food Chem 2022; 387:132893. [PMID: 35397275 DOI: 10.1016/j.foodchem.2022.132893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/19/2022] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
As a means to evaluate the potential of carrot anthocyanins as food colorants and nutraceutical agents, we investigated the physicochemical stability and antioxidant capacity of purple carrot extracts under different pH (2.5-7.0) and temperature (4-40 °C) conditions, in comparison to a commercial synthetic (E131) and a natural grape-based (GRP) colorant. During incubation, the colorants were weekly-monitored for various color parameters, concentration of anthocyanins and phenolics, and antioxidant capacity. Carrot colorants were more stable than GRP; and their thermal stability was equal (at 4 °C) or higher than that of E131 (at 25-40 °C). Carrot anthocyanins had lower degradation rate at low pH and temperature, with acylated anthocyanins (AA) being significantly more stable than non-acylated anthocyanins (NAA). Anthocyanins acylated with feruloyl and coumaroyl glycosides were the most stable carrot pigments. The higher stability of carrot colorants is likely due to their richness in AA and -to a lesser extent- copigmentation with other phenolics.
Collapse
Affiliation(s)
- María B Perez
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina
| | - María J Da Peña Hamparsomian
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina
| | - Roxana E Gonzalez
- National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina
| | - Gabriela I Denoya
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Institute of Food Technology, Agroindustrial Research Center, National Institute of Agricultural Technology (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina
| | - Deolindo L E Dominguez
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina
| | - Karina Barboza
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, Raleigh and Plants for Human Health Institute, North Carolina State University, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Philipp W Simon
- Department of Horticulture, University of Wisconsin-Madison and USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706-1514, USA
| | - Sergio R Vaudagna
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Institute of Food Technology, Agroindustrial Research Center, National Institute of Agricultural Technology (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina
| | - Pablo F Cavagnaro
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina; Faculty of Agricultural Sciences, National University of Cuyo, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina.
| |
Collapse
|
28
|
Alarcón S, Tereucán G, Cornejo P, Contreras B, Ruiz A. Metabolic and antioxidant effects of inoculation with arbuscular mycorrhizal fungi in crops of flesh-coloured Solanum tuberosum treated with fungicides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2270-2280. [PMID: 34625964 DOI: 10.1002/jsfa.11565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Solanum tuberosum tubers have higher content of phenolic compounds such as hydroxycinnamic acid derivatives (HCAD) and anthocyanins in coloured genotypes. The use of fungicides for crops is common, but there are few studies regarding the interaction of fungicides and arbuscular mycorrhizal fungi (AMF). Here, the AMF-plant interactions and the metabolic responses of three potato genotypes with different tuber colorations (VR808, CB2011-509 and CB2011-104) inoculated with Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26) or Funneliformis mosseae (HMC7) were studied together with the use of the fungicides MONCUT (M) and ReflectXtra (R). Mycorrhizal traits, phenolic compound profiles and antioxidant activity (AA) were evaluated. RESULTS Despite only two HCADs being identified, with 5-caffeolquinic acid the most abundant, four anthocyanins were detected only in purple potato genotypes. The anthocyanin and HCAD profiles, as well as AA, showed that the CB2011-104 genotype had better characteristics than the other genotypes, while VR808 and CB509 showed similar responses. The responses were dependent on the specific combinations of genotype, fungicide and the AMF strain, and generally showed better responses when colonized by AMFs. CONCLUSION The three potato genotypes had differential responses depending on the inoculated AMFs and the fungicide applied before sowing, where the optimal combinations for antioxidant response, mycorrhization degree and performance were HMC26/R for VR808, HMC7/M for CB2011-509 and HMC26/M for CB2011-104. Our results suggest the existence of functional compatibility that can be registered as beneficial effects even at the genotypic level of the host regarding a specific AMF strain. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sebastián Alarcón
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tereucán
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Boris Contreras
- Novaseed Ltda. and Papas Arcoiris Ltda., Puerto Varas, Chile
| | - Antonieta Ruiz
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
29
|
Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic syndrome (MetS) constitutes a group of risk factors that may increase the risk of cancer and other health problems. Nowadays, researchers are focusing on food compounds that could prevent many chronic diseases. Thus, people are shifting from dietary supplements towards healthy nutritional approaches. As a nutritious and natural food source, purple carrot (Daucus carota spp. Sativus var. atrorubens Alef.) roots could have an important role in the prevention of MetS as well as cancer. This review provides deep insight into the role of purple carrot’s main bioactive compounds and their effectiveness against MetS and cancer. Phenolic compounds, such as anthocyanin, present in purple carrot roots may be especially productive in avoiding or delaying the onset of cardiovascular disease (CVDs), obesity, diabetes, and cancer. Anthocyanins and other phenolics are successful in reducing metabolic changes and inflammation by inhibiting inflammatory effects. Many researchers have made efforts to employ this vegetable in the prevention and treatment of MetS and cancer. However, more advanced studies are required for the identification of its detailed role, effectiveness, suitable intake, and the effect of its bioactive compounds against these diseases.
Collapse
|
30
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
31
|
Zaim M, Kara I, Muduroglu A. Black carrot anthocyanins exhibit neuroprotective effects against MPP+ induced cell death and cytotoxicity via inhibition of oxidative stress mediated apoptosis. Cytotechnology 2021; 73:827-840. [PMID: 34776632 DOI: 10.1007/s10616-021-00500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease induced by the death of dopaminergic neurons. Anthocyanins are naturally found antioxidants and well-known for their preventive effects in neurodegenerative disorders. Black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) are a rich source of anthocyanins predominantly including acylated cyanidin-based derivatives making them more stable. However, there have been no reports analysing the neuroprotective role of black carrot anthocyanins (BCA) on PD. In order to investigate the potential neuroprotective effect of BCA, human SH-SY5Y cells were treated with MPP+ (1-methyl-4-phenylpyridinium) to induce PD associated cell death and cytotoxicity. Anthocyanins were extracted from black carrots and the composition was determined by HPLC-DAD. SH-SY5Y cells were co-incubated with BCA (2.5, 5, 10, 25, 50, 100 µg/ml) and 0.5 mM MPP+ to determine the neuroprotective effect of BCA against MPP+ induced cell death and cytotoxicity. Results indicate that BCA concentrations did not have any adverse effect on cell viability. BCA revealed its cytoprotective effect, especially at higher concentrations (50, 100 µg/ml) by increasing metabolic activity and decreasing membrane damage. BCA exhibited antioxidant activity via scavenging MPP+ induced reactive oxygen species (ROS) and protecting dopaminergic neurons from ROS mediated apoptosis. These results suggest a neuroprotective effect of BCA due to its high antioxidant and antiapoptotic activity, along with the absence of cytotoxicity. The elevated stability of BCA together with potential neuroprotective effects may shed light to future studies in order to elucidate the mechanism and further neuro-therapeutic potential of BCA which is promising as a neuroprotective agent. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00500-4.
Collapse
Affiliation(s)
- Merve Zaim
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul Turkey
| | - Ihsan Kara
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul Turkey
| | - Aynur Muduroglu
- Department of Physical Therapy and Rehabilitation, Nisantasi University, Maslak, Istanbul Turkey
| |
Collapse
|
32
|
Shi N, Chen X, Chen T. Anthocyanins in Colorectal Cancer Prevention Review. Antioxidants (Basel) 2021; 10:antiox10101600. [PMID: 34679735 PMCID: PMC8533526 DOI: 10.3390/antiox10101600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is still a big health burden worldwide. Nutrition and dietary factors are known to affect colorectal cancer development and prognosis. The protective roles of diets rich in fruits and vegetables have been previously reported to contain high levels of cancer-fighting phytochemicals. Anthocyanins are the most abundant flavonoid compounds that are responsible for the bright colors of most blue, purple, and red fruits and vegetables, and have been shown to contribute to the protective effects of fruits and vegetables against cancer and other chronic diseases. Berries and grapes are the most common anthocyanin-rich fruits with antitumor effects. The antitumor effects of anthocyanins are determined by their structures and bioavailability as well as how they are metabolized. In this review, we aimed to discuss the preventive as well as therapeutic potentials of anthocyanins in CRC. We summarized the antitumor effects of anthocyanins and the mechanisms of action. We also discussed the potential pharmaceutical application of anthocyanins in practice.
Collapse
Affiliation(s)
- Ni Shi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Cannon Drive, 13th Floor, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA;
| | - Tong Chen
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Cannon Drive, 13th Floor, Columbus, OH 43210, USA;
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-(614)-685-9119
| |
Collapse
|
33
|
Zhang J, Tian J, Gao N, Gong ES, Xin G, Liu C, Si X, Sun X, Li B. Assessment of the phytochemical profile and antioxidant activities of eight kiwi berry ( Actinidia arguta (Siebold & Zuccarini) Miquel) varieties in China. Food Sci Nutr 2021; 9:5616-5625. [PMID: 34646531 PMCID: PMC8497840 DOI: 10.1002/fsn3.2525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 01/09/2023] Open
Abstract
The kiwi berry (Actinidia arguta) is a new product on the market that expanding worldwide acceptance and consumption. This widespread interest has created an increasing demand to identify the nutritional and health benefits of kiwi berry. Many studies are being actively conducted to investigate the composition and health-promoting effects of kiwi berry. In this study, the phytochemical content of free and bound fractions of eight kiwi berry varieties were systematically investigated in order to better understand the potential of this superfood crop. Nine phenolic monomers were identified and quantified by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultrahigh-performance liquid chromatography-PAD. Antioxidant activity was further determined via peroxyl radical scavenging capacity and cellular antioxidant activity assays. The free extracts had higher phytochemical contents and antioxidant activities than the corresponding bound extracts among the eight kiwi berry varieties. Bivariate Pearson's and multivariate correlation analyses showed that antioxidant activities were most related to the total phenolic, flavonoid, vitamin C, and phenolic acids contents. The results provide a theoretical basis for the selection of kiwi berry varieties and the utilization of functional foods.
Collapse
Affiliation(s)
- Jiyue Zhang
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Jinlong Tian
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Ningxuan Gao
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Er Sheng Gong
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Guang Xin
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Changjiang Liu
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Xu Si
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Xiyun Sun
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| | - Bin Li
- College of Food ScienceKey Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning ProvinceNational R&D Professional Center for Berry ProcessingShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
34
|
Comparative Transcriptome Analysis of the Accumulation of Anthocyanins Revealed the Underlying Metabolic and Molecular Mechanisms of Purple Pod Coloration in Okra ( Abelmoschus esculentus L.). Foods 2021; 10:foods10092180. [PMID: 34574288 PMCID: PMC8471371 DOI: 10.3390/foods10092180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Color is an essential agronomic trait and the consumption of high anthocyanin containing vegetables in daily diet does provide benefits to human health, but the mechanisms on anthocyanin accumulation in tender pods of okra (Abelmoschus esculentus L.) were totally unknown. In this study, a wide characterization and quantitation of anthocyanins and flavonols in tender pods of 15 okra varieties were performed by UHPLC-Q-Orbitrap HRMS for the first time. Two major anthocyanins (delphinidin 3-O-sambubioside and cyanidin 3-O-sambubioside) and six kinds of flavonol glycosides (most are quercetin-based) were identified and quantified. The coloration of the purple okra pod mainly arises from the accumulation of both delphinidin 3-O-sambubioside and cyanidin 3-O-sambubioside in most of purple varieties (Hong Yu, Bowling Red and Burgundy), except Jing Orange. The significant differences in the compositions and contents of anthocyanins are responsible for the pod color ranging from brick-red to purplish-red among the various okra cultivars. Furthermore, four representative okra cultivars exhibiting obvious differences in anthocyanin accumulation were further analyzed with transcriptome and more than 4000 conserved differentially expressed genes were identified across the three compared groups (B vs. BR, B vs. HY and B vs. JO). Based on the comprehensive analysis of transcriptomic data, it was indicated that MBW complex consisting of AeMYB114, AeTT8, and AeTTG1 and other transcriptional factors coordinately regulate the accumulation of anthocyanins via the transcriptional regulation of structural genes. Moreover, four independent working models explaining the diversities of anthocyanin pigmentation in okra pods were also proposed. Altogether, these results improved our understanding on anthocyanin accumulation in okra pods, and provided strong supports for the development of okra pod as a functional food in the future.
Collapse
|
35
|
Ferreira-Santos P, Badim H, Salvador ÂC, Silvestre AJD, Santos SAO, Rocha SM, Sousa AM, Pereira MO, Wilson CP, Rocha CMR, Teixeira JA, Botelho CM. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules 2021; 11:biom11081222. [PMID: 34439888 PMCID: PMC8391949 DOI: 10.3390/biom11081222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The main goal of this study was to chemically characterize an aqueous S. nigra flower extract and validate it as a bioactive agent. The elderflower aqueous extraction was performed at different temperatures (50, 70 and 90 °C). The extract obtained at 90 °C exhibited the highest phenolic content and antiradical activity. Therefore, this extract was analyzed by GC-MS and HPLC-MS, which allowed the identification of 46 compounds, being quercetin and chlorogenic acid derivatives representative of 86% of the total of phenolic compounds identified in hydrophilic fraction of the aqueous extract. Naringenin (27.2%) was the major compound present in the lipophilic fraction. The antiproliferative effects of the S. nigra extract were evaluated using the colon cancer cell lines RKO, HCT-116, Caco-2 and the extract’s antigenotoxic potential was evaluated by the Comet assay in RKO cells. The RKO cells were the most susceptible to S. nigra flower extract (IC50 = 1250 µg mL−1). Moreover, the extract showed antimicrobial activity against Gram-positive bacteria, particularly Staphylococcus aureus and S. epidermidis. These results show that S. nigra-based extracts can be an important dietary source of bioactive phenolic compounds that contribute to health-span improving life quality, demonstrating their potential as nutraceutical, functional foods and/or cosmetic components for therapeutic purposes.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| | - Helder Badim
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Ângelo C. Salvador
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana M. Sousa
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Maria Olívia Pereira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cristina Pereira Wilson
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cláudia M. Botelho
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| |
Collapse
|
36
|
Zhang J, Gao N, Shu C, Cheng S, Sun X, Liu C, Xin G, Li B, Tian J. Phenolics Profile and Antioxidant Activity Analysis of Kiwi Berry ( Actinidia arguta) Flesh and Peel Extracts From Four Regions in China. FRONTIERS IN PLANT SCIENCE 2021; 12:689038. [PMID: 34276738 PMCID: PMC8282361 DOI: 10.3389/fpls.2021.689038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The kiwi berry (Actinidia arguta) has been widely studied because of its rich phenolic, flavonoid, and vitamin C contents. Numerous reports have demonstrated that fruit peels contain higher phenolic content and antioxidant activity than that of flesh. In this study, the phytochemical content and antioxidant activities of peel and flesh extracts of six kiwi berries were analyzed from four regions (namely, Dandong, Benxi, Taian, and Tonghua) in China. The antioxidant activity was determined using the peroxyl radical scavenging capacity (PSC) and cellular antioxidant activity (CAA) assays. The phenolic, flavonoid, and vitamin C contents of kiwi berry peel were 10.77, 13.09, and 10.38 times richer than that of kiwi berry flesh, respectively. In addition, the PSC and CAA values of kiwi berry peel were higher than those of kiwi berry flesh. The analysis of the separation and contents of phenolics were performed by the high-performance liquid chromatography (HPLC)-diode-array detectormass spectrometry/mass (DAD-MS/MS) system, and the results illustrated that protocatechuic acid, caffeic acid, chlorogenic acid, and quinic acid were the major phenolic compounds. In conclusion, this study indicated that kiwi berry peel contains a rich source of antioxidants. These data are of great significance for the full development and utilization of kiwi berries in these four regions of China to produce nutraceutical and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Li
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinlong Tian
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
37
|
Effect on Phytochemical Content and Microbial Contamination of Actinidia Fruit after Shock Cooling and Storage. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mini kiwi fruits are tasty and contain valuable nutrients - vitamin, micro end macroelements and polyphenols. The tested cultivars (Sientiabrskaja, Geneva, Issai, Ken’s Red) belong to two species of Actinidia (A. arguta and A. kolomikta), which tolerate well the conditions of a temperate climate with negative temperatures in winter. The effect of postharvest shock cooling on fruit quality was investigated after 6 weeks of storage in CA and then after 5 days of shelf life. Shock cooling of fruit after harvest reduced adverse changes in fruit quality after storage in CA cold storage and shelf life. They were firmer, more puncture resistant, and retained more L-ascorbic acid and polyphenols. After 6 weeks of cold storage in CA, eight types of fungi and molds were found that caused the mycotoxins patulin, deoxynivalenol, and zearalenone were found in the fruit of all cultivars. Fruits of the Ken’s Red cultivar were the most firm and puncture resistant, the darkest, and contained the most anthocyanins and the least L-ascorbic acid. In contrast, fruits of the cultivar Sientaibrskaja were the least suitable for storage and transport.
Collapse
|
38
|
Hossain R, Islam MT, Mubarak MS, Jain D, Khan R, Saikat AS. Natural-Derived Molecules as a Potential Adjuvant in Chemotherapy: Normal Cell Protectors and Cancer Cell Sensitizers. Anticancer Agents Med Chem 2021; 22:836-850. [PMID: 34165416 DOI: 10.2174/1871520621666210623104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a global threat to humans and a leading cause of death worldwide. Cancer treatment includes, among other things, the use of chemotherapeutic agents, compounds that are vital for treating and preventing cancer. However, chemotherapeutic agents produce oxidative stress along with other side effects that would affect the human body. OBJECTIVE To reduce the oxidative stress of chemotherapeutic agents in cancer and normal cells by naturally derived compounds with anti-cancer properties, and protect normal cells from the oxidation process. Therefore, the need to develop more potent chemotherapeutics with fewer side effects has become increasingly important. METHOD Recent literature dealing with the antioxidant and anticancer activities of the naturally naturally-derived compounds: morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin has been surveyed and examined in this review. For this, data were gathered from different search engines, including Google Scholar, ScienceDirect, PubMed, Scopus, Web of Science, Scopus, and Scifinder, among others. Additionally, several patient offices such as WIPO, CIPO, and USPTO were consulted to obtain published articles related to these compounds. RESULT Numerous plants contain flavonoids and polyphenolic compounds such as morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, which exhibit antioxidant, anti-inflammatory, and anti-carcinogenic actions via several mechanisms. These compounds show sensitizers of cancer cells and protectors of healthy cells. Moreover, these compounds can reduce oxidative stress, which is accelerated by chemotherapeutics and exhibit a potent anticancer effect on cancer cells. CONCLUSIONS Based on these findings, more research is recommended to explore and evaluate such flavonoids and polyphenolic compounds.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
| | | | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan-304022, India
| | - Rasel Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna-9280, Bangladesh
| | - Abu Saim Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
39
|
Onali T, Kivimäki A, Mauramo M, Salo T, Korpela R. Anticancer Effects of Lingonberry and Bilberry on Digestive Tract Cancers. Antioxidants (Basel) 2021; 10:antiox10060850. [PMID: 34073356 PMCID: PMC8228488 DOI: 10.3390/antiox10060850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Wild berries are part of traditional Nordic diets and are a rich source of phytochemicals, such as polyphenols. Various berry treatments have shown to interfere with cancer progression in vitro and in vivo. Here, we systematically reviewed the anticancer effects of two Nordic wild berries of the Vaccinium genus, lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), on digestive tract cancers. The review was conducted according to the PRISMA 2020 guidelines. Searches included four databases: PubMed, Scopus, Web of Science, and CAB abstracts. Publications not written in English, case-reports, reviews, and conference abstracts were excluded. Moreover, studies with only indirect markers of cancer risk or studies with single compounds not derived from lingonberry or bilberry were not included. Meta-analysis was not performed. The majority (21/26) of studies investigated bilberry and colorectal cancer. Experimental studies on colorectal cancer indicated that bilberry inhibited intestinal tumor formation and cancer cell growth. One uncontrolled pilot human study supported the inhibitory potential of bilberry on colorectal cancer cell proliferation. Data from all 10 lingonberry studies suggests potent inhibition of cancer cell growth and tumor formation. In conclusion, in vitro and animal models support the antiproliferative and antitumor effects of various bilberry and lingonberry preparations on digestive tract cancers.
Collapse
Affiliation(s)
- Tuulia Onali
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Anne Kivimäki
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Mauramo
- Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland;
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Medical Research Centre, Oulu University Hospital, 90014 Oulu, Finland
| | - Riitta Korpela
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Human Microbiome Research Program, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
40
|
Near-Infrared Hyperspectral Imaging (NIR-HSI) for Nondestructive Prediction of Anthocyanins Content in Black Rice Seeds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anthocyanins are an important micro-component that contributes to the quality factors and health benefits of black rice. Anthocyanins concentration and compositions differ among rice seeds depending on the varieties, growth conditions, and maturity level at harvesting. Chemical composition-based seeds inspection on a real-time, non-destructive, and accurate basis is essential to establish industries to optimize the cost and quality of the product. Therefore, this research aimed to evaluate the feasibility of near-infrared hyperspectral imaging (NIR-HSI) to predict the content of anthocyanins in black rice seeds, which will open up the possibility to develop a sorting machine based on rice micro-components. Images of thirty-two samples of black rice seeds, harvested in 2019 and 2020, were captured using the NIR-HSI system with a wavelength of 895–2504 nm. The spectral data extracted from the image were then synchronized with the rice anthocyanins reference value analyzed using high-performance liquid chromatography (HPLC). For comparison, the seed samples were ground into powder, which was also captured using the same NIR-HSI system to obtain the data and was then analyzed using the same method. The model performance of partial least square regression (PLSR) of the seed sample developed based on harvesting time, and mixed data revealed the model consistency with R2 over 0.85 for calibration datasets. The best prediction models for 2019, 2020, and mixed data were obtained by applying standard normal variate (SNV) pre-processing, indicated by the highest coefficient of determination (R2) of 0.85, 0.95, 0.90, and the lowest standard error of prediction (SEP) of 0.11, 0.17, and 0.16 mg/g, respectively. The obtained R2 and SEP values of the seed model were comparable to the result of powder of 0.92–0.95 and 0.09–0.15 mg/g, respectively. Additionally, the obtained beta coefficients from the developed model were used to generate seed chemical images for predicting anthocyanins in rice seed. The root mean square error (RMSE) value for seed prediction evaluation showed an acceptable result of 0.21 mg/g. This result exhibits the potential of NIR-HSI to be applied in a seed sorting machine based on the anthocyanins content.
Collapse
|
41
|
Chen J, Xu B, Sun J, Jiang X, Bai W. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Crit Rev Food Sci Nutr 2021; 62:7242-7254. [PMID: 33872094 DOI: 10.1080/10408398.2021.1913092] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anthocyanins are natural pigments proven to be beneficial in the vast majority of health problems with no side effects. In this review, the latest progress on the cancer prevention and management of anthocyanins in treating cancers ranked in the top 5 of incidence and mortality was summarized, and the interaction and corresponding mechanisms were established based on a systematic review of electronic libraries. Several studies have revealed that anthocyanins have positive impact on human health with anti-cancer capacity. This review aimed to accumulate the evidence on the anti-cancer effects of anthocyanins, corresponding mechanisms and limitation of anthocyanins on cancer prevention and management. Notably, this review updated the latest studies on cancer prevention and management of anthocyanins and also inputted the future perspectives and the demanding questions for the possible contribution of anthocyanins as anti-cancer adjuvant.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Condurache (Lazăr) NN, Croitoru C, Enachi E, Bahrim GE, Stănciuc N, Râpeanu G. Eggplant Peels as a Valuable Source of Anthocyanins: Extraction, Thermal Stability and Biological Activities. PLANTS 2021; 10:plants10030577. [PMID: 33803722 PMCID: PMC8003047 DOI: 10.3390/plants10030577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to use eggplant peels as a potential source of anthocyanins with biological activities. Two different extraction methods were tested in order to obtain extracts with a high anthocyanin content. The selected methods were the solid-liquid extraction (SLE) and ultrasound-assisted extraction (UAE) methods. For each method, two concentrations of ethanol (EtOH) were used, while varying the extraction time and temperature. Based on the results, the extracts obtained by SLE using EtOH 96% after 30 min of extraction at 50 °C showed the highest anthocyanin concentration. The UAE allowed the best results with EtOH 96% after 30 min at 25 °C. Both selected extracts showed similar chromatographic profiles, with delphinidin 3-O-rutinoside as the major anthocyanin, but in a higher concentration in UAE. The extracts also presented inhibitory activity against lipoxygenase (LOX), lipase, and α-amylase, thus suggesting a possible involvement in reducing the risk of various disorders. The first order kinetic model was used to predict the changes that can occur in the anthocyanin content and antioxidant activity from the eggplant peel extract. The calculated kinetic and thermodynamic parameters confirm the irreversible degradation of phytochemicals.
Collapse
Affiliation(s)
- Nina-Nicoleta Condurache (Lazăr)
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, E Building, 800201 Galati, Romania; (N.-N.C.); (E.E.); (G.-E.B.); (N.S.)
| | - Constantin Croitoru
- Academy of Agricultural and Forestry Sciences, 61 Marasti Blvd, 011464 Bucharest, Romania;
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, E Building, 800201 Galati, Romania; (N.-N.C.); (E.E.); (G.-E.B.); (N.S.)
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, E Building, 800201 Galati, Romania; (N.-N.C.); (E.E.); (G.-E.B.); (N.S.)
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, E Building, 800201 Galati, Romania; (N.-N.C.); (E.E.); (G.-E.B.); (N.S.)
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, E Building, 800201 Galati, Romania; (N.-N.C.); (E.E.); (G.-E.B.); (N.S.)
- Correspondence: ; Tel.: +33-613-0177
| |
Collapse
|
43
|
Niu T, Li C, Yang B, Zhang P, Fan W, Wen P. Characterization, expression and function analysis of anthocyanidin reductase gene from Vitis vinifera L. cv. Cabernet Sauvignon under UV-C irradiation. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1848460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Tiequan Niu
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, Shanxi, PR China
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Changhen Li
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, Shanxi, PR China
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Bo Yang
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, Shanxi, PR China
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Pengfei Zhang
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, Shanxi, PR China
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Weixin Fan
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Pengfei Wen
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Shanxi Agricultural University, Taigu, Shanxi, PR China
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, PR China
| |
Collapse
|
44
|
Eran Nagar E, Berenshtein L, Okun Z, Shpigelman A. The structure-dependent influence of high pressure processing on polyphenol-cell wall material (CWM) interactions and polyphenol-polyphenol association in model systems: Possible implication to accessibility. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Zhang N, Jing P. Anthocyanins in Brassicaceae: composition, stability, bioavailability, and potential health benefits. Crit Rev Food Sci Nutr 2020; 62:2205-2220. [DOI: 10.1080/10408398.2020.1852170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Antimicrobial, Antioxidant, Sensory Properties, and Emotions Induced for the Consumers of Nutraceutical Beverages Developed from Technological Functionalised Food Industry By-Products. Foods 2020; 9:foods9111620. [PMID: 33172204 PMCID: PMC7695030 DOI: 10.3390/foods9111620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
This study aims to develop nutraceutical beverages containing food processing by-products in their formulation, and determine the opinion of consumers. This is done by testing whether they know that the main ingredients of the product are by-products, performing an overall acceptability test of the developed beverages, and evaluating the emotions induced by the newly developed beverages for consumers. The main ingredients used for the preparation of added-value beverages were fermented milk permeate (containing galactooligosaccharides), extruded and fermented wheat bran (WB) (containing ≥6.0 log10 CFU g−1 viable antimicrobial properties showing lactic acid bacteria (LAB) strains), and different fruit/berry by-products (FBB) (as a source of compounds showing antioxidant properties). The definition of the quantities of bioactive ingredients was based on the overall acceptability of the prepared beverages, as well as on emotions induced in consumers by the tested beverages. Functional properties of the developed beverages were proofed by the evaluation of their antimicrobial and antioxidant properties, as well as viable LAB count during storage. Desirable changes in extruded and fermented WB were obtained: Fermentation reduced sugar concentration and pH in samples with predominant lactic acid isomer L(+). In addition, the viable LAB count in the substrate was higher than 6.0 log10 CFU g−1, and no enterobacteria remained. By comparing the overall acceptability of the beverages enriched with WB, the highest overall acceptability was shown for the samples prepared with 10 g of the extruded and fermented WB (7.9 points). FBB showed desirable antimicrobial activity: Shepherd inhibited—2, sea buckthorn—3, blueberries—5, and raspberries—7 pathogens from the 10 tested. Comparing different beverage groups prepared with different types of FBB, in most cases (except sea buckthorn), by increasing FBB content the beverages overall acceptability was increased, and the highest score (on average, 9.5 points) was obtained for the samples prepared with 5.0 and 7.5 g of blueberries FBB. Moreover, a very strong positive correlation (r = 0.8525) was found between overall acceptability and emotion “happy” induced in consumers by the prepared beverages enriched with extruded and fermented WB and FBB. By comparing the samples prepared with the addition of WB with samples prepared with WB and FBB, it was observed that most FBB increased total phenolic compounds (TPC) content (on average, by 9.0%), except in the case of samples prepared with sea buckthorn. A very high positive correlation (r = 0.9919) was established between TPC and antioxidant activity. Finally, it can be stated that the newly developed nutraceutical beverages were acceptable for consumers, induced positive emotions, and possessed desirable antimicrobial and antioxidant properties, while being prepared in a sustainable and environmentally friendly manner.
Collapse
|
47
|
TMT-based quantitative proteomic analysis of hepatic tissue reveals the effects of dietary cyanidin-3-diglucoside-5-glucoside-rich extract on alleviating D-galactose-induced aging in mice. J Proteomics 2020; 232:104042. [PMID: 33161165 DOI: 10.1016/j.jprot.2020.104042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Cyanidin-3-diglucoside-5-glucoside (CY3D5G) derivatives as major pigments in red cabbage exhibit in vitro antioxidant effects. This study evaluated the effects of CY3D5G-rich extract on oxidative stress in D-galactose-induced accelerated aging. Thirty male C57BL/6 J mice were divided into three groups: a normal control group and two D-galactose-injected groups orally administered with or without CY3D5G-rich extract (700 μmol/kg body weight). Dietary supplementation of CY3D5G-rich extract for 6 weeks increased superoxide dismutase activity, glutathione peroxidase activity, and total antioxidant capacity while suppressed malondialdehyde content in serum (p < 0.05) and tissues. Hepatic proteome analysis revealed that 243 proteins were significantly modulated by experimental treatment (p < 0.05). CY3D5G-rich extract treatment suppressed proteins involved in electron transport chain and up-regulated proteins that play important roles in glycolysis, tricarboxylic acid cycle, and actin cytoskeleton. These changes in above metabolic pathways may contribute to reducing the production and release of ROS and attenuating oxidative damage in aged mice. SIGNIFICANCE: Anthocyanins are the most abundant dietary flavonoids with potential health benefits. The proteomic analysis of mice liver in this study revealed the effect of cyanidin-3-diglucoside-5-glucoside (CY3D5G) consumption in D-galactose-induced accelerated aging. In total, 2054 protein groups were quantified in all samples without any missing value, and 243 protein groups were identified with statistical significance (p < 0.05). Bioinformatics analysis suggested that electron transport chain, glycolysis, tricarboxylic acid cycle, and actin cytoskeleton were closely correlated with CY3D5G treatment. These findings provide useful information to understand the anti-aging effect of anthocyanin, and the results of which could promote the use of anthocyanins in food and pharmaceutical industries.
Collapse
|
48
|
Dharmawansa KS, Hoskin DW, Rupasinghe HPV. Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives. Int J Mol Sci 2020; 21:ijms21186555. [PMID: 32911639 PMCID: PMC7554903 DOI: 10.3390/ijms21186555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Anthocyanins are a group of dietary polyphenols, abundant mainly in fruits and their products. Dietary interventions of anthocyanins are being studied extensively related to the prevention of gastrointestinal (GI) cancer, among many other chronic disorders. This review summarizes the hereditary and non-hereditary characteristics of GI cancers, chemistry, and bioavailability of anthocyanins, and the most recent findings of anthocyanin in GI cancer prevention through modulating cellular signaling pathways. GI cancer-preventive attributes of anthocyanins are primarily due to their antioxidative, anti-inflammatory, and anti-proliferative properties, and their ability to regulate gene expression and metabolic pathways, as well as induce the apoptosis of cancer cells.
Collapse
Affiliation(s)
- K.V. Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, and Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
49
|
Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars ( Rubus glaucus Benth) from Ecuador. PLANTS 2020; 9:plants9081027. [PMID: 32823664 PMCID: PMC7464621 DOI: 10.3390/plants9081027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Andean blackberries (Rubus glaucus Benth) are fruits rich in phytocomponents with high antioxidant activity. In this work, the changes in the total polyphenol content (TPC), the total flavonoid content (TFC), and the total anthocyanin content (TAC) of four blackberry varieties at three maturity stages (E1-25%, E2-50%, and E3-100%) were measured. The antioxidant activity (AA) was evaluated using the 2,2’azinobis-(3-ethylbenzthiazolin 6-sulphonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods. TPC and TFC content decreased with the increase in the maturity stage. The blackberry Brazos cultivar presented TPC values of 51.26, 38.16, and 31.59 mg of gallic acid equivalents (GAE)/g dry weight (DW) at E1, E2, and E3, respectively. The TAC and soluble solids increased with the increase in the maturity stage of the fruits. The Andimora variety at E3 presented a high TPC content, and the Colombiana variety presented a high TFC content. The blackberry Colombiana cultivar presented TAC values of 1.40, 2.95, and 12.26 mg cy-3-glu/100g DW at E1, E2, and E3, respectively. The blackberry Colombiana cultivar presented a high AA value at 1278.63 µmol TE/g DW according to the ABTS method and 1284.55 µmol TE/g DW according to the FRAP method. The TPC and TFC showed a high correlation with the AA according to the ABTS and the FRAP methods. The Pearson correlation between the TFC and AA/ABTS has a value of r = 0.92. The TFC and AA/FRAP present a value of r = 0.94.
Collapse
|
50
|
Khalifa I, Nawaz A, Sobhy R, Althwab SA, Barakat H. Polyacylated anthocyanins constructively network with catalytic dyad residues of 3CL pro of 2019-nCoV than monomeric anthocyanins: A structural-relationship activity study with 10 anthocyanins using in-silico approaches. J Mol Graph Model 2020; 100:107690. [PMID: 32745925 PMCID: PMC7380243 DOI: 10.1016/j.jmgm.2020.107690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
Coronavirus epidemic 2019 (COVID-19), caused by novel coronavirus (2019-nCoV), is newly increasing worldwide and elevating global health concerns. Similar to SARS-CoV and MERS-CoV, the viral key 3-chymotrypsin-like cysteine protease enzyme (3CLPro), which controls 2019-nCoV duplications and manages its life cycle, could be pointed as a drug discovery target. Herein, we theoretically studied the binding ability of 10 structurally different anthocyanins with the catalytic dyad residues of 3CLpro of 2019-nCoV using molecular docking modelling. The results revealed that the polyacylated anthocyanins, including phacelianin, gentiodelphin, cyanodelphin, and tecophilin, were found to authentically bind with the receptor binding site and catalytic dyad (Cys145 and His41) of 2019-nCoV-3CLpro. Our analyses revealed that the top four hits might serve as potential anti-2019-nCoV leading molecules for further optimization and drug development process to combat COVID-19. This study unleashed that anthocyanins with specific structure could be used as effective anti-COVID-19 natural components. Ten structurally different anthocyanins were computed against protease enzyme of 2019-nCoV. Phacelianin, gentiodelphin, and cyanodelphin bind with catalytic dyad of 2019-nCoV- protease. Phacelianin-2019-nCoV-protease remain stable with no obvious fluctuations.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, 13736, Moshtohor, Benha University, Egypt.
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, PR China
| | - Remah Sobhy
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Biochemistry, Faculty of Agriculture, 13736, Moshtohor, Benha University, Egypt
| | - Sami A Althwab
- Food Science and Human Nutrition Department, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia.
| | - Hassan Barakat
- Food Technology Department, Faculty of Agriculture, 13736, Moshtohor, Benha University, Egypt; Food Science and Human Nutrition Department, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia.
| |
Collapse
|