1
|
Li Y, Han X, Zhang Y, Wang Y, Wang J, Teng W, Wang W, Cao J. Thawed drip and its membrane-separated components: Role in retarding myofibrillar protein gel deterioration during freezing-thawing cycles. Food Res Int 2024; 188:114461. [PMID: 38823861 DOI: 10.1016/j.foodres.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Xiaoyu Han
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
2
|
Soutelino MEM, Rocha RDS, de Oliveira BCR, Mársico ET, Silva ACDO. Technological aspects and health effects of hydrolyzed collagen and application in dairy products. Crit Rev Food Sci Nutr 2024; 64:6120-6128. [PMID: 36625363 DOI: 10.1080/10408398.2022.2163974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the rise of a consumer market increasingly concerned with food and healthy lifestyle habits, the search for functional products has increased in the last years. In this context, dairy products are relevant since they are already included in the consumer's diet. Furthermore, hydrolyzed collagen stands out among products with bioactive action, as it promotes the reduction of the incidence of arthritis, osteoporosis, hypertension, obesity, and premature aging and contains healing, antioxidant and antimicrobial properties. In addition to health benefits, the addition of these ingredients to dairy products can influence physical, chemical, rheological, microbiological, and sensory characteristics, such as: decreased syneresis and improved texture of fermented milks; viscosity increase in dairy beverage; increased proteolytic activity in cheeses; and increasing the viability of probiotics, without significantly altering the quality standards of the legislation. Despite the benefits described, more studies are needed to evaluate these effects in different dairy products.
Collapse
Affiliation(s)
| | - Ramon da Silva Rocha
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University (UFF), Niterói, RJ, Brazil
- Food Department, Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | | | - Eliane Teixeira Mársico
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University (UFF), Niterói, RJ, Brazil
| | | |
Collapse
|
3
|
Fomich M, Día VP, Premadasa UI, Doughty B, Krishnan HB, Wang T. Ice Recrystallization Inhibition Activity of Soy Protein Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466256 DOI: 10.1021/acs.jafc.2c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Identifying and developing ice recrystallization inhibitors from sustainable food proteins such as soy protein isolate (SPI) can lead to practical applications in both pharmaceutical and food industries. The objective of this study was to investigate the ice recrystallization inhibition (IRI) activity of SPI hydrolysates, and this was achieved by using an IRI activity-guided fractionation approach and relating IRI activity to interfacial molecular activity measured by vibrational sum frequency generation (VSFG). In addition, the impact of molecular weight (MW) and enzyme specificity was analyzed using three different proteases (Alcalase, trypsin, and pancreatin) and varying hydrolysis times. Using preparative chromatography, hydrolysates from each enzyme treatment were fractionated into five different MW fractions (F1-F5), which were then characterized by high-performance liquid chromatography (HPLC). All SPI hydrolysates had IRI activity, resulting in a 57-29% ice crystal diameter reduction when compared to native SPI. The F1 fraction (of 4-14 kDa) was most effective among all tested hydrolysates, while the lower MW peptide fractions lacked activity. One sample (SPI-ALC 20-F1) had a 52% reduction of ice crystal size at a lower concentration of 2% compared to the typical 4% used. SFG showed a difference in H-bonding and hydrophobic interactions of the molecules on the water/air interface, which may be linked to IRI activity. This study demonstrates for the first time the ability of SPI hydrolysates to inhibit ice crystal growth and the potential application of SFG to study molecular interaction at the interface that may help illustrate the mechanism of action.
Collapse
Affiliation(s)
- Madison Fomich
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee 37994, United States
| | - Vermont P Día
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee 37994, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, USDA, Columbia, Missouri 65211, United States
| | - Tong Wang
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee 37994, United States
| |
Collapse
|
4
|
Chen X, Wu J, Yang F, Zhou M, Wang R, Huang J, Rong Y, Liu J, Wang S. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress. J Adv Res 2023; 45:127-140. [PMID: 35599106 PMCID: PMC10006524 DOI: 10.1016/j.jare.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/14/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Antifreeze peptides regulate the physiological functions of frozen cells and even their apoptosis; however, the mechanisms by which antifreeze peptides regulate these processes remain unclear, although the interactions between cell membranes and ice are well known to be important in this process. OBJECTIVES Our study aims to investigate how antifreeze peptides regulate cell physiological functions during the freezing process. METHODS We investigated the cryoprotective effect of rsfAFP on the physiological functions of S. thermophilus under freezing stress by measuring cellular metabolism activity, intracellular enzyme activity, cell membrane characterization, and cell apoptosis. The mechanism by which rsfAFP impacts S. thermophilus physiological functions under freezing stress was investigated using multispectral techniques and cryo-TEM. RESULTS We show that a recombinant antifreeze peptide (rsfAFP) interacts with the extracellular capsular polysaccharides and peptidoglycan of Streptococcus thermophilus and ice to cover the outer layer of the membrane, forming a dense protective layer that regulates the molecular structure of extracellular ice crystals, which results in reduced extracellular membrane damage, depressed apoptosis and increased intracellular metabolic activity. This interaction mechanism was indicated by the fact that S. thermophilus better maintained its permeability barrier, membrane fluidity, membrane structural integrity, and cytoplasmic membrane potential during freezing stress with rsfAFP treatment. CONCLUSION These results provide new insights into the mechanism by which rsfAFP regulates frozen cellphysiological functionsand apoptosis under freezing stress.
Collapse
Affiliation(s)
- Xu Chen
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mi Zhou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
Cao S, Cai J, Wang X, Zhou K, Liu L, He L, Qi X, Yang H. Cryoprotective effect of collagen hydrolysates from squid skin on frozen shrimp and characterizations of its antifreeze peptides. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Liu M, Chen C, Yu J, Zhang H, Liang L, Guo B, Qiu Y, Yao F, Zhang H, Li J. The gelatin-based liquid marbles for cell cryopreservation. Mater Today Bio 2022; 17:100477. [DOI: 10.1016/j.mtbio.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
7
|
Lu J, Wang Y, Chen B, Xie Y, Nie W, Zhou H, Xu B. Effect of pigskin gelatin hydrolysate on the porcine meat quality during freezing. Meat Sci 2022; 192:108907. [PMID: 35901583 DOI: 10.1016/j.meatsci.2022.108907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
This research aimed to investigate the effects of pigskin gelatin hydrolysate (PGH) on the quality changes of longissimus lumborum (LL) muscles during freezing. The samples were firstly assigned into six groups, including control, sucrose and sorbitol group (SUSO) as positive control, 0%, 1%, 2% and 4% PGH group. The thawing loss of frozen meat, microscopic observation of ice crystal formed during freezing, myowater mobility in muscle tissues, and protein structure changes were determined. PGH reduced the thawing loss of frozen meat by 5.32%. Microscopic observation showed that ice crystal area reduced to 15.54% with 4% PGH treatment. The PGH also reduced the loss of immolized water in meat during freezing. The Raman spectra showed that the protein structure remained more intact in the group of 4% PGH. It can be concluded that the addition of PGH effectively diminished the deterioration of muscle qualities, enhanced the cryoprotective of the muscles during freezing, and this enhancement was associated with their increasing amount.
Collapse
Affiliation(s)
- Jing Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bo Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
8
|
Yuan C, Li X, Huang Y, Yang D, Zhang Y, Shi Y, Wu J, Wang S, Zhang L. Cryoprotective effect of low molecular weight collagen peptides on myofibrillar protein stability and gel properties of frozen silver carp surimi. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01362-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
VanWees SR, Rankin SA, Hartel RW. Shrinkage in frozen desserts. Compr Rev Food Sci Food Saf 2021; 21:780-808. [PMID: 34954889 DOI: 10.1111/1541-4337.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Shrinkage is a well-documented defect in frozen desserts, yet the root causes and mechanisms remain unknown. Characterized by the loss of volume during storage, shrinkage arose during the mid-twentieth century as production of frozen desserts grew to accommodate a larger market. Early research found that shrinkage was promoted by high protein, solids, and overrun, as well as postproduction factors such as fluctuations in external temperature and pressure. Rather than approaching shrinkage as a cause-and-effect defect as previous approaches have, we employ a physicochemical approach to characterize and understand shrinkage as collapse of the frozen foam caused by destabilization of the dispersed air phase. The interfacial composition and physical properties, as well as the kinetic stability of air cells within the frozen matrix ultimately affect product susceptibility to shrinkage. The mechanism of shrinkage remains unknown, as frozen desserts are highly complex, but is rooted in the physicochemical properties of the frozen foam. Functional ingredients and processing methods that optimize the formation and stabilization of the frozen foam are essential to preventing shrinkage in frozen desserts.
Collapse
Affiliation(s)
- Samantha R VanWees
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott A Rankin
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard W Hartel
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Nuñez SM, Guzmán F, Valencia P, Almonacid S, Cárdenas C. Collagen as a source of bioactive peptides: A bioinformatics approach. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Chen X, Wu J, Cai X, Wang S. Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Compr Rev Food Sci Food Saf 2020; 20:542-562. [DOI: 10.1111/1541-4337.12655] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
- College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Jinhong Wu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Xixi Cai
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| | - Shaoyun Wang
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| |
Collapse
|
12
|
Chen X, Shi X, Cai X, Yang F, Li L, Wu J, Wang S. Ice-binding proteins: a remarkable ice crystal regulator for frozen foods. Crit Rev Food Sci Nutr 2020; 61:3436-3449. [PMID: 32715743 DOI: 10.1080/10408398.2020.1798354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ice crystal growth during cold storage presents a quality problem in frozen foods. The development of appropriate technical conditions and ingredient formulations is an effective method for frozen food manufacturers to inhibit ice crystals generated during storage and distribution. Ice-binding proteins (IBPs) have great application potential as ice crystal growth inhibitors. The ability of IBPs to retard the growth of ice crystals suggests that IBPs can be used as a natural ice conditioner for a variety of frozen products. In this review, we first discussed the damage caused by ice crystals in frozen foods during freezing and frozen storage. Next, the methods and technologies for production, purification and evaluation of IBPs were summarized. Importantly, the present review focused on the characteristics, structural diversity and mechanisms of IBPs, and the application advances of IBPs in food industry. Finally, the challenges and future perspectives of IBPs are also discussed. This review may provide a better understanding of IBPs and their applications in frozen products, providing some valuable information for further research and application of IBPs.
Collapse
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiaodan Shi
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fujia Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Ling Li
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Primacella M, Wang T, Acevedo NC. Characterization of mayonnaise properties prepared using frozen-thawed egg yolk treated with hydrolyzed egg yolk proteins as anti-gelator. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Cryoprotective effect of antifreeze glycopeptide analogues obtained by nonenzymatic glycation on Streptococcus thermophilus and its possible action mechanism. Food Chem 2019; 288:239-247. [DOI: 10.1016/j.foodchem.2019.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/29/2018] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
|
15
|
Preparation, primary structure and antifreeze activity of antifreeze peptides from Scomberomorus niphonius skin. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Primacella M, Fei T, Acevedo N, Wang T. Effect of food additives on egg yolk gelation induced by freezing. Food Chem 2018; 263:142-150. [DOI: 10.1016/j.foodchem.2018.04.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/24/2018] [Accepted: 04/19/2018] [Indexed: 11/26/2022]
|
17
|
Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chem 2017; 248:346-352. [PMID: 29329864 DOI: 10.1016/j.foodchem.2017.12.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2017] [Accepted: 12/10/2017] [Indexed: 11/21/2022]
Abstract
Extracted salmon skin collagen was hydrolysed with the free or immobilized extracellular protease of Vibrio sp. SQS2-3. The hydrolysate exhibited anti-freezing activity (>3 kDa) and antioxidant activity (<3000 Da) after ultrafiltration. The antioxidant peptide was further purified by size-exclusion chromatography and found to scavenge DPPH (73.29 ± 1.03%), OH (72.73 ± 3.34%,), and intracellular ROS in HUVECs; protect DNA against oxidation-induced damage; and have an ORAC of 2.78 ± 0.28 mmol TE/g. The antioxidant peptide fraction was identified using mass spectrometry, and nineteen salmon collagen-sourced peptides were obtained. Of these, the peptide Pro-Met-Arg-Gly-Gly-Gly-Gly-Tyr-His-Tyr is a novel sequence and was the major component; this peptide was shown to have antioxidant activity via the ORAC assay (2.51 ± 0.14 mmol TE/g). These results suggested that the protease from Vibrio sp. SQS2-3 is suitable for preparation of anti-freezing peptides and antioxidant peptides in a single step and represents a comprehensive use of fish skin collagen.
Collapse
|
18
|
|
19
|
Jin J, Yurkow EJ, Adler D, Lee TC. A Novel Approach To Improve the Efficiency of Block Freeze Concentration Using Ice Nucleation Proteins with Altered Ice Morphology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2373-2382. [PMID: 28241114 DOI: 10.1021/acs.jafc.6b03710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Freeze concentration is a separation process with high success in product quality. The remaining challenge is to achieve high efficiency with low cost. This study aims to evaluate the potential of using ice nucleation proteins (INPs) as an effective method to improve the efficiency of block freeze concentration while also exploring the related mechanism of ice morphology. Our results show that INPs are able to significantly improve the efficiency of block freeze concentration in a desalination model. Using this experimental system, we estimate that approximately 50% of the energy cost can be saved by the inclusion of INPs in desalination cycles while still meeting the EPA standard of drinking water (<500 ppm). Our investigative tools for ice morphology include optical microscopy and X-ray computed tomography imaging analysis. Their use indicates that INPs promote the development of a lamellar structured ice matrix with larger hydraulic diameters, which facilitates brine drainage and contains less brine entrapment as compared to control samples. These results suggest great potential for applying INPs to develop an energy-saving freeze concentration method via the alteration of ice morphology.
Collapse
Affiliation(s)
- Jue Jin
- Department of Food Science, Rutgers, the State University of New Jersey , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Edward J Yurkow
- Molecular Imaging Center, Rutgers Translational Sciences, Rutgers, the State University of New Jersey , 41 Gordon Road, Suite D, Piscataway, New Jersey 08854, United States
| | - Derek Adler
- Molecular Imaging Center, Rutgers Translational Sciences, Rutgers, the State University of New Jersey , 41 Gordon Road, Suite D, Piscataway, New Jersey 08854, United States
| | - Tung-Ching Lee
- Department of Food Science, Rutgers, the State University of New Jersey , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
20
|
|
21
|
Du L, Betti M. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5232-5240. [PMID: 27293017 DOI: 10.1021/acs.jafc.6b01911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of chicken collagen peptides to inhibit the growth of ice crystals was evaluated and compared to that of fish antifreeze proteins (AFPs). This ice inhibition activity was assessed using a polarized microscope by measuring ice crystal dimensions in a sucrose model system with and without collagen peptides after seven thermal cycles. The system was stabilized at -25 °C and cycled between -16 and -12 °C. Five candidate peptides with ice inhibition activity were identified using liquid chromatography and tandem mass spectrometry and were then synthesized. Their ice inhibition capacity was compared to that of type I AFPs in a 23% sucrose model system. Specific collagen peptides with certain amino acid sequences reduced the extent of ice growth by approximately 70% at a relatively low concentration (1 mg/mL). These results suggest that specific collagen peptides may act in a noncolligative manner, inhibiting ice crystal growth like type I AFPs, but less efficiently.
Collapse
Affiliation(s)
- Lihui Du
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta , Edmonton, AB, Canada T6G 2H1
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta , Edmonton, AB, Canada T6G 2H1
| |
Collapse
|
22
|
Cao H, Zhao Y, Zhu YB, Xu F, Yu JS, Yuan M. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin. Food Chem 2016; 194:1245-53. [DOI: 10.1016/j.foodchem.2015.08.102] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 12/01/2022]
|
23
|
Wang W, Chen M, Wu J, Wang S. Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Wu J, Rong Y, Wang Z, Zhou Y, Wang S, Zhao B. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction. Food Chem 2015; 174:621-9. [DOI: 10.1016/j.foodchem.2014.11.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023]
|
25
|
Li L, Kim JH, Jo YJ, Min SG, Chun JY. Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream. Korean J Food Sci Anim Resour 2015; 35:156-63. [PMID: 26761823 PMCID: PMC4682514 DOI: 10.5851/kosfa.2015.35.2.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
The effects of low molecular-weight collagen peptides derived from porcine skin were investigated on the physicochemical and sensorial properties of chocolate ice cream. Collagen peptides less than 1 kDa in weight were obtained by sub-critical water hydrolysis at a temperature of 300℃ and a pressure of 80 bar. Ice cream was then prepared with gelatin powder and porcine skin hydrolysate (PSH) stabilizers mixed at seven different ratios (for a total of 0.5 wt%). There was no significant difference in color between the resulting ice cream mixtures. The increase in apparent viscosity and shear thinning of the ice cream was more moderate with PSH added than with gelatin. Moreover, the samples containing more than 0.2 wt% PSH had enhanced melting resistance, while the mixture with 0.2 wt% PSH had the lowest storage modulus at -20℃ and the second highest loss modulus at 10℃, indicating that this combination of hydrocolloids leads to relatively softer and creamier chocolate ice cream. Among the seven types of ice creams tested, the mixture with 0.2 wt% PSH and 0.3 wt% gelatin had the best physicochemical properties. However, in sensory evaluations, the samples containing PSH had lower chocolate flavor scores and higher off-flavor scores than the sample prepared with just 0.5 wt% gelatin due to the strong off-flavor of PSH.
Collapse
Affiliation(s)
- Liying Li
- Department of Bioindustrial Technologies, Konkuk University, Seoul 143-701, Korea
| | - Jae-Hyeong Kim
- Department of Bioindustrial Technologies, Konkuk University, Seoul 143-701, Korea
| | - Yeon-Ji Jo
- Department of Bioindustrial Technologies, Konkuk University, Seoul 143-701, Korea
| | - Sang-Gi Min
- Department of Bioindustrial Technologies, Konkuk University, Seoul 143-701, Korea
| | - Ji-Yeon Chun
- Department of Bioindustrial Technologies, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
26
|
Mueller JP, Liceaga AM. Characterization and Cryoprotection of Invasive Silver Carp (Hypophthalmicthys molitrix) Protein Hydrolysates. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2014. [DOI: 10.1080/10498850.2013.832452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Soukoulis C, Fisk I. Innovative Ingredients and Emerging Technologies for Controlling Ice Recrystallization, Texture, and Structure Stability in Frozen Dairy Desserts: A Review. Crit Rev Food Sci Nutr 2014; 56:2543-2559. [DOI: 10.1080/10408398.2013.876385] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Wang S, Zhao J, Chen L, Zhou Y, Wu J. Preparation, isolation and hypothermia protection activity of antifreeze peptides from shark skin collagen. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Corcilius L, Santhakumar G, Stone RS, Capicciotti CJ, Joseph S, Matthews JM, Ben RN, Payne RJ. Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules. Bioorg Med Chem 2013; 21:3569-81. [DOI: 10.1016/j.bmc.2013.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/01/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
|
30
|
Carvajal-Rondanelli PA, Marshall SH, Guzman F. Antifreeze glycoprotein agents: structural requirements for activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2507-2510. [PMID: 21725975 DOI: 10.1002/jsfa.4473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 05/31/2023]
Abstract
Antifreeze glycoproteins (AFGPs) are considered to be the most efficient means to reduce ice damage to cell tissues since they are able to inhibit growth and crystallization of ice. The key element of antifreeze proteins is to act in a non-colligative manner which allows them to function at concentrations 300-500 times lowers than other dissolved solutes. During the past decade, AFGPs have demonstrated tremendous potential for many pharmaceutical and food applications. Presently, the only route to obtain AFGPs involves the time consuming and expensive process of isolation and purification from deep-sea polar fishes. Unfortunately, it is not amenable to mass production and commercial applications. The lack of understanding of the mechanism through which the AFGPs inhibit ice growth has also hampered the realization of industrial and biotechnological applications. Here we report the structural motifs that are essential for antifreeze activity of AFGPs, and propose a unified mechanism based on both recent studies of short alanine peptides and structure activity relationship of synthesized AFGPs.
Collapse
|
31
|
Pereira GDG, de Resende JV, de Abreu LR, de Oliveira Giarola TM, Perrone IT. Influence of the partial substitution of skim milk powder for soy extract on ice cream structure and quality. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1483-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Mao X, Liu Z, Ma J, Pang H, Zhang F. Characterization of a novel β-helix antifreeze protein from the desert beetle Anatolica polita. Cryobiology 2011; 62:91-9. [PMID: 21232534 DOI: 10.1016/j.cryobiol.2011.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/09/2010] [Accepted: 01/06/2011] [Indexed: 11/19/2022]
Abstract
Many ectotherms organisms produce antifreeze proteins (AFPs) which inhibit the growth of ice by binding to the surface of ice crystals. In this study, a novel antifreeze protein gene from the desert beetle Anatolica polita (named as Apafp752) was expressed in a high level in Escherichia coli strain BL21 (DE3). An approximately 30kDa fusion protein thioredoxin (Trx)-ApAFP752 was purified through Ni-NTA affinity chromatography and gel filtration chromatography. The activity of the purified fusion protein Trx-ApAFP752 was analyzed by thermal hysteresis activity (THA) and cryoprotection assay. The results suggested that Trx-ApAFP752 conferred freeze resistance on bacterium in a concentration- and time-dependent manner and the cryoprotective effect increased under alkaline conditions. Circular Dichroism (CD) spectrum analysis showed that the recombinant protein of ApAFP752 possessing β-sheet as the main structure was stable under a wide range of pH from 2.0 to 11.0 and thermal stability below 50°C. The predicted 3D structure showed that Trx-ApAFP752 could form a β-helix structure on the antifreeze protein part, which placed most of the Thr in a regular array on one side of the protein to form a putative ice-binding surface.
Collapse
Affiliation(s)
- Xinfang Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
| | | | | | | | | |
Collapse
|