1
|
Yan S, Regenstein JM, Qi B, Li Y. Construction of protein-, polysaccharide- and polyphenol-based conjugates as delivery systems. Crit Rev Food Sci Nutr 2023:1-19. [PMID: 38108638 DOI: 10.1080/10408398.2023.2293253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Natural polymers, such as polysaccharides and proteins, have been used to prepare several delivery systems owing to their abundance, bioactivity, and biodegradability. They are usually modified or combined with small molecules to form the delivery systems needed to meet different needs in food systems. This paper reviews the interactions of proteins, polysaccharides, and polyphenols in the bulk phase and discusses the design strategies, coupling techniques, and their applications as conjugates in emulsion delivery systems, including traditional, Pickering, multilayer, and high internal-phase emulsions. Furthermore, it explores the prospects of the application of conjugates in food preservation, food development, and nanocarrier development. Currently, there are seven methods for composite delivery systems including the Maillard reaction, carbodiimide cross-linking, alkali treatment, enzymatic cross-linking, free radical induction, genipin cross-linking, and Schiff base chemical cross-linking to prepare binary and ternary conjugates of proteins, polysaccharides, and polyphenols. To design an effective target complex and its delivery system, it is helpful to understand the physicochemical properties of these biomolecules and their interactions in the bulk phase. This review summarizes the knowledge on the interaction of biological complexes in the bulk phase, preparation methods, and the preparation of stable emulsion delivery system.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, China
| | | | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023:1-37. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Li J, Zhang J, Yu W, Gao H, Szeto IMY, Feng H, Liu X, Wang Y, Sun L. Soluble dietary fibres decrease α-glucosidase inhibition of epigallocatechin gallate through affecting polyphenol-enzyme binding interactions. Food Chem 2023; 409:135327. [PMID: 36586254 DOI: 10.1016/j.foodchem.2022.135327] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The effects of soluble dietary fibres (SDFs) on α-glucosidase inhibition of EGCG were studied. Three arabinoxylans and polygalacturonic acid (PGA) significantly decreased inhibitory activity of EGCG against α-glucosidase, while two β-glucans hardly affected the inhibition. Although arabinoxylans and PGA weakened the competitive inhibition character of EGCG, they maintained the fluorescence quenching effect of EGCG. Then, arabinoxylans and PGA significantly decreased the particle size and turbidity of EGCG-enzyme complex. These results suggest that there formed SDFs-EGCG-enzyme ternary complexes. The stronger decreasing-effects of arabinoxylans and PGA on α-glucosidase inhibition of EGCG than β-glucans resulted from the stronger non-covalent interactions of arabinoxylans and PGA with EGCG. This is considered to arise from the short-branches of arabinoxylans that provided more opportunity for capturing EGCG, and from the strong polarity of PGA carboxyl that promoted hydrogen bondings with EGCG. Conclusively, SDFs should be considered as an impact factor when evaluating α-glucosidase inhibition of dietary polyphenols.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Jifan Zhang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wanyi Yu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Hang Gao
- College of Food Science and Engineering, Northwest A & F University, China
| | | | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
4
|
Liu F, McClements DJ, Ma C, Liu X. Novel Colloidal Food Ingredients: Protein Complexes and Conjugates. Annu Rev Food Sci Technol 2023; 14:35-61. [PMID: 36972160 DOI: 10.1146/annurev-food-060721-023522] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food proteins, polysaccharides, and polyphenols are natural ingredients with different functional attributes. For instance, many proteins are good emulsifiers and gelling agents, many polysaccharides are good thickening and stabilizing agents, and many polyphenols are good antioxidants and antimicrobials. These three kinds of ingredients can be combined into protein, polysaccharide, and/or polyphenol conjugates or complexes using covalent or noncovalent interactions to create novel multifunctional colloidal ingredients with new or improved properties. In this review, the formation, functionality, and potential applications of protein conjugates and complexes are discussed. In particular, the utilization of these colloidal ingredients to stabilize emulsions, control lipid digestion, encapsulate bioactive ingredients, modify textures, and form films is highlighted. Finally, future research needs in this area are briefly proposed. The rational design of protein complexes and conjugates may lead to the development of new functional ingredients that can be used to create more nutritious, sustainable, and healthy foods.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| |
Collapse
|
5
|
Wang S, Ma Z, Zhao P, Du G, Sun X, Wang X. The role of Arabic gum on astringency by modulating the polyphenol fraction-protein reaction in model wine. Food Chem 2023; 417:135927. [PMID: 36933429 DOI: 10.1016/j.foodchem.2023.135927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
The potential contribution of Arabic gum to wine astringency was discussed in this study. Two universally used Arabic gum (concentration of 0.2-1.2 g/L) were investigated in model wine based on the polyphenol fractions (phenolic acids, monomeric/oligomeric, and polymeric procyanidin) and protein interaction system. Both physicochemical analyses and sensory evaluation revealed that the modulation of Arabic gum on astringency was affected by the structural properties and concentration of Arabic gum and polyphenolic fractions. Arabic gum at 0.2 g/L appeared as the optimal dose to reduce astringency compared to 0.6 and 1.2 g/L. It inhibited astringency induced by polymeric procyanidin more than that of oligomeric procyanidins and phenolic acids mainly by forming soluble ternary complexes with polyphenols and proteins, and preferentially binding proteins/polyphenols to decrease polyphenol-protein reactions. Arabic gum also inhibited the self-aggregation of polyphenols, exhibiting more binding sites when its higher molecular weight and more/longer branches, leading to competition with polyphenols for bind proteins.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China; College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Zeqiang Ma
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Shaanxi 710119, China
| | - Guorong Du
- School of Biological and Environmental Engineering, Xi'an University, Shaanxi 710065, China
| | - Xiangyu Sun
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling 712100, China.
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Shaanxi 710119, China.
| |
Collapse
|
6
|
Wang S, Olarte Mantilla SM, Smith PA, Stokes JR, Smyth HE. Relationship between salivary lubrication and temporal sensory profiles of wine mouthfeel and astringency sub-qualities. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Monteil J, Hadj-Sassi A, Dargelos É, Guzman-Barrera N, Poque E, Leal-Calderon F. Method to prepare aqueous propolis dispersions based on phase separation. Food Chem 2022; 389:133072. [PMID: 35490523 DOI: 10.1016/j.foodchem.2022.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
Propolis has many benefits for human health. To facilitate its oral consumption, we designed propolis-in-water dispersions to be used as nutraceuticals. Propolis was first dissolved either in ethanol or in a hydroalcoholic solution. Water being a non-solvent for propolis, its addition produced propolis precipitation. We explored the ternary phase diagram of water, propolis and ethanol to identify the line separating the one phase region where propolis is fully dissolved, and the two-phase region where a concentrated propolis solution coexists with a dilute one. Droplets rich in propolis were produced during the phase separation process under mechanical stirring induced by a rotor-stator device or a microfluidizer, and they were stabilized using gum Arabic as an emulsifier. Ethanol was finally removed by distillation under reduced pressure. Propolis dispersions in the micron and submicron size range could be obtained. They contained between 1.75 and 10.5 wt% polyphenols relative to the total mass.
Collapse
Affiliation(s)
- Julien Monteil
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, 33600 Pessac, France
| | | | - Élise Dargelos
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, 33600 Pessac, France
| | | | - Emmanuelle Poque
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, 33600 Pessac, France
| | | |
Collapse
|
8
|
Chen R, Dai X, Dong B. Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering: Mechanistic of tannic acid aided. WATER RESEARCH 2022; 217:118450. [PMID: 35452974 DOI: 10.1016/j.watres.2022.118450] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The formation of refractory compounds and high nitrogen concentrations in filtrates is the bottleneck of hydrothermal treatment (HT) for sludge deep dewatering. To simultaneously solve these two problems, tannic acid (TA)-aided HT was firstly developed in this study. TA addition improved dewaterability under all investigated HT temperatures by improving the sludge relative hydrophobicity. Moreover, the effective HT temperature was reduced from 180 to 160 ℃. The soluble extracellular polymeric substances (S-EPSs) of the sludge hydrothermally treated at 160 ℃ under the optimal TA dose (0.15 mmol/g total solids) contained 47.27% less total organic nitrogen than the S-EPSs of the raw sludge. This result means that the corresponding filtrate contained lower concentrations of refractory compounds and nitrogen than those under the conventional HT conditions and thus could be more easily treated. Furthermore, the changes in the protein secondary structure and the interaction of TA with high-molecular-weight (HMW) proteins in S-EPSs were found to be highly relevant (p < 0.05) to the improvement of sludge dewaterability. With increasing HT temperature (120-180 ℃), the S-EPS HMW proteins with numerous hydrophilic functional groups (hydroxyl and carboxyl) were hydrolyzed, and their secondary structures unfolded; consequently, more sites were exposed for hydrophobic binding with TA, and the TA-protein interaction was more stable and spontaneous. The precipitation of protein with TA also increased with the HT temperature. Thus, TA-aided HT improves protein precipitation and sludge dewaterability through protein structure destruction and the production of more hydrophobic binding sites for TA. The identification of the influencing mechanisms on SS EPS-TA interaction mode and binding capacity are conducive to the further upgrading of TA-aided HT for engineering applications.
Collapse
Affiliation(s)
- Renjie Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
9
|
Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
CHEN S, WU L, LI Y, DENG W. Interaction of plum (prunus salicina lindl. cv. furong) anthocyanins with Tremella polysaccharides and characteristics of their complexes. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.37322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | - Li WU
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Wei DENG
- Fujian Academy of Agricultural Sciences, China; Fujian Agriculture and Forestry University, China
| |
Collapse
|
11
|
Shen Y, Zhang N, Tian J, Xin G, Liu L, Sun X, Li B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J Control Release 2021; 341:285-299. [PMID: 34822910 DOI: 10.1016/j.jconrel.2021.11.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are a group of phytochemicals responsible for the purple or red color of plants. Additionally, they are recognized to have health promoting functions including anti-cardiovascular, anti-thrombotic, anti-diabetic, antimicrobial, neuroprotective, and visual protective effect as well as anti-cancer activities. Thus, consumption of anthocyanin supplement or anthocyanin-rich foods has been recommended to prevent the risk of development of chronic diseases. However, the low stability and bioavailability of anthocyanins limit the efficacy and distribution of anthocyanins in human body. Thus, strategies to achieve target site-local delivery with good bioavailability and controlled release rate are necessary. This review introduced and discussed the latest advanced techniques of designing lipid-based, polysaccharide-based and protein-based complexes, nano-encapsulation and exosome to overcome the limitation of anthocyanins. The improved bioavailability and controlled release of anthocyanins have great significance for gastrointestinal tract absorption, transepithelial transportation and cellular uptake. The techniques of applying different biocompatible materials and modifying the solubility of anthocyanins complex could achieve target site-local delivery with negligible degradation and good bioavailability in human body.
Collapse
Affiliation(s)
- Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ning Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Horticulture Germplasm Excavation and Innovative Utilization Qinhuangdao, Hebei, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China.
| |
Collapse
|
12
|
Sylla N, Bouyahya A, Taha D, Dakka N, Elhajji H. Study of the antioxidant and antidiabetic activity in vitro of free and encapsulated phenolic compounds of olive pomace. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Li SY, Duan CQ, Han ZH. Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking. Crit Rev Food Sci Nutr 2021; 63:1119-1142. [PMID: 34342521 DOI: 10.1080/10408398.2021.1960476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polysaccharides present in grapes interact with wine sensory-active compounds (polyphenols and volatile compounds) via different mechanisms and can affect wine organoleptic qualities such as astringency, color and aroma. Studies on the role that grape polysaccharides play in wines are reviewed in this paper. First, the composition of grape polysaccharides and their changes during grape ripening, winemaking and aging are introduced. Second, different interaction mechanisms of grape polysaccharides and wine sensory-active compounds (flavanols, anthocyanins and volatiles) are introduced, and the possible effects on wine astringency, color and aroma caused by these interactions are illustrated. Finally, the control of the grape polysaccharide content in practice is discussed, including classical winemaking methods (applying different maceration enzymes, temperature control, co-fermentation, blending), modern vinification technologies (pulsed electric field, ultrasound treatment), and the development of new grape polysaccharide products.
Collapse
Affiliation(s)
- Si-Yu Li
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China.,Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Zhen-Hai Han
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
15
|
Inhibitory effects of chondroitin sulfate on alpha-amylase activity: A potential hypoglycemic agent. Int J Biol Macromol 2021; 184:289-296. [PMID: 34119546 DOI: 10.1016/j.ijbiomac.2021.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
Inhibiting the activity of the intestinal enzyme α-amylase that catalyzes the degradation of starch into glucose can control blood glucose and provide an essential way for the treatment of Type-II diabetes mellitus (T2DM). Here, we compared the structural information of chondroitin sulfate (CS) from different origins and the effects on activity of α-amylase and blood glucose have been investigated. The inhibitory effects of shark and porcine CSs against α-amylase activity is obvious with IC50 values of 11.97 and 14.42 mg/ml, respectively, but the bovine CS almost no effect. From the data of fluorescence spectroscopic analyses, CSs from shark and pig quench Try fluorescence intensity of the enzyme, whereas bovine CS induces an increase. In vivo, oral administration of shark and porcine CSs efficiently suppresses postprandial blood glucose levels in normal and diabetic mice. Our study found that CSs from different sources showed different biological functions even if both molecular weight and disaccharide subunit composition are almost the same, and demonstrated that the CSs from shark and pig as α-amylase inhibitors could be regarded as a novel functional food ingredient in T2DM management.
Collapse
|
16
|
Wang Y, Li S, Bai F, Cao J, Sun L. The Physical Adsorption of Gelatinized Starch with Tannic Acid Decreases the Inhibitory Activity of the Polyphenol against α-Amylase. Foods 2021; 10:foods10061233. [PMID: 34071531 PMCID: PMC8226663 DOI: 10.3390/foods10061233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
The effects of mixing orders of tannic acid (TA), starch, and α-amylase on the enzyme inhibition of TA were studied, including mixing TA with α-amylase before starch addition (order 1), mixing TA with pre-gelatinized starch before α-amylase addition (order 2) and co-gelatinizing TA with starch before α-amylase addition (order 3). It was found that the enzyme inhibition was always highest for order 1 because TA could bind with the enzyme active site thoroughly before digestion occurred. Both order 2 and 3 reduced α-amylase inhibition through decreasing binding of TA with the enzyme, which resulted from the non-covalent physical adsorption of TA with gelatinized starch. Interestingly, at low TA concentration, α-amylase inhibition for order 2 was higher than order 3, while at high TA concentration, the inhibition was shown with the opposite trend, which arose from the difference in the adsorption property between the pre-gelatinized and co-gelatinized starch at the corresponding TA concentrations. Moreover, both the crystalline structures and apparent morphology of starch were not significantly altered by TA addition for order 2 and 3. Conclusively, although a polyphenol has an acceptable inhibitory activity in vitro, the actual effect may not reach the expected one when taking processing procedures into account.
Collapse
Affiliation(s)
| | | | | | | | - Lijun Sun
- Correspondence: ; Tel.: +86-136-0929-2796
| |
Collapse
|
17
|
A predictive model for astringency based on in vitro interactions between salivary proteins and (-)-Epigallocatechin gallate. Food Chem 2020; 340:127845. [PMID: 32889218 DOI: 10.1016/j.foodchem.2020.127845] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Astringency is an important quality attribute of green tea infusion, and (-)-Epigallocatechin gallate (EGCG) is the main contributor to astringency. Turbidity was used to predict the intensity of astringency for EGCG. The interactions between the selected proteins and EGCG, and the impacts of temperature, pH, protein structure, and EGCG concentration were studied. Mucin was selected as the protein in study for the prediction of EGCG astringency intensity. A predictive model (R2 = 0.994) was developed based on the relationship between the astringency of EGCG and the turbidity of EGCG/mucin mixtures at pH 5.0 and 37 °C. The fluorescence quenching analyses showed the interactions between EGCG and the selected proteins, which induced the reversible protein molecule conformational changes. The interactions were considered as the main reason that causes the astringency of tea infusions. The results provided a biochemical approach to explore the sensory qualities of green tea.
Collapse
|
18
|
Soares S, Brandão E, Guerreiro C, Soares S, Mateus N, de Freitas V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020; 25:E2590. [PMID: 32498458 PMCID: PMC7321337 DOI: 10.3390/molecules25112590] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Astringency and bitterness are organoleptic properties widely linked to tannin compounds. Due to their significance to food chemistry, the food industry, and to human nutrition and health, these tannins' taste properties have been a line of worldwide research. In recent years, significant advances have been made in understanding the molecular perception of astringency pointing to the contribution of different oral key players. Regarding bitterness, several polyphenols have been identified has new agonists of these receptors. This review summarizes the last data about the knowledge of these taste properties perceived by tannins. Ultimately, tannins' astringency and bitterness are hand-in-hand taste properties, and future studies should be adapted to understand how the proper perception of one taste could affect the perception of the other one.
Collapse
Affiliation(s)
- Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| | | | | | | | | | - Victor de Freitas
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| |
Collapse
|
19
|
Cao J, Zhang Y, Han L, Zhang S, Duan X, Sun L, Wang M. Number of galloyl moieties and molecular flexibility are both important in alpha-amylase inhibition by galloyl-based polyphenols. Food Funct 2020; 11:3838-3850. [DOI: 10.1039/c9fo02735a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The inhibition of porcine pancreatic α-amylase (PPA) by 9 galloyl-based polyphenols was evaluatedviainitial digestion velocity, IC50, inhibition kinetics, fluorescence quenching and molecular docking studies.
Collapse
Affiliation(s)
- Junwei Cao
- College of Food Science and Engineering
- Northwest A & F University
- China
| | - Yao Zhang
- College of Food Science and Engineering
- Northwest A & F University
- China
| | - Lin Han
- College of Food Science and Engineering
- Northwest A & F University
- China
| | - Shanbo Zhang
- College of Food Science and Engineering
- Northwest A & F University
- China
| | - Xuchang Duan
- College of Food Science and Engineering
- Northwest A & F University
- China
| | - Lijun Sun
- College of Food Science and Engineering
- Northwest A & F University
- China
| | - Min Wang
- College of Food Science and Engineering
- Northwest A & F University
- China
| |
Collapse
|
20
|
Nigen M, Valiente RA, Iturmendi N, Williams P, Doco T, Moine V, Massot A, Jaouen I, Sanchez C. The colloidal stabilization of young red wine by Acacia senegal gum: The involvement of the protein backbone from the protein-rich arabinogalactan-proteins. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Pectolytic enzyme reduces the concentration of colloidal particles in wine due to changes in polysaccharide structure and aggregation properties. Int J Biol Macromol 2019; 140:546-555. [DOI: 10.1016/j.ijbiomac.2019.08.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022]
|
22
|
Lou W, Bezusov A, Li B, Dubova Н. RECENT ADVANCES IN STUDYING TANNIC ACID AND ITS INTERACTION WITH PROTEINS AND POLYSACCHARIDES. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i3.1452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The purpose of this review was to gain a deeper understanding of tannic acid (TA) and its properties, which could be important for improving the technology of gluten-free food. TA is widely used in agriculture, food, medicine, and other fields due to its unique physiological functions (anti-tumor, anti-oxidation, antibacterial, anti-viral, etc.). It can closely interact with proteins and polysaccharides, which can significantly influence the structure, function, and nutritional properties of compounds. In this article, TA is chosen as a polyphenol model, and the structure of tannins and the degree of their extraction have been considered systematically. Prospective application of interaction between TA and common biological macromolecules have been presented. In this review, different classes of tannins are summarized. Advantages and disadvantages of different methods of extracting tannins have also been described. This review provides detailed information about the mechanisms of interaction of TA with biological macromolecules such as proteins and polysaccharides. Maize, buckwheat, rice flour and starch should be introduced as non-traditional raw materials in production of pasta for people ill with coeliac disease. Pasta dough from unconventional raw materials has non-standard rheological characteristics, and it is difficult to impart good plastic properties to it. That is why, studying the properties of tannins is necessary to improve the technology of gluten-free pasta. However, due to the different nature and composition of proteins, gluten-free foods do not have a network structure. So, they can hold neither water nor starch granules, their prepared dough is loose, with low viscosity, and is not easily moulded. That is why, the use of tannin to form a strong structure when developing a gluten-free pasta technology has become the main purpose of the research. Some potential problems of gluten-free dough processing can be solved by using new technical means. In view of this, the authors put forward the idea of using TА to form cross-links and a strong gluten-free dough structure.
Collapse
|
23
|
Zhu Z, Dong X, Yan C, Ai C, Zhou D, Yang J, Zhang H, Liu X, Song S, Xiao H, Zhu B. Structural Features and Digestive Behavior of Fucosylated Chondroitin Sulfate from Sea Cucumbers Stichopus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10534-10542. [PMID: 31464434 DOI: 10.1021/acs.jafc.9b04996] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fucosylated chondroitin sulfate from sea cucumber Stichopus japonicus (FCSSJ) has been demonstrated with various biological activities; however, its precise structure is still controversial, and digestive behavior remains poorly understood. FCSSJ was purified, and its detailed structure was elucidated mainly based on the NMR spectroscopic methods. Its main chain was characterized as →4)-β-d-GlcA-(1 → 3)-β-d-GalNAc-(1→ with GalNAc4S6S:GalNAc4S in a ratio of 1.5:1, and three types of sulfated fucosyl branches attaching C-3 of GlcA, namely, Fucp2S4S, Fucp3S4S, and Fucp4S, were found in a ratio of 2:1.5:1. The digestibility of FCSSJ was investigated in vitro, and the unchanged molecular weight and reducing sugar content indicated that FCSSJ was not broken down under salivary and gastrointestinal digestion. Furthermore, FCSSJ showed a significant inhibitory impact on pancreatic lipase dose-dependently but not on α-amylase, indicating that the inhibition of pancreatic lipase by FCSSJ might be a pathway for its hypolipidemic effect. These findings propose a fucosylated chondroitin sulfate and provide insight into the mechanism of its physiological effects in the digestion system.
Collapse
Affiliation(s)
- Zhenjun Zhu
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application , Dalian 116034 , China
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | | - Chunhong Yan
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application , Dalian 116034 , China
| | - Chunqing Ai
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application , Dalian 116034 , China
| | - Dayong Zhou
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application , Dalian 116034 , China
| | - Jingfeng Yang
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application , Dalian 116034 , China
| | | | - Xiaoling Liu
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
| | - Shuang Song
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application , Dalian 116034 , China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Beiwei Zhu
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application , Dalian 116034 , China
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , China
| |
Collapse
|
24
|
Ge D, Yuan H, Shen Y, Zhang W, Zhu N. Improved sludge dewaterability by tannic acid conditioning: Temperature, thermodynamics and mechanism studies. CHEMOSPHERE 2019; 230:14-23. [PMID: 31102867 DOI: 10.1016/j.chemosphere.2019.05.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Waste activated sludge (WAS), containing biological pathogens, chemical elements and high moisture (>99%), was generated continually from municipal sewage treatment plants. Sludge dewatering could diminish the volume of WAS and control the diffusion of environmental pollution efficiently. In this study, tannic acid (TA), as a plant-derived phenolic compound, was investigated for improving WAS dewaterability at different temperatures. Apparently, the WAS dewaterability was enhanced by TA conditioning in the range of 25-55 °C, but further increase in temperature did not significantly affect the dewatering. With the TA addition of 0.15 mmol/gTS (total solid) at 55 °C, the WAS dewaterability was improved by 84.5% decrease in capillary suction time (CST), 96.5% decrease in specific resistance of filtration (SRF), and 19.9% decrease in water content (Wc) of dewatered sludge cake. TA facilitated removing supernatant viscosity and protein of sludge EPS (extracellular polymeric substances), specifically with 88.9% and 75.0% protein removal of slime EPS (S-EPS) and loosely bound EPS (LB-EPS). Thermodynamics modeling revealed that the improved dewaterability was dominantly attributed to the hydrophobic bonding between TA and EPS proteins, which was strengthened with the increase in temperature. However, when the conditioning temperature exceeded 55 °C, thermal effect took place and accelerated the release of biopolymers into EPS and hence, counteracted the beneficial effect of TA conditioning to further improve WAS dewatering. The results offered not only the dewatering effectiveness and mechanism of TA conditioning, but also a potential approach of applying plant waste to treat WAS for the high dewaterability.
Collapse
Affiliation(s)
- Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanwen Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenrui Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
25
|
Sun L, Warren FJ, Gidley MJ. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Li S, Wilkinson KL, Mierczynska-Vasilev A, Bindon KA. Applying Nanoparticle Tracking Analysis to Characterize the Polydispersity of Aggregates Resulting from Tannin-Polysaccharide Interactions in Wine-Like Media. Molecules 2019; 24:molecules24112100. [PMID: 31163608 PMCID: PMC6600421 DOI: 10.3390/molecules24112100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023] Open
Abstract
Interactions between grape seed tannin and either a mannoprotein or an arabinogalactan in model wine solutions of different ethanol concentrations were characterized with nanoparticle tracking analysis (NTA), UV-visible spectroscopy and dynamic light scattering (DLS). NTA results reflected a shift in particle size distribution due to aggregation. Furthermore, the light scattering intensity of each tracked particle measured by NTA demonstrated the presence of aggregates, even when a shift in particle size was not apparent. Mannoprotein and arabinogalactan behaved differently when combined with seed tannin. Mannoprotein formed large, highly light-scattering aggregates, while arabinogalactan exhibited only weak interactions with seed tannin. A 3% difference in alcohol concentration of the model solution (12 vs. 15% v/v) was sufficient to affect the interactions between mannoprotein and tannin when the tannin concentration was high. In summary, this study showed that NTA is a promising tool for measuring polydisperse samples of grape and wine macromolecules, and their aggregates under wine-like conditions. The implications for wine colloidal properties are discussed based on these results.
Collapse
Affiliation(s)
- Sijing Li
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| | - Kerry L Wilkinson
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.
- The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia.
| | | | - Keren A Bindon
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
27
|
Adrar NS, Madani K, Adrar S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Sun L, Miao M. Dietary polyphenols modulate starch digestion and glycaemic level: a review. Crit Rev Food Sci Nutr 2019; 60:541-555. [PMID: 30799629 DOI: 10.1080/10408398.2018.1544883] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polyphenols, as one group of secondary metabolite, are widely distributed in plants and have been reported to show various bioactivities in recent year. Starch digestion not only is related with food industrial applications such as brewing but also plays an important role in postprandial blood glucose level, and therefore insulin resistance. Many studies have shown that dietary phenolic extracts and pure polyphenols can retard starch digestion in vitro, and the retarding effect depends on the phenolic composition and molecular structure. Besides, dietary polyphenols have also been reported to alleviate elevation of blood glucose level after meal, indicating the inhibition of starch digestion in vivo. This review aims to analyze how dietary polyphenols affect starch digestion both in vitro and in vivo. We can conclude that the retarded starch digestion in vitro by polyphenols results from inhibition of key digestive enzymes, including α-amylase and α-glucosidase, as well as from interactions between polyphenols and starch. The alleviation of postprandial hyperglycemia by polyphenols might be caused by both the inhibited starch digestion in vivo and the influenced glucose transport. Therefore, phenolic extracts or pure polyphenols may be alternatives for preventing and treating type II diabetes disease.
Collapse
Affiliation(s)
- Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
29
|
Deepika MS, Thangam R, Sheena TS, Sasirekha R, Sivasubramanian S, Babu MD, Jeganathan K, Thirumurugan R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed Pharmacother 2018; 109:1181-1195. [PMID: 30551368 DOI: 10.1016/j.biopha.2018.10.178] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies on flavonoids forming complexes with macromolecules attract researchers due to their enhanced bioavailability as well as chemo-preventive efficacy. In this study, a flavonoid rutin (Ru) is non-covalently complexed with fucoidan (Fu) using the functional groups to obtain a therapeutic polymeric complex overcoming the limitations of bioavailability of rutin. The prepared novel rutin-fucoidan (Ru-Fu) complex is characterized for spectroscopic features, particle size and distribution analysis by DLS. It is shown that the complex displayed the nanostructural features that are different from that of the usual rutin-fucoidan mixture. The studies on drug release profiles at different pH (5.5, 6.8 and 7.4) show that the sustained release of compounds from complex occurs preferentially at the desired endosomal pH (5.5). Further, the chemopreventive potential of Ru-Fu complex is investigated against HeLa cells by cellular apoptotic assays and flow cytometric analysis. It showed that the complex is able to disrupt cell cycle regulation and has the ability to induce cellular apoptosis via nuclear fragmentation, ROS generation and mitochondrial potential loss. In vitro cell viability assay with Ru-Fu complex shows that the complex is biocompatible on normal cells. The hemolysis assay also reveals that the complex does not release hemoglobin from human red blood cells (RBCs). Thus, the study is envisaged to open up interests for developing such formulations against cervical cancer and other cancers.
Collapse
Affiliation(s)
- Murugesan Sathiya Deepika
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ramar Thangam
- CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Thankaraj Salammal Sheena
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajendran Sasirekha
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | | | - Manikandan Dinesh Babu
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kulandaivel Jeganathan
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ramasamy Thirumurugan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
30
|
Luganini A, Terlizzi ME, Catucci G, Gilardi G, Maffei ME, Gribaudo G. The Cranberry Extract Oximacro ® Exerts in vitro Virucidal Activity Against Influenza Virus by Interfering With Hemagglutinin. Front Microbiol 2018; 9:1826. [PMID: 30131793 PMCID: PMC6090095 DOI: 10.3389/fmicb.2018.01826] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/13/2023] Open
Abstract
The defense against influenza virus (IV) infections still poses a series of challenges. The current antiviral arsenal against influenza viruses is in fact limited; therefore, the development of new anti-influenza strategies effective against antigenically different viruses is an urgent priority. Bioactive compounds derived from medicinal plants and fruits may provide a natural source of candidates for such broad-spectrum antivirals. In this regard, cranberry (Vaccinium macrocarpon Aiton) extracts on the basis of their recognized anti-adhesive activities against bacteria, may provide potential compounds able to prevent viral attachment to target cells. Nevertheless, only few studies have so far investigated the possible use of cranberry extracts as an antiviral tool. This study focuses on the suitability of a cranberry extract as a direct-acting anti-influenza compound. We show that the novel cranberry extract Oximacro® inhibits influenza A and B viruses (IAV, IBV) replication in vitro because of its high content of A-type proanthocyanidins (PAC-A) dimers and trimers. Mechanistic studies revealed that Oximacro® prevents attachment and entry of IAV and IBV into target cells and exerts a virucidal activity. Oximacro® was observed to interact with the ectodomain of viral hemagglutinin (HA) glycoprotein, thus suggesting the interference with HA functions and a consequent loss of infectivity of IV particles. Fluorescence spectroscopy revealed a reduction in the intrinsic fluorescence of HA protein after incubation with purified dimeric PAC-A (PAC-A2), thus confirming a direct interaction between HA and Oximacro® PAC-A2. In silico docking simulations further supported the in vitro results and indicated that among the different components of the Oximacro® chemical profile, PAC-A2 exhibited the best binding propensity with an affinity below 10 nM. The role of PAC-A2 in the anti-IV activity of Oximacro® was eventually confirmed by the observation that it prevented IAV and IVB replication and caused the loss of infectivity of IV particles, thus indicating PAC-A2 as the major active component of Oximacro®. As a whole, these results suggest Oximacro® as a potential candidate to create novel antiviral agents of natural origin for the prevention of IV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Maria E. Terlizzi
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gianluca Catucci
- Biochemistry Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gianfranco Gilardi
- Biochemistry Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Zhang Y, Chen L, Lv Y, Wang S, Suo Z, Cheng X, Xu X, Zhou G, Li Z, Feng X. Inhibition of interaction between epigallocatechin-3-gallate and myofibrillar protein by cyclodextrin derivatives improves gel quality under oxidative stress. Food Res Int 2018; 108:8-17. [DOI: 10.1016/j.foodres.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/04/2018] [Accepted: 03/04/2018] [Indexed: 12/15/2022]
|
33
|
Jin B, Zhou X, Liu Y, Li X, Mai Y, Liao Y, Liao J. Physicochemical stability and antioxidant activity of soy protein/pectin/tea polyphenol ternary nanoparticles obtained by photocatalysis. Int J Biol Macromol 2018; 116:1-7. [PMID: 29727656 DOI: 10.1016/j.ijbiomac.2018.04.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/13/2018] [Accepted: 04/29/2018] [Indexed: 12/26/2022]
Abstract
The ternary nanoparticles were fabricated by soy protein, pectin and tea polyphenol through photocatalysis. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for ternary nanoparticles formed under different photocatalysis time. Photocatalysis was favorable to form ternary nanoparticles with moderate particle size (310-370 nm), uniform distribution, spherical shape, and improved antioxidant activity. It was found that the fluorescence intensity of soy protein decreased with the increase in photocatalysis time in the ternary nanoparticles. Far-UV circular dichroism results indicated that increasing photocatalysis time could alter the secondary structure of soy protein with an increase in the proportion of β-sheet and β-turn structure at the cost of unordered coil and α-helix structure. According to FT-IR results, photocatalysis time could also modulate the conjugation between pectin and soy protein. In addition, photocatalysis could increase the binding affinities among the components, leading to better environmental stability of the ternary nanoparticles. The ternary nanoparticles in this study could be used as a good alternative to understand and consequently improve the physicochemical stability in food, pharmaceutical, and cosmetic matrices.
Collapse
Affiliation(s)
- Bei Jin
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Xiaowen Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Yinlin Mai
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Yinglin Liao
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Jiaju Liao
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| |
Collapse
|
34
|
García-Estévez I, Ramos-Pineda AM, Escribano-Bailón MT. Interactions between wine phenolic compounds and human saliva in astringency perception. Food Funct 2018; 9:1294-1309. [PMID: 29417111 DOI: 10.1039/c7fo02030a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astringency is a complex perceptual phenomenon involving several sensations that are perceived simultaneously. The mechanism leading to these sensations has been thoroughly and controversially discussed in the literature and it is still not well understood since there are many contributing factors. Although we are still far from elucidating the mechanisms whereby astringency develops, the interaction between phenolic compounds and proteins (from saliva, oral mucosa or cells) seems to be most important. This review summarizes the recent trends in the protein-phenol interaction, focusing on the effect of the structure of the phenolic compound on the interaction with salivary proteins and on methodologies based on these interactions to determine astringency.
Collapse
Affiliation(s)
- Ignacio García-Estévez
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| | - Alba María Ramos-Pineda
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| | - María Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| |
Collapse
|
35
|
Mamet T, Ge ZZ, Zhang Y, Li CM. Interactions between highly galloylated persimmon tannins and pectins. Int J Biol Macromol 2018; 106:410-417. [DOI: 10.1016/j.ijbiomac.2017.08.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 11/27/2022]
|
36
|
The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydr Polym 2017; 177:77-85. [DOI: 10.1016/j.carbpol.2017.08.075] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/20/2023]
|
37
|
Delius J, Frank O, Hofmann T. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency. PLoS One 2017; 12:e0184487. [PMID: 28886151 PMCID: PMC5590944 DOI: 10.1371/journal.pone.0184487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/24/2017] [Indexed: 11/29/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives.
Collapse
Affiliation(s)
- Judith Delius
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising, Germany
- * E-mail:
| |
Collapse
|
38
|
Affiliation(s)
- Richard Gawel
- Australian Wine Research Institute, Paratoo Road, Urrbrae, Australia
| | - Paul A. Smith
- Australian Wine Research Institute, Paratoo Road, Urrbrae, Australia
| | - Sara Cicerale
- Deakin University Faculty of Health, School of Exercise and Nutrition Sciences, Burwood, Australia
| | - Russell Keast
- Deakin University Faculty of Health, School of Exercise and Nutrition Sciences, Burwood, Australia
| |
Collapse
|
39
|
Abstract
In plant-based food systems such as fruits, vegetables, and cereals, cell wall polysaccharides and polyphenols co-exist and commonly interact during processing and digestion. The noncovalent interactions between cell wall polysaccharides and polyphenols may greatly influence the physicochemical and nutritional properties of foods. The affinity of cell wall polysaccharides with polyphenols depends on both endogenous and exogenous factors. The endogenous factors include the structures, compositions, and concentrations of both polysaccharides and polyphenols, and the exogenous factors are the environmental conditions such as pH, temperature, ionic strength, and the presence of other components (e.g., protein). Diverse methods used to directly characterize the interactions include NMR spectroscopy, size-exclusion chromatography, confocal microscopy, isothermal titration calorimetry, molecular dynamics simulation, and so on. The un-bound polyphenols are quantified by liquid chromatography or spectrophotometry after dialysis or centrifugation. The adsorption of polyphenols by polysaccharides is mostly driven by hydrophobic interactions and hydrogen bonding, and can be described by various isothermal models such as Langmuir and Freundlich equations. Quality attributes of various food and beverage products (e.g., wine) can be significantly affected by polysaccharide-polyphenol interactions. Nutritionally, the interactions play an important role in the digestive tract of humans for the metabolism of both polyphenols and polysaccharides.
Collapse
Affiliation(s)
- Fan Zhu
- a School of Chemical Sciences , University of Auckland , Auckland , New Zealand
| |
Collapse
|
40
|
Liu M, Hu B, Zhang H, Zhang Y, Wang L, Qian H, Qi X. Inhibition study of red rice polyphenols on pancreatic α-amylase activity by kinetic analysis and molecular docking. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Soares S, Brandão E, Mateus N, de Freitas V. Sensorial properties of red wine polyphenols: Astringency and bitterness. Crit Rev Food Sci Nutr 2017; 57:937-948. [PMID: 25897713 DOI: 10.1080/10408398.2014.946468] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.
Collapse
Affiliation(s)
- Susana Soares
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| | - Elsa Brandão
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| | - Nuno Mateus
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| | - Victor de Freitas
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| |
Collapse
|
42
|
Spray-Drying of Antioxidant-Rich Blueberry Waste Extracts; Interplay Between Waste Pretreatments and Spray-Drying Process. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1880-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Lavelli V, Sri Harsha PSC, Ferranti P, Scarafoni A, Iametti S. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase--effect of food matrix and processing on efficacy. Food Funct 2016; 7:1655-63. [PMID: 26943361 DOI: 10.1039/c6fo00073h] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Type-2 diabetes is continuously increasing worldwide. Hence, there is a need to develop functional foods that efficiently alleviate damage due to hyperglycaemia complications while meeting the criteria for a sustainable food processing technology. Inhibition of mammalian α-amylase and α-glucosidase was studied for white grape skin samples recovered from wineries and found to be higher than that of the drug acarbose. In white grape skins, quercetin and kaempferol derivatives, analysed by UPLC-DAD-MS, and the oligomeric series of catechin/epicatechin units and their gallic acid ester derivatives up to nonamers, analysed by MALDI-TOF-MS were identified. White grape skin was then used for enrichment of a tomato puree (3%) and a flat bread (10%). White grape skin phenolics were found in the extract obtained from the enriched foods, except for the higher mass proanthocyanidin oligomers, mainly due to their binding to the matrix and to a lesser extent to heat degradation. Proanthocyanidin solubility was lower in bread, most probably due to formation of binary proanthocyanin/protein complexes, than in tomato puree where possible formation of ternary proanthocyanidin/protein/pectin complexes can enhance solubility. Enzyme inhibition by the enriched foods was significantly higher than for unfortified foods. Hence, this in vitro approach provided a platform to study potential dietary agents to alleviate hyperglycaemia damage and suggested that grape skin phenolics could be effective even if the higher mass proanthocyanidins are bound to the food matrix.
Collapse
Affiliation(s)
- V Lavelli
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - P S C Sri Harsha
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - P Ferranti
- Department of Agriculture University of Naples Federico II, 80055 Portici, Italy
| | - A Scarafoni
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - S Iametti
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
44
|
Lu Q, Chen C, Zhao S, Ge F, Liu D. Investigation of the Interaction Between Gallic Acid and α-Amylase by Spectroscopy. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1059345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Qiu Lu
- Faculty of Life Science, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chaoyin Chen
- Faculty of Life Science, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shenglan Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Feng Ge
- Faculty of Life Science, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Diqiu Liu
- Faculty of Life Science, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
45
|
Oliveira A, Ruiz-Henestrosa VMP, von Staszewski M, Pilosof AM, Pintado M. Behaviour of cyanidin-3-glucoside, β-lactoglobulin and polysaccharides nanoparticles in bulk and oil-in-water interfaces. Carbohydr Polym 2015; 132:460-71. [DOI: 10.1016/j.carbpol.2015.05.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
|
46
|
Carbonaro M, Maselli P, Nucara A. Structural aspects of legume proteins and nutraceutical properties. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Belščak-Cvitanović A, Lević S, Kalušević A, Špoljarić I, Đorđević V, Komes D, Mršić G, Nedović V. Efficiency Assessment of Natural Biopolymers as Encapsulants of Green Tea (Camellia sinensis L.) Bioactive Compounds by Spray Drying. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1592-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Oliveira A, Pintado M. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility. Food Funct 2015; 6:3444-53. [PMID: 26289110 DOI: 10.1039/c5fo00799b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bioaccessibility of cyanidin-3-glucoside and (+)-catechin in model solutions when β-lactoglobulin (β-LG) and pectin/chitosan are present was investigated using an in vitro model simulating gastrointestinal conditions. In the mouth, the free cyanidin content increased (+) 90 and 14% while the (+)-catechin content decreased (-) 23 and 13%, respectively for mixtures with -pectin and -β-LG-pectin. Under gastric conditions, the cyanidin content decreased 85 and 28% for mixtures with -pectin and -β-LG-pectin. On the contrary, after gastric digestion, (+)-catechin bioaccessibility increased and exhibited values similar to the original samples for all the systems tested. The transition to the intestinal environment induced a significant alteration on both polyphenols and this effect was more marked for cyanidin. Systems with pectin allowed obtaining a higher content of bioaccessible cyanidin. The gastric conditions promoted an increase in the antioxidant capacity, followed by a decrease of it in the intestine. The free (+)-catechin and cyanidin-3-glucoside contents decreased when exposed to the gastrointestinal tract conditions. However, when incorporated in food matrix components, the gastrointestinal tract may act positively on the extraction of polyphenols, since they are progressively released from protein and polysaccharide bonds, being available for the absorption and to exert their biological effects.
Collapse
Affiliation(s)
- Ana Oliveira
- Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 4202-401 Porto, Portugal.
| | | |
Collapse
|
49
|
Yang W, Xu C, Liu F, Sun C, Yuan F, Gao Y. Fabrication mechanism and structural characteristics of the ternary aggregates by lactoferrin, pectin, and (-)-epigallocatechin gallate using multispectroscopic methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5046-5054. [PMID: 25955032 DOI: 10.1021/acs.jafc.5b01592] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ternary aggregates were fabricated by lactoferrin (LF), pectin (high methylated pectin (HMP)/low methylated pectin (LMP)), and (-)-epigallocatechin gallate (EGCG) through three different fabrication methods at pH 5.0. The turbidity, particle size, and ζ-potential of ternary aggregates were influenced by the types of pectin, the concentration of EGCG, and fabrication methods. The fluorescence intensity of LF decreased with an increase in EGCG concentration for all ternary aggregates. Far-UV circular dichroism results indicated that EGCG could alter the secondary structure of LF with an increase in the proportion of β-sheet structure at the cost of unordered coil structure. According to near-UV circular dichroism results, EGCG could also modulate the tertiary structure of LF at the presence of pectin. In addition, EGCG could increase the viscoelasticity of the ternary aggregates with HMP, leading to better stability of the ternary aggregates. An opposite result was observed for the ternary aggregates with LMP. These findings should provide an insight into the fabrication mechanism and applications of ternary aggregates formed by protein, polysaccharide, and polyphenol in the food, pharmaceutical, and cosmetic industries.
Collapse
|
50
|
Yang W, Liu F, Xu C, Sun C, Yuan F, Gao Y. Inhibition of the aggregation of lactoferrin and (-)-epigallocatechin gallate in the presence of polyphenols, oligosaccharides, and collagen peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5035-5045. [PMID: 25938680 DOI: 10.1021/acs.jafc.5b01881] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aggregation of lactoferrin and (-)-epigallocatechin gallate (EGCG) was inhibited by polyphenols, oligosaccharides, and collagen peptide in this study. Polyphenols, oligosaccharides, or collagen peptide can effectively prevent the formation of lactoferrin-EGCG aggregates, respectively. The addition sequence of lactoferrin, polyphenols (oligosaccharides or collagen peptide) and EGCG can affect the turbidity and particle size of the ternary complexes in the buffer solution; however, it hardly affected the ζ-potential and fluorescence characteristics. With either positive or negative charge, polyphenols and collagen peptide disrupted the formation of lactoferrin-EGCG aggregate mainly through the mechanism of its competition with EGCG molecules which surrounded the lactoferrin molecule surface with weaker binding affinities, forming polyphenols or a collagen peptide-lactoferrin-EGCG ternary complex; for neutral oligosaccharides, the ternary complex was generated mainly through steric effects, accompanied by a change in the lactoferrin secondary structure induced by gallic acid, chlorogenic acid, and xylo-oligosaccharide. Polyphenols, oligosaccharides, or collagen peptide restraining the formation of lactoferrin-EGCG aggregate could be applied in the design of clear products in the food, pharmaceutical, and cosmetic industries.
Collapse
|