1
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Mierczak K, Garus-Pakowska A. An Overview of Apple Varieties and the Importance of Apple Consumption in the Prevention of Non-Communicable Diseases-A Narrative Review. Nutrients 2024; 16:3307. [PMID: 39408274 PMCID: PMC11478947 DOI: 10.3390/nu16193307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Non-communicable diseases such as cardiovascular diseases, cancers, diabetes, and asthma are increasingly common due to factors like industrialization, urbanization, fast-paced life, stress, sedentary lifestyle, and unbalanced diet in the 21st century. These chronic conditions are a global epidemic, being among the top causes of death worldwide. Preventing these diseases through a nutritious diet is crucial, and scientific studies suggest that appropriate fruit intake, particularly apples, can lower the risk of various health issues. Apples, rich in bioactive compounds, vitamins, minerals, and dietary fiber, offer numerous health benefits. Regular consumption of apples helps reduce the risk of atherosclerosis, coronary artery disease, heart attacks, and diabetes, and also provides anti-asthmatic and anti-allergic effects. Apples aid in detoxification, improve digestion, enhance skin, hair, and nail health, and offer protection against cancers, Alzheimer's, and Parkinson's disease. Apples have been a dietary staple for centuries, consumed in various forms like juices, sauces, and ciders. The reviewed article emphasizes the health benefits of apples, highlighting their role in preventing civilization diseases. It also discusses the characteristics of common apple varieties and the impact of thermal processing on their nutritional content.
Collapse
Affiliation(s)
| | - Anna Garus-Pakowska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| |
Collapse
|
3
|
Corfield R, Allievi MC, Rivero R, López TA, Pérez OE, Salvatori D, Schebor C. An Apple and Acáchul Berry Snack Rich in Bioaccessible Antioxidants and Folic Acid: A Healthy Alternative for Prenatal Diets. Foods 2024; 13:692. [PMID: 38472805 DOI: 10.3390/foods13050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
A fruit leather (apple and acáchul berry) oriented toward women of reproductive age was developed. The snack was supplemented with an ingredient composed of folic acid (FA) and whey proteins (WPI) to ensure the required vitamin intake to prevent fetal neural tube defects. In order to generate a low-calorie snack, alternative sweeteners were used (stevia and maltitol). The fruit leather composition was determined. Also, an in vitro digestion process was carried out to evaluate the bioaccessibility of compounds with antioxidant capacity (AC), total polyphenols (TPCs), total monomeric anthocyanins (ACY), and FA. The quantification of FA was conducted by a microbiological method and by HPLC. The leather contained carbohydrates (70%) and antioxidant compounds, mainly from fruits. Bioaccessibility was high for AC (50%) and TPCs (90%), and low for ACY (17%). Regarding FA, bioaccessibility was higher for WPI-FA (50%) than for FA alone (37%), suggesting that WPI effectively protected the vitamin from processing and digestion. Furthermore, the product was shown to be non-cytotoxic in a Caco-2 cell model. The developed snack is an interesting option due to its low energy intake, no added sugar, and high content of bioactive compounds. Also, the supplementation with WPI-FA improved the conservation and bioaccessibility of FA.
Collapse
Affiliation(s)
- Rocío Corfield
- Instituto de Tecnología de Alimentos y Procesos Químicos (UBA-CONICET), Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Mariana C Allievi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (UBA-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Roy Rivero
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (UNER-CONICET), Facultad de Bromatología, Universidad Nacional de Entre Ríos, J. D. Perón 1154, Gualeguaychú 2820, Argentina
| | - Tamara A López
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (UNER-CONICET), Facultad de Bromatología, Universidad Nacional de Entre Ríos, J. D. Perón 1154, Gualeguaychú 2820, Argentina
| | - Oscar E Pérez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (UBA-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Daniela Salvatori
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología, y Energías Alternativas (UNCO-CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Carolina Schebor
- Instituto de Tecnología de Alimentos y Procesos Químicos (UBA-CONICET), Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires 1428, Argentina
| |
Collapse
|
4
|
Ding Y, Morozova K, Angeli L, Gasparini A, Ferrentino G, Scampicchio M. Effect of extraction treatments on the functional properties of free and bound phenols in apple seeds. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Gumul D, Kruczek M, Ivanišová E, Słupski J, Kowalski S. Apple Pomace as an Ingredient Enriching Wheat Pasta with Health-Promoting Compounds. Foods 2023; 12:foods12040804. [PMID: 36832879 PMCID: PMC9957340 DOI: 10.3390/foods12040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The global overproduction of apples is associated with large amounts of post-production waste, for which new forms of utilization should be sought. Therefore, we aimed to enrich wheat pasta with apple pomace in various percentages (10, 20, 30 and 50%). The content of total polyphenols, individual polyphenols (using UPLC-PDA-MS/MS methods) and dietary fibre, chemical composition and physical properties of the resulting pasta were determined. The addition of apple pomace to pasta resulted in increased levels of pro-health compounds: total polyphenols, phenolic acids, quercetin derivatives, flavon-3-ols and dihydrochalcones as well as dietary fibre. Decreases in hardness and maximum cutting energy were also observed in pasta supplemented with apple pomace compared to control pasta. Water absorption capacity was not influenced by the addition of apple pomace, with the exception of pasta made with 50% apple pomace.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
| | - Marek Kruczek
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
| | - Eva Ivanišová
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jacek Słupski
- Department of Plant Products Technology and Hygiene Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
| | - Stanisław Kowalski
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 31-149 Krakow, Poland
- Correspondence:
| |
Collapse
|
6
|
Zarifi SH, Bagherniya M, Banach M, Johnston TP, Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin Nutr 2022; 41:2843-2857. [PMID: 36403384 DOI: 10.1016/j.clnu.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Cachexia, a multifactorial and often irreversible wasting syndrome, is often associated with the final phase of several chronic disorders. Although cachexia is characterized by skeletal muscle wasting and adipose tissue loss, it is a syndrome affecting different organs, which ultimately results in systemic complications and impaired quality of life. The pathogenesis and underlying molecular mechanisms of cachexia are not fully understood, and currently there are no effective standard treatments or approved drug therapies to completely reverse cachexia. Moreover, adequate nutritional interventions alone cannot significantly improve cachexia. Other approaches to ameliorate cachexia are urgently needed, and thus, the role of medicinal plants has received considerable importance in this respect due to their beneficial health properties. Increasing evidence indicates great potential of medicinal plants and their phytochemicals as an alternative and promising treatment strategy to reduce the symptoms of many diseases including cachexia. This article reviews the current status of cachexia, the molecular mechanisms of primary events driving cachexia, and state-of-the-art knowledge that reports the preventive and therapeutic activities of multiple families of phytochemical compounds and their pharmacological mode of action, which may hold promise as an alternative treatment modality for the management of cachexia. Based on our review of various in vitro and in vivo models of cachexia, we would conclude that phytochemicals may have therapeutic potential to attenuate cachexia, although clinical trials are required to unequivocally confirm this premise.
Collapse
Affiliation(s)
- Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
8
|
Therapeutic and Nutraceutical Effects of Polyphenolics from Natural Sources. Molecules 2022; 27:molecules27196225. [PMID: 36234762 PMCID: PMC9572829 DOI: 10.3390/molecules27196225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of cardiovascular disease, oxidative stress-related complications, and chronic age-related illnesses is gradually increasing worldwide. Several causes include the ineffectiveness of medicinal treatment therapies, their toxicity, their inability to provide radical solutions in some diseases, and the necessity of multiple drug therapy in certain chronic diseases. It is therefore necessary for alternative treatment methods to be sought. In this review, polyphenols were identified and classified according to their chemical structure, and the sources of these polyphenol molecules are indicated. The cardioprotective, ROS scavenging, anti-aging, anticancer properties of polyphenolic compounds have been demonstrated by the results of many studies, and these natural antioxidant molecules are potential alternative therapeutic agents.
Collapse
|
9
|
Cellular Uptake of Epigallocatechin Gallate in Comparison to Its Major Oxidation Products and Their Antioxidant Capacity In Vitro. Antioxidants (Basel) 2022; 11:antiox11091746. [PMID: 36139820 PMCID: PMC9495782 DOI: 10.3390/antiox11091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Depletion of reactive oxygen species and reduction of oxidative stress have been identified as key parameters in the prevention of cellular aging. In previous in vitro studies, the tea catechin epigallocatechin gallate (EGCG) was found to have both pro- and antioxidant properties, disregarding the low stability under cell culture conditions. Besides hydrogen peroxide, theasinensin dimers amongst other oxidation products are formed. Exact quantities, cellular uptake and antioxidant capacities of these dimeric oxidation products remain unknown. Via high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS), formation kinetics and cellular uptake of EGCG and its major oxidation products are quantified. The antioxidant capacity is determined on a cellular level using a modified dichlorofluorescein (DCF) approach. As a first result, oxidation product quantities of up to 21 µM each are measured after incubation of 50 µM EGCG. While EGCG is taken up equimolarly, its major oxidation products are accumulated in hepatocarcinoma HepG2 cells at millimolar concentrations, especially theasinensin A (TSA). Lastly, the oxidation products show higher antioxidant properties than the monomer EGCG. In correlation with cellular uptake, TSA displays the highest capacity of all tested analytes. The findings reveal the strong influence of EGCG oxidation products on its bioactivity in vitro.
Collapse
|
10
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Polysaccharides as Carriers of Polyphenols: Comparison of Freeze-Drying and Spray-Drying as Encapsulation Techniques. Molecules 2022; 27:molecules27165069. [PMID: 36014306 PMCID: PMC9415625 DOI: 10.3390/molecules27165069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols have received great attention as important phytochemicals beneficial for human health. They have a protective effect against cardiovascular disease, obesity, cancer and diabetes. The utilization of polyphenols as natural antioxidants, functional ingredients and supplements is limited due to their low stability caused by environmental and processing conditions, such as heat, light, oxygen, pH, enzymes and so forth. These disadvantages are overcome by the encapsulation of polyphenols by different methods in the presence of polyphenolic carriers. Different encapsulation technologies have been established with the purpose of decreasing polyphenol sensitivity and the creation of more efficient delivery systems. Among them, spray-drying and freeze-drying are the most common methods for polyphenol encapsulation. This review will provide an overview of scientific studies in which polyphenols from different sources were encapsulated using these two drying methods, as well as the impact of different polysaccharides used as carriers for encapsulation.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-3122-4309
| |
Collapse
|
11
|
In vitro Evaluation of Selective Cytotoxic Activity of Chaerophyllum macropodum Boiss. on Cultured Human SH-SY5Y Neuroblastoma Cells. Neurotox Res 2022; 40:1360-1368. [PMID: 35867270 DOI: 10.1007/s12640-022-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Neuroblastoma is the most common solid tumor in children. New treatment approaches are needed because of the harmful side effects and costs of the methods used in the treatment of neuroblastoma. Medicinal and aromatic plants are important for new treatment approaches due to their minimal side effects and economic advantages. Therefore, the present study was carried out to examine the cytotoxic effect of Chaerophyllum macropodum extract on human neuroblastoma (SH-SY5Y) and fibroblast (HDFa) cell lines. 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase release (LDH) assays were used to determine the cytotoxic effect of C. macropodum. The extracts were analyzed for their phenolic content by HPLC-PDA. Major components were determined as 63.600% o-coumaric acid, 15.606% catechine hydrate, 8.713% rosmarinic acid, 4.376% clorogenic acid, and 3.972% salicylic acid. The obtained results from cytotoxicity testing revealed that C. macropodum exerted a significant cytotoxic effect on human neuroblastoma cells at all tested concentrations (p < 0.05). But it did not lead to any cytotoxic potential on human fibroblasts. As a result, the obtained data clearly revealed C. macropodum exerted a selective cytotoxic action on neuroblastoma cells for the first time.
Collapse
|
12
|
Ntuli S, Leuschner M, Bester MJ, Serem JC. Stability, Morphology, and Effects of In Vitro Digestion on the Antioxidant Properties of Polyphenol Inclusion Complexes with β-Cyclodextrin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123808. [PMID: 35744933 PMCID: PMC9228204 DOI: 10.3390/molecules27123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Polyphenols are inversely associated with the incidence of chronic diseases, but therapeutic use is limited by poor stability and bioaccessibility. Encapsulation has been shown to overcome some of these limitations. A selection of polyphenols (catechin, gallic acid, and epigallocatechin gallate) and their combinations were encapsulated in beta-cyclodextrin (βCD). Encapsulation was characterized and the thermal and storage stability was evaluated using the 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The samples were then subjected to in vitro digestion using a simple digestion (SD) model (gastric and duodenal phases) and a more complex digestion (CD) model (oral, gastric, and duodenal phases). Thereafter, the chemical (oxygen radical absorbance capacity assay) and cellular (dichlorofluorescein diacetate assay in Caco-2 cells) antioxidant and antiglycation (advanced glycation end-products assay) activities were determined. Inclusion complexes formed at a 1:1 molar ratio with a high encapsulation yield and efficiency. Encapsulation altered the morphology of the samples, increased the thermal stability of some and the storage stability of all samples. Encapsulation maintained the antioxidant activity of all samples and significantly improved the antiglycation and cellular antioxidant activities of some polyphenols following SD. In conclusion, the formed inclusion complexes of βCD with polyphenols had greater storage stability, without altering the beneficial cellular effects of the polyphenols.
Collapse
Affiliation(s)
- Sunday Ntuli
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
| | - Machel Leuschner
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa;
| | - Megan J. Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
| | - June C. Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
- Correspondence: ; Tel.: +27-12-356-3091
| |
Collapse
|
13
|
Wang Y, Xie Y, Wang A, Wang J, Wu X, Wu Y, Fu Y, Sun H. Insights into interactions between food polyphenols and proteins: an updated overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yang Xie
- Pharmaceutical Engineering Center Chongqing Medical and Pharmaceutical College Chongqing China
| | - Aidong Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Xiaoran Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
14
|
Abdollahi K, Condict L, Hung A, Kasapis S. Binding parameters and molecular dynamics of β-lactoglobulin-vanillic acid complexation as a function of pH - Part A: Acidic pH. Food Chem 2021; 360:130059. [PMID: 34029923 DOI: 10.1016/j.foodchem.2021.130059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Protein-phenolic compound interactions are commonly investigated with inappropriate linear equations for the analysis of binding strength and stoichiometry. This work utilises more appropriate protocols for the investigation of molecular interactions between vanillic acid and β-lactoglobulin at pH 2.4, where the protein predominately exists as a monomer. Non-linear binding and Job plot analysis were conducted on fluorescence data to effectively determine the interaction's dissociation constant (KD, 2.93 × 10-5 M) and stoichiometry (1:1). Furthermore, spectroscopic techniques revealed statistically significant alterations to the conformational characteristics of β-lactoglobulin upon complexation. Molecular dynamics (MD) simulations support a 1:1 interaction stoichiometry and reveal that the stabilisation of vanillic acid was dynamic in nature but mainly supported by four π-alkyl interactions and one hydrogen bond, located within the β-barrel of the monomer. Water molecules, which are generally not accounted for in MD simulation analysis, were shown to be an important factor in the ligand stabilization via bridging interactions.
Collapse
Affiliation(s)
- Kourosh Abdollahi
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Lloyd Condict
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Andrew Hung
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia.
| |
Collapse
|
15
|
Efenberger-Szmechtyk M, Nowak A, Nowak A. Cytotoxic and DNA-Damaging Effects of Aronia melanocarpa, Cornus mas, and Chaenomeles superba Leaf Extracts on the Human Colon Adenocarcinoma Cell Line Caco-2. Antioxidants (Basel) 2020; 9:E1030. [PMID: 33105657 PMCID: PMC7690406 DOI: 10.3390/antiox9111030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Aronia melanocarpa, Cornus mas, and Chaenomeles superba leaf extracts contain large amounts of bioactive compounds-mainly polyphenols, which possess many health benefits including anti-cancer properties. Here, we investigate the biological effects of A. melanocarpa, C. mas, and C. superba leaf extracts on the human colon adenocarcinoma cell line Caco-2. The antiproliferative activity of the extracts was measured using the MTT assay. The most cytotoxic extract was C. mas (IC50 = 0.60%). The extracts caused morphological changes in the Caco-2 cells, including partial detachment of cells, necrotic cells, chromatin condensation, cytoplasmic vacuolization, cell nuclei lysis, and nucleus fragmentation. The DNA damage in the Caco-2 cells after exposure to the leaf extracts was measured using the alkaline comet assay. The extracts increased DNA damage in a concentration dependent manner. However, at lower non-cyto- and non-genotoxic (IC0) concentrations the extracts induced DNA repair in Caco-2 cells after exposure to hydrogen peroxide. In conclusion, the results of these studies suggest that A. melanocarpa, C. mas and C. superba leaf extracts can show anticancer activity. However, further research is required on the mechanisms of anti-cancer activity by these extracts, with the application of more advanced and wide-ranging techniques including in vivo experiments.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland;
| |
Collapse
|
16
|
Zhang Q, Xing B, Sun M, Zhou B, Ren G, Qin P. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Sci Nutr 2020; 8:4232-4241. [PMID: 32884704 PMCID: PMC7455932 DOI: 10.1002/fsn3.1718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to evaluate the bio-accessibility of the phenolics and flavonoid, the polyphenolic profile and the antioxidant activity of sprouts obtained from four different quinoa genotypes and one djulis cultivar during in vitro gastrointestinal digestion. Compared to their content in sprouts, the bioavailable phenolics after the oral phase, the gastric phase, the intestinal phase, and in the dialyzable fraction were in the ranges of 45.7%-63.5%, 87.6%-116.7%, 89.6%-124.5%, and 7.4%-10.9%, respectively. The trend in flavonoid bio-accessibility was similar to the polyphenols. The dialyzable flavonoid recoveries varied between 4.2% and 12.4%. Correspondingly, the free radical scavenging activity of the dialyzable phase decreased significantly from 84.7% to 96.5%. The main phenolic acids were vanillic acid, caffeic acid, and syringic acid during digestion. The results suggest that gastrointestinal digestion greatly affected the absorption of polyphenols and flavonoid of quinoa and djulis sprouts, as well as their antioxidant capacity.
Collapse
Affiliation(s)
- Qinping Zhang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- School of Pharmacy and BioengineeringChengdu UniversityChengduChina
| | - Bao Xing
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Menghan Sun
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- School of Pharmacy and BioengineeringChengdu UniversityChengduChina
| | - Bangwei Zhou
- Key Laboratory of Vegetation EcologyMinistry of EducationInstitute of Grassland SciencesNortheast Normal UniversityJilinChina
| | - Guixing Ren
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- School of Pharmacy and BioengineeringChengdu UniversityChengduChina
| | - Peiyou Qin
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
17
|
Martins RM, Alves GDAD, Martins SDS, de Freitas LAP, Rochette PJ, Moulin VJ, Fonseca MJV. Apple Extract ( Malus sp.) and Rutin as Photochemopreventive Agents: Evaluation of Ultraviolet B-Induced Alterations on Skin Biopsies and Tissue-Engineered Skin. Rejuvenation Res 2020; 23:465-475. [PMID: 32242497 DOI: 10.1089/rej.2019.2219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin is exposed to the solar ultraviolet B (UVB) radiation, which leads to the formation of several types of skin damage responsible for cancer initiation and aging. Malus sp. is a genus of apples, which are a good source of polyphenolic compounds. Malus sp. and more precisely one of its components, rutin, have preventive effects on many diseases caused by reactive oxygen species. In addition, previous studies have suggested the topical usage of the extract as a cosmetic product to prevent skin damage caused by oxidative stress. In this study, we evaluated the efficacy of two topical formulations containing 1.25% of Malus sp. extract and the equivalent amount of rutin (0.75%). The photochemopreventive effect was assessed on two three-dimensional (3D) skin models, that is, ex vivo skin explants and 3D tissue-engineered skin to compare the models. Both formulations protected against the UVB-induced increase in sunburn cell formation, as well as caspase-3 activation and cyclobutane pyrimidine dimer formation in both skin models. Furthermore, the formulations inhibited the lipid peroxidation and the metalloproteinase formation induced by UVB radiation. The tissue-engineered skins and the skin explants provided effective tools to assess the UVB-induced damages. These results support use of the Malus sp. extract and rutin as skin photochemopreventive agents for topical application.
Collapse
Affiliation(s)
- Rodrigo Molina Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Georgia de Assis Dias Alves
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia de Siqueira Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
19
|
Zhang L, McClements DJ, Wei Z, Wang G, Liu X, Liu F. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Crit Rev Food Sci Nutr 2019; 60:2083-2097. [PMID: 31257900 DOI: 10.1080/10408398.2019.1630358] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When consumed at sufficiently high levels, polyphenols may provide health benefits, which is linked to their antidiabetic, antiinflamatory, antimicrobial, antioxidant, antitumor, and hypolipidemic properties. Moreover, certain polyphenol combinations exhibit synergistic effects when delivered together - the combined polyphenols have a higher biological activity than the sum of the individual ones. However, the commercial application of polyphenols as nutraceuticals is currently limited because of their poor solubility characteristics; instability when exposed to light, heat, and alkaline conditions; and, low and inconsistent oral bioavailability. Colloidal delivery systems are being developed to overcome these challenges. In this article, we review the design, fabrication, and utilization of food-grade biopolymer-based delivery systems for the encapsulation of one or more polyphenols. In particular, we focus on the creation of delivery systems constructed from edible proteins and polysaccharides. The optimization of biopolymer-based delivery systems may lead to the development of innovative polyphenol-enriched functional foods that can improve human health and wellbeing.
Collapse
Affiliation(s)
- Lan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Precupas A, Sandu R, Leonties AR, Anghel DF, Popa VT. Complex interaction of caffeic acid with bovine serum albumin: calorimetric, spectroscopic and molecular docking evidence. NEW J CHEM 2017. [DOI: 10.1039/c7nj03410e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Binding of caffeic acid at low concentrations to bovine serum albumin enhances the thermal stability of the protein.
Collapse
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Romica Sandu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Anca Ruxandra Leonties
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Dan-Florin Anghel
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| |
Collapse
|
21
|
Polyphenols and DNA Damage: A Mixed Blessing. Nutrients 2016; 8:nu8120785. [PMID: 27918471 PMCID: PMC5188440 DOI: 10.3390/nu8120785] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022] Open
Abstract
Polyphenols are a very broad group of chemicals, widely distributed in plant foods, and endowed with antioxidant activity by virtue of their numerous phenol groups. They are widely studied as putative cancer-protective agents, potentially contributing to the cancer preventive properties of fruits and vegetables. We review recent publications relating to human trials, animal experiments and cell culture, grouping them according to whether polyphenols are investigated in whole foods and drinks, in plant extracts, or as individual compounds. A variety of assays are in use to study genetic damage endpoints. Human trials, of which there are rather few, tend to show decreases in endogenous DNA damage and protection against DNA damage induced ex vivo in blood cells. Most animal experiments have investigated the effects of polyphenols (often at high doses) in combination with known DNA-damaging agents, and generally they show protection. High concentrations can themselves induce DNA damage, as demonstrated in numerous cell culture experiments; low concentrations, on the other hand, tend to decrease DNA damage.
Collapse
|
22
|
Ramazzina I, Tappi S, Rocculi P, Sacchetti G, Berardinelli A, Marseglia A, Rizzi F. Effect of Cold Plasma Treatment on the Functional Properties of Fresh-Cut Apples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8010-8018. [PMID: 27709918 DOI: 10.1021/acs.jafc.6b02730] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atmospheric double-barrier discharge (DBD) plasma technology is a promising tool in the food industry as an alternative to traditional food preservation methods. However, the effect of the reactive species generated during the treatment on the content of bioactive compounds in food is still little studied, and there are no data concerning potential deleterious effects of DBD-treated foods on human cells. Some functional properties of DBD-treated minimally processed Pink Lady apples were evaluated in comparison with untreated samples through different in vitro and ex vivo tests. Plasma treatment caused only a slight reduction of antioxidant content and antioxidant capacity (up to 10%), mainly limited to the amphiphilic fraction. Noteworthy, treated apple polyphenol extracts did not reduce cell viability and did not suppress the beneficial physiological cell response to oxidative stress in terms of reactive oxygen species production and phase II enzyme activation in human cultured colonocytes.
Collapse
Affiliation(s)
- Ileana Ramazzina
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma , Via A. Gramsci 14, 43126 Parma, PR, Italy
| | - Silvia Tappi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna , P.zza Goidanich 60, Cesena, Forli Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna , P.zza Goidanich 60, Cesena, Forli Cesena, Italy
- Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna , P.zza Goidanich 60, Cesena, Forli Cesena, Italy
| | - Giampiero Sacchetti
- Department of Food Science, University of Teramo , Via C. R. Lerici, 67023 Mosciano Sant'Angelo, Teramo, Italy
| | - Annachiara Berardinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna , P.zza Goidanich 60, Cesena, Forli Cesena, Italy
| | - Angela Marseglia
- Department of Food Science, University of Parma , Parco Area delle Scienze 17/A, 43124 Parma, PR, Italy
| | - Federica Rizzi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma , Via A. Gramsci 14, 43126 Parma, PR, Italy
| |
Collapse
|
23
|
Gan J, Chen H, Liu J, Wang Y, Nirasawa S, Cheng Y. Interactions of β-Conglycinin (7S) with Different Phenolic Acids-Impact on Structural Characteristics and Proteolytic Degradation of Proteins. Int J Mol Sci 2016; 17:E1671. [PMID: 27706090 PMCID: PMC5085704 DOI: 10.3390/ijms17101671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022] Open
Abstract
p-Coumalic acid (PCA), caffeic acid (CA), gallic acid (GA) and chlorogenic acid (CGA) are the major phenolic acids that co-exist with soy protein components in foodstuffs. Surprisingly, there are only a handful of reports that describe their interaction with β-Conglycinin (7S), a major soy protein. In this report, we investigated the interaction between phenolic acids and soy protein 7S and observed an interaction between each of these phenolic acids and soy protein 7S, which was carried out by binding. Further analysis revealed that the binding activity of the phenolic acids was structure dependent. Here, the binding affinity of CA and GA towards 7S was found to be stronger than that of PCA, because CA and GA have one more hydroxyl group. Interestingly, the binding of phenolic acids with soy protein 7S did not affect protein digestion by pepsin and trypsin. These findings aid our understanding of the relationship between different phenolic acids and proteins in complex food systems.
Collapse
Affiliation(s)
- Jing Gan
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hao Chen
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jiyuan Liu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yongquan Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Satoru Nirasawa
- Japan International Research Center for Agricultural Sciences, Enzyme Laboratory, Tsukuba 305-8686, Japan.
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
24
|
Stratakos AC, Delgado-Pando G, Linton M, Patterson MF, Koidis A. Industrial scale microwave processing of tomato juice using a novel continuous microwave system. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Lin JJ, Wu CC, Hsu SC, Weng SW, Ma YS, Huang YP, Lin JG, Chung JG. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro. ENVIRONMENTAL TOXICOLOGY 2015; 30:1322-30. [PMID: 24861204 DOI: 10.1002/tox.22003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 05/24/2023]
Abstract
Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1.
Collapse
Affiliation(s)
- Jen-Jyh Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Cardiology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chih-Chung Wu
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, 711, Taiwan
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Shu-Wen Weng
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Chinese Medicine, Taichung Hospital, Department of Health, Executive Yuan, Taichung, 403, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 84001, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung, 404, Taiwan
| | - Jaung-Geng Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan, R.O.C
| |
Collapse
|
26
|
Ribeiro FAP, Peres RC, Oshima CTF, Spolidorio LC, Maluf LLS, Ribeiro DA. Antioxidant activity of apple extract protects against rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Toxicol Mech Methods 2015; 25:532-7. [DOI: 10.3109/15376516.2015.1053651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem 2015; 183:235-58. [PMID: 25863633 DOI: 10.1016/j.foodchem.2015.03.039] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/17/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion.
Collapse
Affiliation(s)
- Fernanda M F Roleira
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Elisiário J Tavares-da-Silva
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla L Varela
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Saul C Costa
- CEF, Center for Pharmaceutical Studies, Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Jorge Garrido
- CIQUP/Departamento de Engenharia Química, Instituto Superior de Engenharia, IPP, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal.
| |
Collapse
|
28
|
Fractionation of an anthocyanin-rich bilberry extract and in vitro antioxidative activity testing. Food Chem 2015; 167:418-24. [DOI: 10.1016/j.foodchem.2014.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/27/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
|
29
|
Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 2014; 175:556-67. [PMID: 25577120 DOI: 10.1016/j.foodchem.2014.12.013] [Citation(s) in RCA: 712] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/20/2023]
Abstract
Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity.
Collapse
Affiliation(s)
- Lidija Jakobek
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Department of Applied Chemistry and Ecology, Franje Kuhača 20, HR 31000 Osijek, Croatia.
| |
Collapse
|
30
|
Vasantha Rupasinghe H, Nair SV, Robinson RA. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
31
|
Lin KH, Yang YY, Yang CM, Huang MY, Lo HF, Liu KC, Lin HS, Chao PY. Antioxidant activity of herbaceous plant extracts protect against hydrogen peroxide-induced DNA damage in human lymphocytes. BMC Res Notes 2013; 6:490. [PMID: 24279749 PMCID: PMC4222091 DOI: 10.1186/1756-0500-6-490] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/23/2013] [Indexed: 12/14/2022] Open
Abstract
Background Herbaceous plants containing antioxidants can protect against DNA damage. The
purpose of this study was to evaluate the antioxidant substances,
antioxidant activity, and protection of DNA from oxidative damage in human
lymphocytes induced by hydrogen peroxide (H2O2). Our
methods used acidic methanol and water extractions from six herbaceous
plants, including Bidens alba (BA), Lycium chinense (LC),
Mentha arvensis (MA), Plantago asiatica (PA),
Houttuynia cordata (HC), and Centella asiatica
(CA). Methods Antioxidant compounds such as flavonol and polyphenol were analyzed.
Antioxidant activity was determined by the inhibition percentage of
conjugated diene formation in a linoleic acid emulsion system and by
trolox-equivalent antioxidant capacity (TEAC) assay. Their antioxidative
capacities for protecting human lymphocyte DNA from
H2O2-induced strand breaks was evaluated by comet
assay. Results The studied plants were found to be rich in flavonols, especially myricetin
in BA, morin in MA, quercetin in HC, and kaemperol in CA. In addition,
polyphenol abounded in BA and CA. The best conjugated diene formation
inhibition percentage was found in the acidic methanolic extract of PA.
Regarding TEAC, the best antioxidant activity was generated from the acidic
methanolic extract of HC. Water and acidic methanolic extracts of MA and HC
both had better inhibition percentages of tail DNA% and tail moment as
compared to the rest of the tested extracts, and significantly suppressed
oxidative damage to lymphocyte DNA. Conclusion Quercetin and morin are important for preventing peroxidation and oxidative
damage to DNA, and the leaves of MA and HC extracts may have excellent
potential as functional ingredients representing potential sources of
natural antioxidants.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei 11114, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fromm M, Loos HM, Bayha S, Carle R, Kammerer DR. Recovery and characterisation of coloured phenolic preparations from apple seeds. Food Chem 2013. [DOI: 10.1016/j.foodchem.2012.09.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
McCarthy AL, O’Callaghan YC, Connolly A, Piggott CO, FitzGerald RJ, O’Brien NM. Phenolic extracts of brewers’ spent grain (BSG) as functional ingredients – Assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chem 2012; 134:641-6. [DOI: 10.1016/j.foodchem.2012.02.133] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/04/2012] [Accepted: 02/21/2012] [Indexed: 01/30/2023]
|
34
|
Leong SY, Oey I. Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.052] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Lavelli V, Kerr W. Apple pomace is a good matrix for phytochemical retention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5660-5666. [PMID: 22582755 DOI: 10.1021/jf3010993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytochemical content and color changes in dried apple pomace and pulp (mixture of Red Delicious and Golden Delicious varieties) were studied during 9 months storage in the water activity (a(w)) range 0.11-0.75 at 30 °C. Water mobility was measured at various a(w) levels by (1)H NMR. During storage, antioxidant degradation (including flavonols, flavanols, dihydrochalcones, anthocyanins, and hydroxycinnamic acids) followed first-order kinetics, whereas color changes followed zero-order kinetics. These changes were accelerated by increasing a(w). Phytochemical and color were more stable in the pomace than in the pulp over the entire a(w) range, having 2-6 times smaller degradation rates. These results were related to the lower water mobility found in apple pomace as compared to the pulp. The overall results show that apple pomace can be exploited as a food ingredient with good phytochemical retention, and may help in the development of new matrices with maximum phytochemical retention.
Collapse
Affiliation(s)
- Vera Lavelli
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy.
| | | |
Collapse
|
36
|
Zuo LL, Wang ZY, Fan ZL, Tian SQ, Liu JR. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int J Mol Sci 2012; 13:5506-5518. [PMID: 22754311 PMCID: PMC3382775 DOI: 10.3390/ijms13055506] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 12/02/2022] Open
Abstract
The total phenolic content, total flavonoid content, vitamin C content, and antioxidant activities of ethanol extracts from different kiwifruit varieties (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) were determined in this study. Multiple scavenging activity assays including the hydroxyl radical, O(2) (-)·radical, DPPH, and the ABTS(+) radical scavenging activity assays were used to identify the antioxidant activities of Actinidia extracts. The cell viability of HepG2 and HT-29 cells was also examined in this study. The results demonstrated that the Actinidia kolomikta extract had a higher antioxidant activity than the other two Actinidia extracts. There is a positive correlation between antioxidant activity and the polyphenols and vitamin C content in all three extracts (R(2) ≥ 0.712, p < 0.05). The Actinidia arguta extract had the highest inhibitory effect on HepG2 and HT-29 cell growth. These results provide new insight into the health functions of fruit and demonstrate that Actinidia extracts can potentially have health benefits.
Collapse
Affiliation(s)
- Li-Li Zuo
- School of Food Science and Engineering, Harbin Institute of Technology, 73 HuangHe Road, NanGang District, Harbin 150090, China; E-Mails: (L.-L.Z.); (Z.-L.F.); (S.-Q.T.)
| | - Zhen-Yu Wang
- School of Food Science and Engineering, Harbin Institute of Technology, 73 HuangHe Road, NanGang District, Harbin 150090, China; E-Mails: (L.-L.Z.); (Z.-L.F.); (S.-Q.T.)
- School of Forestry, Northeast Forestry University, 26 HeXing Road, DongLi District, Harbin 150040, China
| | - Zi-Luan Fan
- School of Food Science and Engineering, Harbin Institute of Technology, 73 HuangHe Road, NanGang District, Harbin 150090, China; E-Mails: (L.-L.Z.); (Z.-L.F.); (S.-Q.T.)
| | - Shuang-Qi Tian
- School of Food Science and Engineering, Harbin Institute of Technology, 73 HuangHe Road, NanGang District, Harbin 150090, China; E-Mails: (L.-L.Z.); (Z.-L.F.); (S.-Q.T.)
| | - Jia-Ren Liu
- Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA; E-Mail:
| |
Collapse
|
37
|
Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Biosci Biotechnol Biochem 2011; 75:854-8. [PMID: 21597195 DOI: 10.1271/bbb.100774] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The anti-aging effects of phloridzin on the yeast Saccharomyces cerevisiae were investigated by employing a replicative lifespan assay of the K6001 yeast strain. After administrating phloridzin at doses of 3, 10, and 30 µM, the lifespan of the yeast was significantly prolonged in comparison with the untreated group (p<0.01, p<0.001). To determine the mechanism of action, anti-oxidative experiments and ROS assay were performed. Phloridzin improved the viability of the yeast dose-dependently under oxidative stress by 7.5 mM H(2)O(2), and a low dose of phloridzin inhibited ROS of the yeast. Further, SOD1, SOD2, and Sir2 gene expression was examined by reverse transcription-polymerase chain reaction (RT-PCR), and was found to be significantly increased. Finally, superoxide dismutase (SOD) and SIRT1 activity assays showed that phloridzin notably increased the activity of SOD and SIRT1. These results suggest that SOD and Sir2 have important roles in phloridzin-regulated lifespan extension of yeast, and potentially anti-aging effects for mammalian cells via SIRT1.
Collapse
|
38
|
Peng C, Chan HYE, Huang Y, Yu H, Chen ZY. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2097-106. [PMID: 21319854 DOI: 10.1021/jf1046267] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Apple polyphenols (AP) are an excellent source of dietary antioxidants. The present study investigated the effect of AP on the lifespan of fruit flies and their interaction with gene expressions of superoxide dismutase (SOD), catalase (CAT), methuselah (MTH), Rpn11, and cytochrome c oxidase (CcO) subunits III and VIb. Results showed the mean lifespan was significantly extended by 10% in fruit flies fed the AP diet. This was accompanied by up-regulation of genes SOD1, SOD2, and CAT and down-regulation of MTH in the aged fruit flies. Paraquat and H(2)O(2) challenge tests demonstrated that AP prolonged the survival time only for Oregon R wild type flies but not for SOD(n108) or Cat(n1) mutants, in which either SOD or CAT was knocked out. Chronic paraquat exposure could shorten the maximum lifespan from 68 to 31 days and reduce the climbing ability by 60%, whereas AP could partially reverse the paraquat-induced mortality and decline in climbing ability. AP could up-regulate Rpn11 at day 30, whereas it appeared to have no significant effect on gene expression of ubiquitinated protein, CcO subunits III and VIb. These AP-induced changes were unlikely associated with caloric restriction as the gustatory assay found no difference in average body weight and stomach redness index between the control and AP fruit flies. It was therefore concluded that the antiaging activity of AP was, at least in part, mediated by its interaction with genes SOD, CAT, MTH, and Rpn11.
Collapse
Affiliation(s)
- Cheng Peng
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong , Hong Kong, China
| | | | | | | | | |
Collapse
|