1
|
Huh SY, Lee YL, Kim SH, Lee SY. Efficacy of rice bran extract for alleviating depressive symptoms in adults: A randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 2025:S0002-9165(25)00276-X. [PMID: 40409466 DOI: 10.1016/j.ajcnut.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Preclinical research indicates the potential benefit of rice bran extract supplements (RBS) in improving depressive-like behaviors and symptoms. OBJECTIVE We aimed to evaluate the efficacy and safety of an 8-week administration of RBS in alleviating depressive symptoms among adults with mild-to-moderate symptom severity. METHODS This randomized, double-blind, placebo-controlled trial included 100 adults (aged 19-75 years) with scores of 7-24 on the Korean version of the Hamilton Depression Rating Scale (K-HDRS). Participants were randomly assigned to receive 1 g/day of RBS or a placebo for 8 weeks. Evaluations at baseline and after 8 weeks included mood assessments using K-HDRS, the Korean version of the Beck Depression Inventory-II (K-BDI-II), the Patient Health Questionnaire-9 (K-PHQ-9), the Beck Anxiety Inventory (K-BAI), and other psychological scales. Biomarker measurements included serum brain-derived neurotrophic factor, serotonin, dopamine, and salivary cortisol. RESULTS In the RBS and placebo groups, 47 and 50 participants, respectively, completed the intervention. At 8 weeks, the RBS group exhibited greater reductions in K-HDRS scores compared to the placebo group (P<0.001), with adjusted differences of -5.73 (95% confidence interval [CI]: -7.07, -4.39; intention-to treat analysis [ITT]) and -5.95 (95% CI: -7.33, -4.57, per-protocol analysis [PP]), corresponding to percent changes of -45.1% (ITT) and -46.0% (PP), respectively. A trend toward greater reductions in the percent changes of K-BDI-II and K-BAI scores was observed in the RBS group compared to the placebo group (ITT and PP). Notably, K-PHQ-9 scores were lower in the RBS group than in the placebo group (P=0.026, PP) after 8 weeks of treatment. However, no significant intergroup differences were identified in other questionnaire scores or biomarker measurements. No adverse events were reported. CONCLUSION RBS may provide a beneficial effect on depressive symptoms of mild-to-moderate severity in adults. This trial was registered at clinicaltrials.gov as NCT05180136. https://clinicaltrials.gov/study/NCT05180136.
Collapse
Affiliation(s)
- Sung-Young Huh
- Department of Psychiatry, Pusan National University Yangsan Hospital and Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ye Li Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, Republic of Korea
| | - Su Hui Kim
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Yeoup Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, Republic of Korea; Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital and Department of Medical Education, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
2
|
Cabeza de Vaca M, Ramírez R, Rocha-Pimienta J, Tejerina D, Delgado-Adámez J. Effects of Gelatin/Chitosan and Chitosan Active Films with Rice Bran Extract for the Preservation of Fresh Pork Meat. Gels 2025; 11:338. [PMID: 40422358 DOI: 10.3390/gels11050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Films formulated with gelatin and chitosan (GL/CH) or chitosan (CH), without or with 0.3% and 0.5% concentrations of rice bran extract (RBE), have been developed. The migrations of rice bran extract and the antioxidant and antimicrobial properties in vitro have been assessed. The effects of the film formulations in maintaining color stability, oxidative status and microbial loads on fresh pork meat during 9 days of refrigerated storage were studied. For the films, releases of γ-oryzanol only were observed in low polarity simulant. The highest migrations and antioxidant activity were related to gelatine films, enhanced with the addition of rice bran extract. Only chitosan films showed antimicrobial activity in vitro against Escherichia coli and Listeria innocua, reaching decreases of 7.68 and 8.06 Log CFU at 72 h, respectively. Both gelatin/chitosan and chitosan films prevented the color changes in meat during storage, preventing the paleness, and chitosan films also provoked an increment of redness until 2.88 units of CIE b* at day 9. The films did not prevent either lipid or protein oxidation in meat, despite the rice bran extract inclusion, even increasing the lipid oxidations with chitosan films. However, all films helped to control the microbial counts in meat throughout all the storage, with chitosan being the most effective films, especially with the addition of RBE. Overall, gelatin/chitosan and chitosan films offer a sustainable alternative for fresh pork meat packaging.
Collapse
Affiliation(s)
- María Cabeza de Vaca
- Technological Institute of Food and Agriculture (INTAEX), Center for Scientific and Technological Research of Extremadura (CICYTEX), Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Rosario Ramírez
- Technological Institute of Food and Agriculture (INTAEX), Center for Scientific and Technological Research of Extremadura (CICYTEX), Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Javier Rocha-Pimienta
- Technological Institute of Food and Agriculture (INTAEX), Center for Scientific and Technological Research of Extremadura (CICYTEX), Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - David Tejerina
- Technological Institute of Food and Agriculture (INTAEX), Center for Scientific and Technological Research of Extremadura (CICYTEX), Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Jonathan Delgado-Adámez
- Technological Institute of Food and Agriculture (INTAEX), Center for Scientific and Technological Research of Extremadura (CICYTEX), Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|
3
|
Chauhan M, Chandra J, Gupta G, Ramaiah R, Hani U, Kesharwani P. Harnessing phytoconstituents in ethosomes: A new frontier in skin disorder management. Int J Pharm 2025; 671:125273. [PMID: 39870257 DOI: 10.1016/j.ijpharm.2025.125273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The rising incidence of skin disorders has necessitated the exploration of innovative therapeutic modalities that harness the beneficial properties of natural compounds. Phytoconstituents, renowned for their diverse pharmacological attributes, present considerable promise in the management of various dermatological conditions. This review delineates the integration of phytoconstituents into ethosomal formulations, which are advanced lipid-based carriers specifically designed to enhance transdermal delivery. We discuss the advantages conferred by ethosomes, including their capacity to improve the stability and bioavailability of phytochemicals, facilitate deeper skin penetration, and provide controlled release profiles. Recent advancements in the formulation of ethosomes encapsulating a variety of phytoconstituents are highlighted, with a focus on their physicochemical properties, therapeutic efficacy, and safety profiles. Furthermore, the review examines the mechanisms by which ethosomes enhance the delivery of bioactive compounds to targeted skin layers, particularly in the context of treating conditions such as acne, eczema, and psoriasis. Challenges associated with formulation stability and scalability are also addressed, along with potential future research directions in this domain. By synthesizing current knowledge and identifying existing gaps, this article aims to provide a comprehensive overview of phytoconstituent-based ethosomes as a promising strategy for the development of effective and safe topical therapies for skin disorders. Ultimately, this review underscores the potential of these innovative formulations to improve patient outcomes and contribute significantly to the advancement of dermatological treatment options.
Collapse
Affiliation(s)
- Meghna Chauhan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ramasubbamma Ramaiah
- Department of Medical and Surgical Nursing, College of Nursing, Khamish Mushait, Female Wing, Mahala Road, King Khalid University, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy King Khalid University, Abha, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Yapar EA, Ozdemir MN, Durgun ME, Dagıstan OA, Cavalu S, Ozsoy Y, Kartal M. Nanodelivery Approaches of Phytoactives for Skin Cancers: Current and Future Perspectives. Curr Pharm Biotechnol 2025; 26:631-653. [PMID: 38616742 DOI: 10.2174/0113892010300081240329033208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
In recent years, there has been an increase in skin cancers due to external factors, especially environmental factors, and studies on treatment alternatives have gained importance. Nanomaterials are common, from sunscreen formulas to formulations designed to treat skin cancers at various stages. Using bioactives has multiple effects in treating skin cancers, which provides many advantages. In this regard, many phytochemicals gain importance with their antioxidant, anti-proliferative, anti-inflammatory, antiangiogenic, and analgesic effects. Their delivery with nanocarriers is on the agenda for phytochemicals to gain the targeted stability, effectiveness, and toxicity/safety properties. This review presents types of skin cancers, phytochemicals effective in skin cancers, and their nanocarrier-loaded studies from an up-to-date perspective.
Collapse
Affiliation(s)
- Evren Algın Yapar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Merve Nur Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Türkiye
| | - Ozlem Akbal Dagıstan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Bihor, România
| | - Yıldız Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul, Türkiye
- Phytotheraphy Research Center, Bezmialem vakıf University, Istanbul, Türkiye
| |
Collapse
|
5
|
Yamamoto S, Afifi OA, Lam LPY, Takeda-Kimura Y, Osakabe Y, Osakabe K, Bartley LE, Umezawa T, Tobimatsu Y. Disruption of aldehyde dehydrogenase decreases cell wall-bound p-hydroxycinnamates and improves cell wall digestibility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2828-2845. [PMID: 39569987 DOI: 10.1111/tpj.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
In grass cell walls, ferulic acid (FA) serves as an important cross-linker between cell wall polymers, such as arabinoxylan (AX) and lignin, affecting the physicochemical properties of the cell walls as well as the utilization properties of grass lignocellulose for biorefinering. Here, we demonstrate that hydroxycinnamaldehyde dehydrogenase (HCALDH) plays a crucial role in the biosynthesis of the FA used for cell wall feruloylation in rice (Oryza sativa). Bioinformatic and gene expression analyses of aldehyde dehydrogenases (ALDHs) identified two rice ALDH subfamily 2C members, OsHCALDH2 (OsALDH2C2) and OsHCALDH3 (OsALDH2C3), potentially involved in cell wall feruloylation in major vegetative tissues of rice. CRISPR-Cas9 genome editing of OsHCALDH2 and OsHCALDH3 revealed that the contents of AX-bound ferulate were reduced by up to ~45% in the cell walls of the HCALDH-edited mutants, demonstrating their roles in cell wall feruloylation. The abundance of hemicellulosic sugars including arabinosyl units on AX was notably reduced in the cell walls of the HCALDH-edited mutants, whereas cellulose and lignin contents remained unaffected. In addition to reducing cell wall-bound ferulate, the loss of OsHCALDH2 and/or OsHCALDH3 also partially reduced cell wall-bound p-coumarate and sinapate in the vegetative tissues of rice, whereas it did not cause detectable changes in the amount of γ-oryzanol (feruloyl sterols) in rice seeds. Furthermore, the HCALDH-edited mutants exhibited improved cell wall saccharification efficiency, both with and without alkaline pretreatment, plausibly due to the reduction in cell wall cross-linking FA. Overall, HCALDH appears to present a potent bioengineering target for enhancing utilization properties of grass lignocellulose.
Collapse
Affiliation(s)
- Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Osama Ahmed Afifi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lydia Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Yuri Takeda-Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-8555, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, 226-8502, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8503, Japan
| | - Laura E Bartley
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
6
|
Khallouki F, Zennouhi W, Hajji L, Bourhia M, Benbacer L, El Bouhali B, Rezig L, Poirot M, Lizard G. Current advances in phytosterol free forms and esters: Classification, biosynthesis, chemistry, and detection. Steroids 2024; 212:109520. [PMID: 39378976 DOI: 10.1016/j.steroids.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol. These molecules are composed of a sterane ring, also known as perhydrocyclopentanophenanthrene, along with a methyl or ethyl group at C-24 in their side chains, a hydroxyl group at C-3 on ring A, and one or two double bonds in the B ring. Phytosterols display different oxidation degrees at the sterane ring and at the side chain as well as varying numbers of carbons with complex stereochemistries. Fats and water solubilities of phytosterols have been achieved by physical, chemical and enzymatic esterifications to favor their bioavailability and to improve the sensory quality of food, and the efficiency of pharmaceutic and cosmetic products. This review aims to provide comprehensive information starting from the definition and structural classification of phytosterols, and exposes an update of their biogenic relationships. Next, the synthesis of phytosterol esters and their applications as well as their effective roles as hormone precursors are discussed. Finally, a concise exploration of the latest advancements in phytosterol / oxyphytosterols analysis techniques is provided, with a particular focus on modern hyphenated techniques.
Collapse
Affiliation(s)
- Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco.
| | - Wafa Zennouhi
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco
| | - Lhoussain Hajji
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Mohamed Bourhia
- Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000 Laayoune, Morocco
| | - Laila Benbacer
- Unité de Biologie et Recherches Moléculaires Département Sciences du Vivant, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Bachir El Bouhali
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia; High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse III, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
| | - Gérard Lizard
- Laboratoiry Bio-PeroxIL / EA7270, Université de Bourgogne / Inserm, 21000 Dijon, France; PHYNOHA Consulting, 21121 Fontaine-lès-Dijon, France.
| |
Collapse
|
7
|
Han DH, Kim HJ, Kim SH, Kim ID, Adhikari A, Kim JH. Effect of illite pretreatment on germinated Brown rice with Special Reference to amino acids, antioxidants, texture, and mineral elements. Heliyon 2024; 10:e28843. [PMID: 38665585 PMCID: PMC11043867 DOI: 10.1016/j.heliyon.2024.e28843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The pretreatment process of various foods has been reported to improve their nutritional properties. The soaking of brown rice improves the texture and nutrients, which are crucial for cooking and maintaining its high functional value. Illite, a clay mineral, has recently been discovered to improve the nutritional value of seeds. Based on these findings, we soaked brown rice with different concentrations of illite solution for different durations and allowed the germination to perform analyses. Soaking the brown rice for 6 h with a germination period of 48 h was determined to be the optimal condition because of its higher sprout length. In addition, this optimal condition had improved textural characteristics such as reduced hardness, gumminess, chewiness, and cohesiveness, and it also had increased adhesiveness and stabilized resilience and springiness. The treatment solutions were free from heavy metal contaminants, whereas the mineral contents such as K, Ca, Fe, Mg, and Na were significantly increased with the increase in illite concentration. Moreover, our results showed that illite treatment could preserve the color appearance and seed germination. The ratio of essential amino acids to non-essential amino acids and antioxidants (phenolic contentγ-oryzanol, and flavonoid) of germinated brown rice was considerably increased with illite treatment. In germinated brown rice, an increase in DPPH and superoxide dismutase levels, a slight decrease in flavonoids, and no difference in polyphenol content were observed. These findings suggest that pre-soaking brown rice seeds with the appropriate concentration of illite could enhance their nutritional properties, which might attract consumers' interest to include this in their daily diet.
Collapse
Affiliation(s)
- Dong-Heun Han
- Illite Team, Economy Division, Yeongdong-gun Office, South Korea
| | - Hwa-Jin Kim
- Illite Team, Economy Division, Yeongdong-gun Office, South Korea
| | - So-Hyun Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Il-Doo Kim
- International Institute of Research and Development Kyungpook National University, Daegu, South Korea
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jeong-Ho Kim
- Department of Green Technology Convergence, Konkuk University, Chungcheongbuk-do, 27478, South Korea
| |
Collapse
|
8
|
Yao Y, Yuan H, Zheng Y, Wang M, Li C. An Insight into the Thermal Degradation Pathway of γ-Oryzanol and the Effect on the Oxidative Stability of Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5757-5765. [PMID: 38445360 DOI: 10.1021/acs.jafc.3c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thermal stability and antioxidant ability of γ-oryzanol in oil have been widely studied. However, further research is needed to explore its thermal degradation products and degradation pathways. The thermal degradation products of γ-oryzanol in stripped soybean oil were identified and quantified by employing high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) during heating at 180 °C. The results revealed that γ-oryzanol undergoes ester bond cleavage to form trans-ferulic acid and free sterols, and trans-ferulic acid generated intermediate compound 4-vinylguaiacol, which ultimately generated vanillin. Analysis of kinetic and thermodynamic parameters revealed the thermal stability ranking of the four components of γ-oryzanol as follows: CampFA > CAFA > 24MCAFA > SitoFA. Furthermore, γ-oryzanol exhibited superior antioxidant activity at lower temperatures. The results of this study provide a theoretical basis for a better understanding of the thermal stability and antioxidant properties of γ-oryzanol in oil under thermal oxidation conditions.
Collapse
Affiliation(s)
- Yunping Yao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Yuan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Zheng
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengda Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changmo Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Wang T, Zhu L, Mei L, Kanda H. Extraction and Separation of Natural Products from Microalgae and Other Natural Sources Using Liquefied Dimethyl Ether, a Green Solvent: A Review. Foods 2024; 13:352. [PMID: 38275719 PMCID: PMC10815339 DOI: 10.3390/foods13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Microalgae are a sustainable source for the production of biofuels and bioactive compounds. This review discusses significant research on innovative extraction techniques using dimethyl ether (DME) as a green subcritical fluid. DME, which is characterized by its low boiling point and safety as an organic solvent, exhibits remarkable properties that enable high extraction rates of various active compounds, including lipids and bioactive compounds, from high-water-content microalgae without the need for drying. In this review, the superiority of liquefied DME extraction technology for microalgae over conventional methods is discussed in detail. In addition, we elucidate the extraction mechanism of this technology and address its safety for human health and the environment. This review also covers aspects related to extraction equipment, various applications of different extraction processes, and the estimation and trend analysis of the Hansen solubility parameters. In addition, we anticipate a promising trajectory for the expansion of this technology for the extraction of various resources.
Collapse
Affiliation(s)
| | | | | | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
10
|
Zhou H, Zhang J, Bai L, Liu J, Li H, Hua J, Luo S. Chemical Structure Diversity and Extensive Biological Functions of Specialized Metabolites in Rice. Int J Mol Sci 2023; 24:17053. [PMID: 38069376 PMCID: PMC10707428 DOI: 10.3390/ijms242317053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is thought to have been domesticated many times independently in China and India, and many modern cultivars are available. All rice tissues are rich in specialized metabolites (SPMs). To date, a total of 181 terpenoids, 199 phenolics, 41 alkaloids, and 26 other types of compounds have been detected in rice. Some volatile sesquiterpenoids released by rice are known to attract the natural enemies of rice herbivores, and play an indirect role in defense. Momilactone, phytocassane, and oryzalic acid are the most common diterpenoids found in rice, and are found at all growth stages. Indolamides, including serotonin, tryptamine, and N-benzoylserotonin, are the main rice alkaloids. The SPMs mainly exhibit defense functions with direct roles in resisting herbivory and pathogenic infections. In addition, phenolics are also important in indirect defense, and enhance wax deposition in leaves and promote the lignification of stems. Meanwhile, rice SPMs also have allelopathic effects and are crucial in the regulation of the relationships between different plants or between plants and microorganisms. In this study, we reviewed the various structures and functions of rice SPMs. This paper will provide useful information and methodological resources to inform the improvement of rice resistance and the promotion of the rice industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| |
Collapse
|
11
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
12
|
Liu Z, Liu X, Ma Z, Guan T. Phytosterols in rice bran and their health benefits. Front Nutr 2023; 10:1287405. [PMID: 37899831 PMCID: PMC10600523 DOI: 10.3389/fnut.2023.1287405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
With the continuous technological innovation in the high-value utilization of rice bran byproducts, rice bran oil retains a higher concentration of beneficial components such as a well-balanced composition of fatty acids and abundant phytosterols. This makes it a highly nutritious and healthy vegetable oil. This review provides an overview of the advancements made in separating, purifying, and processing phytosterols in rice bran oil. The review also introduces techniques for assessing the stability of rice bran oil. Moreover, the review emphasizes the nutritional value of phytosterols found in rice bran oil, highlighting their various health benefits, including their anticancer, anti-inflammatory, anti-allergic, antibacterial, cholesterol-lowering, skin-protective, anti-obesity, anti-diabetic, neuroprotective, gastroprotective, and immune-enhancing effects. Attaining a comprehensive understanding of the research progress made in phytosterols derived from rice bran oil can offer valuable guidance for the efficient utilization of rice bran.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Changchun Institute of Technology, Changchun, China
| | - Xiaoxiao Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Taarji N, Bouhoute M, Felipe LDO, Sobeh M, Kobayashi I, Neves MA, Tominaga K, Isoda H, Nakajima M. Self-stabilizing performance of γ-oryzanol in oil-in-water emulsions and solid dispersions. Heliyon 2023; 9:e19677. [PMID: 37809870 PMCID: PMC10558946 DOI: 10.1016/j.heliyon.2023.e19677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
The surface activity of γ-oryzanol was evaluated by the pendant drop method (PDM), and its self-stabilizing properties were investigated by high-pressure homogenization (HPH) and solvent displacement method (SDM). Emulsions prepared by HPH were highly unstable due to the poor surface-active character of γ-oryzanol as identified by the PDM. In contrast, solid dispersions fabricated by SDM had comparable particle size to those prepared using Tween 80 (T80) as surfactant, and were stable up to 30 days of storage at 4 °C. The self-stabilizing properties of γ-oryzanol were attributed to the mechanism of spontaneous particle formation in SDM and to the ability of γ-oryzanol molecules to prevent particles aggregation by electrostatic repulsion. The outcome of this study indicates the potential of encapsulating selected bioactive compounds, such as γ-oryzanol, in stable colloidal systems by SDM without adding emulsifier(s), regardless of their surface-active character.
Collapse
Affiliation(s)
- Noamane Taarji
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
- College of Sustainable Agriculture & Environmental Sciences, AgroBioSciences Program, Mohammed 6 Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
| | - Lorena de Oliveira Felipe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
| | - Mansour Sobeh
- College of Sustainable Agriculture & Environmental Sciences, AgroBioSciences Program, Mohammed 6 Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Isao Kobayashi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, 305-8642, Japan
| | - Marcos A. Neves
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kenichi Tominaga
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki, 305-8565, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
14
|
Huang PX, Yeh CL, Yang SC, Shirakawa H, Chang CL, Chen LH, Chiu YS, Chiu WC. Rice Bran Supplementation Ameliorates Gut Dysbiosis and Muscle Atrophy in Ovariectomized Mice Fed with a High-Fat Diet. Nutrients 2023; 15:3514. [PMID: 37630706 PMCID: PMC10458250 DOI: 10.3390/nu15163514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Rice bran, a byproduct of rice milling, is rich in fiber and phytochemicals and confers several health benefits. However, its effects on gut microbiota and obesity-related muscle atrophy in postmenopausal status remain unclear. In this study, we investigated the effects of rice bran on gut microbiota, muscle synthesis, and breakdown pathways in estrogen-deficient ovariectomized (OVX) mice receiving a high-fat diet (HFD). ICR female mice were divided into five groups: sham, OVX mice receiving control diet (OC); OVX mice receiving HFD (OH); OVX mice receiving control diet and rice bran (OR); and OVX mice receiving HFD and rice bran (OHR). After twelve weeks, relative muscle mass and grip strength were high in rice bran diet groups. IL-6, TNF-α, MuRf-1, and atrogin-1 expression levels were lower, and Myog and GLUT4 were higher in the OHR group. Rice bran upregulated the expression of occludin and ZO-1 (gut tight junction proteins). The abundance of Akkermansiaceae in the cecum was relatively high in the OHR group. Our finding revealed that rice bran supplementation ameliorated gut barrier dysfunction and gut dysbiosis and also maintained muscle mass by downregulating the expression of MuRf-1 and atrogin-1 (muscle atrophy-related factors) in HFD-fed OVX mice.
Collapse
Affiliation(s)
- Pei-Xin Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
| | - Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
| | - Hitoshi Shirakawa
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan;
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Chao-Lin Chang
- Food Industry Research and Development Institute, Hsinchu 300193, Taiwan;
| | - Li-Hsin Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
| | - Yen-Shuo Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan; (P.-X.H.); (C.-L.Y.); (S.-C.Y.); (L.-H.C.); (Y.-S.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan
| |
Collapse
|
15
|
Sahasakul Y, Aursalung A, Thangsiri S, Temviriyanukul P, Inthachat W, Pongwichian P, Sasithorn K, Suttisansanee U. Nutritional Compositions, Phenolic Contents and Antioxidant Activities of Rainfed Rice Grown in Different Degrees of Soil Salinity. Foods 2023; 12:2870. [PMID: 37569139 PMCID: PMC10417330 DOI: 10.3390/foods12152870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Rice (Oryza sativa) is a staple food crop for over half of the world's population. However, drought as a result of climate change has led to increased soil salinity, thereby reducing agricultural potential, especially rice nutritional compositions and biochemical properties. Nevertheless, soil management by using suitable fertilizers might be able to improve rice quality even though these rice samples were grown in soil with a high degree of salinity. This study investigated nutritional compositions, phenolic contents, and antioxidant activities of twenty-five rainfed rice samples in Khao Dawk Mali 105 (KDML105) and Rice Department 15 (RD15) varieties grown in soil with different degrees of salinity. The soil, however, had been improved by the usage of fertilizer at the tillering and booting stages. Results indicated that all rice samples exhibited similar nutrients, total phenolic contents (TPCs), and antioxidant potentials, suggesting that appropriate fertilizer could improve rice qualities. Principle Component Analysis (PCA) and Pearson correlation results suggested that regardless of rice varieties, organic matter (OM) and soil potassium (Ks) showed a very strong positive correlation with protein and minerals (Ca, Na, K, and Fe), while opposite results were observed with soil pH. Moderate to very weak correlations were also observed between soil parameters and TPCs, as well as between soil parameters and antioxidant activities. The received information will be useful for the future development of appropriate fertilizer usage in salt-tolerant rice with particular nutritional quality.
Collapse
Affiliation(s)
- Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (Y.S.); (A.A.); (S.T.); (P.T.); (W.I.)
| | - Amornrat Aursalung
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (Y.S.); (A.A.); (S.T.); (P.T.); (W.I.)
| | - Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (Y.S.); (A.A.); (S.T.); (P.T.); (W.I.)
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (Y.S.); (A.A.); (S.T.); (P.T.); (W.I.)
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (Y.S.); (A.A.); (S.T.); (P.T.); (W.I.)
| | - Pirach Pongwichian
- Land Development Department, Phaholyothin Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand; (P.P.); (K.S.)
| | - Kamontip Sasithorn
- Land Development Department, Phaholyothin Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand; (P.P.); (K.S.)
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (Y.S.); (A.A.); (S.T.); (P.T.); (W.I.)
| |
Collapse
|
16
|
Zeng H, Zhu A, He S, Wu M, Mazhar M, Wen A, Liu N, Qin L, Miao S. Anti-lipid-oxidation effects and edible safety evaluation of the oil extracted by a supercritical CO2 process from coix seed fermented by Monascus purpureus. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Sansenya S, Payaka A, Mansalai P. Inhibitory Efficacy of Cycloartenyl Ferulate against α-Glucosidase and α-Amylase and Its Increased Concentration in Gamma-Irradiated Rice (Germinated Rice). Prev Nutr Food Sci 2023; 28:170-177. [PMID: 37416788 PMCID: PMC10321442 DOI: 10.3746/pnf.2023.28.2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 07/08/2023] Open
Abstract
Cycloartenyl ferulate is a derivative of γ-oryzanol with varied biological activity, including diabetes mellitus treatment. This research focused on improving the cycloartenyl ferulate accumulation in germinated rice by gamma irradiation under saline conditions. Moreover, the inhibitory potential of cycloartenyl ferulate against carbohydrate hydrolysis enzymes (α-glucosidase and α-amylase) was investigated through in vitro and in silico techniques. The results revealed that cycloartenyl ferulate increased in germinated rice under saline conditions upon gamma irradiation. A suitable condition for stimulating the highest cycloartenyl ferulate concentration (852.20±20.59 μg/g) in germinated rice was obtained from the gamma dose at 100 Gy and under 40 mM salt concentration. The inhibitory potential of cycloartenyl ferulate against α-glucosidase (31.31±1.43%) was higher than against α-amylase (12.72±1.11%). The inhibition mode of cycloartenyl ferulate against α-glucosidase was demonstrated as a mixed-type inhibition. A fluorescence study confirmed that the cycloartenyl ferulate interacted with the α-glucosidase's active site. A docking study revealed that cycloartenyl ferulate bound to seven amino acids of α-glucosidase with a binding energy of -8.8 kcal/mol and a higher binding potential than α-amylase (-8.2 kcal/mol). The results suggested that the gamma irradiation technique under saline conditions is suitable for stimulating γ-oryzanol, especially cycloartenyl ferulate. Furthermore, cycloartenyl ferulate demonstrated its potential as a candidate compound for blood glucose management in diabetes mellitus treatment.
Collapse
Affiliation(s)
- Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Preecha Mansalai
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| |
Collapse
|
18
|
Badalkhani O, Pires PC, Mohammadi M, Babaie S, Paiva-Santos AC, Hamishehkar H. Nanogel Containing Gamma-Oryzanol-Loaded Nanostructured Lipid Carriers and TiO 2/MBBT: A Synergistic Nanotechnological Approach of Potent Natural Antioxidants and Nanosized UV Filters for Skin Protection. Pharmaceuticals (Basel) 2023; 16:ph16050670. [PMID: 37242453 DOI: 10.3390/ph16050670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The human skin is a recurring target of external aggressions, such as UV radiation, leading to exacerbation of the aging process and the occurrence of skin diseases, such as cancer. Hence, preventive measures should be taken to protect it against these aggressions, consequently decreasing the chance of disease development. In the present study, a topical xanthan gum nanogel containing gamma-oryzanol-loaded nanostructured lipid carriers (NLCs) and nanosized UV filters TiO2 and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) was developed to assess their synergistic potential in having multifunctional skin beneficial properties. The developed NLCs contained the natural-based solid lipids shea butter and beeswax, liquid lipid carrot seed oil, and the potent antioxidant gamma-oryzanol, with an optimum particle size for topical application (<150 nm), good homogeneity (PDI = 0.216), high zeta potential (-34.9 mV), suitable pH value (6), good physical stability, high encapsulation efficiency (90%), and controlled release. The final formulation, a nanogel containing the developed NLCs and the nano UV filters, showed high long-term storage stability and high photoprotection ability (SPF = 34) and resulted in no skin irritation or sensitization (rat model). Hence, the developed formulation showed good skin protection and compatibility, demonstrating promise as a new platform for the future generation of natural-based cosmeceuticals.
Collapse
Affiliation(s)
- Omolbanin Badalkhani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Patrícia C Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| |
Collapse
|
19
|
Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis? J Cardiovasc Transl Res 2023; 16:51-62. [PMID: 35921051 DOI: 10.1007/s12265-022-10297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.
Collapse
|
20
|
Anjinta A, Usaku C, Boonnoun P, Daisuk P, Shotipruk A. Method Development for Purification of γ-oryzanol from Hydrolyzed Rice Bran Acid Oil by Semi-preparative Chromatography. J Oleo Sci 2023; 72:39-47. [PMID: 36624058 DOI: 10.5650/jos.ess22217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to develop a method for isolation and purification of γ-oryzanol from hydrolyzed rice bran acid oil (RBAO) using semi-preparative chromatography by first applying silica coated-thin layer chromatography (TLC) to determine the suitable mobile phase. Subsequently, column chromatography was carried out to determine the effects of purification conditions such as the amount of and particle sizes of the sample silica gel, and elution modes, on the percentage of γ-oryzanol yield and recovery. The results from the TLC suggested that 75:25 (v/v) hexane to ethyl acetate mixture was a suitable mobile phase. The semi-chromatographic results indicated that the column containing 10 g of 25-40 μm silica gel with isocratic elution gave the highest yield (84%) of purified γ-oryzanol (> 95% purity). Further application of a step-gradient elution with 85:15 (v/v), followed by 75:25 (v/v) hexane to ethyl acetate mixture increased chromatographic resolution (Rs), resulting in enhanced separation efficiency, which in turn led to a higher yield of purified γ-oryzanol of 90%.
Collapse
Affiliation(s)
- Anchana Anjinta
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| | - Chonlatep Usaku
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University
| | - Panatpong Boonnoun
- Department of Industrial Engineering, Chemical Engineering Program, Faculty of Engineering, Naresuan University
| | - Phannipha Daisuk
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| | - Artiwan Shotipruk
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University
| |
Collapse
|
21
|
Bepary RH, Wadikar DD, Vasudish CR, Semwal AD, Sharma GK. Ranking based formula optimization, quality investigation, and real-time shelf-life prediction of ready-to-eat ricebean ( Vigna umbellata) curry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4390-4404. [PMID: 36193477 PMCID: PMC9525507 DOI: 10.1007/s13197-022-05519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/16/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Ricebean (Vigna umbellata) is an underutilized bean of South and South-East Asia, was exploited to formulate the ready-to-eat curry by using thermal processing technology. Eleven types of RTE ricebean curries (RBCs) namely RBC1, RBC2, RBC3, RBC4, RBC5, RBC6, RBC7, RBC8, RBC9, RBC10, RBC11 were developed by varying the proportion of tomato paste, onion paste, and coriander powder after thermal processing at 121 °C (15 psi) for 20 min. Out of these, the best quality curry was selected based on the total product ranking score (TPRS) which was calculated from the curry quality parameters such as consistency, pH, loss due to sorption onto the inner surface of the retort pouch (LOSS), and sensory (overall acceptability-OAA). Among the curries, RBC2 secured the highest value of TPRS, named it as RTE-RBC and was used to study the physico-chemical, textural, nutritional, microbial, sensory parameters and storage stability. The DPPH-antioxidant activity of RTE-RBC was 2.47 µM BHA/g which was due to the presence of bioactive phytochemicals such as polyphenol, flavonoids, lycopene, gingerol, ɣ-Oryzanol, and capsaicin. It was observed that the in-vitro protein/carbohydrate digestibility, in-vitro calcium bioavailability and real-time shelf-life (predicted) of RTE-RBC were 85%, 54%, and one year, respectively.
Collapse
Affiliation(s)
- Rejaul Hoque Bepary
- Department of Agricultural Engineering, Assam Agricultural University, Jorhat, 785013 India
- DRDO-Defence Food Research Laboratory, Siddartha Nagar, Mysore, 570011 India
| | - D. D. Wadikar
- DRDO-Defence Food Research Laboratory, Siddartha Nagar, Mysore, 570011 India
| | - C. R. Vasudish
- DRDO-Defence Food Research Laboratory, Siddartha Nagar, Mysore, 570011 India
| | - A. D. Semwal
- DRDO-Defence Food Research Laboratory, Siddartha Nagar, Mysore, 570011 India
| | - G. K. Sharma
- DRDO-Defence Food Research Laboratory, Siddartha Nagar, Mysore, 570011 India
| |
Collapse
|
22
|
Xie L, Zhang T, Karrar E, Zheng L, Xie D, Jin J, Wang X, Jin Q. Purification, characterization, and cellular antioxidant activity of 4,4‐dimethylsterols and 4‐desmethylsterols. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangliang Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Emad Karrar
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Liyou Zheng
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu China
| | - Dan Xie
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
23
|
Gharat NN, Rathod VK. Extraction of ferulic acid from rice bran using
NADES
‐ultrasound‐assisted extraction: Kinetics and optimization. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Neha N. Gharat
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| | - Virendra K. Rathod
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| |
Collapse
|
24
|
Sun W, Shi J, Hong J, Zhao G, Wang W, Zhang D, Zhang W, Shi J. Natural variation and underlying genetic loci of γ-oryzanol in Asian cultivated rice seeds. THE PLANT GENOME 2022; 15:e20201. [PMID: 35762101 DOI: 10.1002/tpg2.20201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
γ-oryzanol is the most studied component in rice (Oryza sativa L.) bran oil. It is not only associated with physiological processes of rice growth and development but also grain quality that is related to human health. Previous studies focused mainly on γ-oryzanol composition and content in various rice cultivars, while its biosynthetic and regulatory pathways remain unknown. Here we present the quantitative identification of γ-oryzanol in rice seeds across 179 Asian cultivated accessions using ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOF/MS), which revealed a significant natural variation in γ-oryzanol content among these tested rice accessions. In addition, we present, for the first time, the genome-wide association study (GWAS) on rice seed γ-oryzanol, which identified 187 GWAS signal hot spots and 13 candidate genes that are associated with variable γ-oryzanol content and provided the top 10 rice haplotypes with high γ-oryzanol content for breeding. Collectively, our study provides valuable germplasms for breeding rice cultivars rich in γ-oryzanol and genetic resources for elucidating genetic and biochemical bases of variable γ-oryzanol in rice.
Collapse
Affiliation(s)
- Wenli Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Guochao Zhao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal Univ., Shanghai, 200234, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Wei Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
25
|
Summpunn P, Panpipat W, Manurakchinakorn S, Bhoopong P, Cheong LZ, Chaijan M. Comparative Analysis of Antioxidant Compounds and Antioxidative Properties of Thai Indigenous Rice: Effects of Rice Variety and Processing Condition. Molecules 2022; 27:molecules27165180. [PMID: 36014418 PMCID: PMC9415374 DOI: 10.3390/molecules27165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Indigenous southern Thai non-glutinous rice varieties Kaab Dum, Khai Mod Rin, Yar Ko, Yoom Noon, and Look Lai made under four different processing conditions, white rice, brown rice, germinated brown rice, and rice grass, were assessed for antioxidant components and in vitro antioxidative activities. According to the findings, rice’s antioxidant components and antioxidant activity were considerably impacted by both variety and processing. High levels of total extractable phenolic compounds (164−314 mg gallic acid equivalent (GAE)/kg, dry weight (dw)) and carotenoid (0.92−8.65 mg/100 g, dw) were found in all rice varieties, especially in rice grass and germinated brown rice, indicating that milling to generate white rice had an adverse effect on those components. Additionally, after germination, a higher γ-oryzanol concentration (9−14 mg/100 g, dw) was found. All rice varieties had higher ascorbic acid, phenolic compound, and carotenoid contents after sprouting. Overall, Yoom Noon rice grass had the highest total extractable phenolic content (p < 0.05). The rice grass from Yoom Noon/Look Lai/Kaab Dum had the highest ascorbic acid content (p < 0.05). The total carotenoid concentration of Look Lai rice grass was the highest, and Yoom Noon’s germinated brown rice had the highest γ-oryzanol content (p < 0.05). All rice varieties’ aqueous extracts had remarkable ABTS free radical scavenging activity, with Khai Mod Rin reaching the highest maximum value of 42.56 mmol Trolox equivalent/kg dw. Other antioxidant mechanisms, however, were quite low. Compared to germinated brown rice, brown rice, and white rice, rice grass often tended to have stronger antioxidant activity. Yar Ko rice grass was found to have the highest DPPH free radical scavenging activity (3.8 mmol Trolox equivalent/kg dw) and ferric reducing antioxidant power (FRAP) (4.6 mmol Trolox equivalent/kg dw) (p < 0.05). Khai Mod Rice grass had the most pronounced metal chelation activity (1.14 mmol EDTA equivalent/kg dw) (p < 0.05). The rice variety and processing conditions, therefore, influenced the antioxidant compounds and antioxidative properties of Thai indigenous rice. The results can be used as a guide to select the optimal rice variety and primary processing in order to satisfy the needs of farmers who want to produce rice as a functional ingredient and to promote the consumption of indigenous rice by health-conscious consumers.
Collapse
Affiliation(s)
- Pijug Summpunn
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Supranee Manurakchinakorn
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phuangthip Bhoopong
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: ; Tel.: +66-7567-2316; Fax: +66-7567-2302
| |
Collapse
|
26
|
Wisetkomolmat J, Arjin C, Satsook A, Seel-audom M, Ruksiriwanich W, Prom-u-Thai C, Sringarm K. Comparative Analysis of Nutritional Components and Phytochemical Attributes of Selected Thai Rice Bran. Front Nutr 2022; 9:833730. [PMID: 35284435 PMCID: PMC8907980 DOI: 10.3389/fnut.2022.833730] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
It is important to raise awareness regarding rice's nutritional quality and health benefits in terms of enhancing rice consumption in people's daily diets. This study evaluated the proximate components and phytochemical profiles of 11 Thai rice bran varieties, 4 non-colored rice brans and 7 colored rice brans, collected from the same agricultural fields. The chemical composition (ash, fat, proteins, fiber, and gross energy) was determined using proximate analysis methods. High-performance liquid chromatography was used to analyze the γ-oryzanol, tocopherols, and anthocyanins, while gas chromatography mass spectrometry determined the free fatty compounds. The phenolic profile was determined using liquid chromatography-mass spectrometry. The results showed great variations in each parameter of the nutritional and bioactive components among different rice bran varieties. Statistical analysis was also performed correlating the results obtained from PCA to categorize the samples by their nutritional characteristics into three main groups: group A with a high content of protein and fiber, group B with a high content of fat and gross energy, and group C with low fat and energy values but high amounts of functional, active components, particularly γ-oryzanol. Anthocyanins were detected in only one sample of colored rice bran. The major free fatty acids found in rice bran samples were oleic, linoleic, and palmitic acids. Systematic assessment of the concentration of these compounds gained from this study would be helpful to the industrial sector for selecting phytochemical-rich varieties as a value-added component in nutritional products.
Collapse
Affiliation(s)
- Jiratchaya Wisetkomolmat
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Apinya Satsook
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Chanakan Prom-u-Thai
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai, Thailand
- Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Chanakan Prom-u-Thai
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Korawan Sringarm
| |
Collapse
|
27
|
Wang Z, Yang Z, Liu J, Hao Y, Sun B, Wang J. Potential Health Benefits of Whole Grains: Modulation of Mitochondrial Biogenesis and Energy Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14065-14074. [PMID: 34775748 DOI: 10.1021/acs.jafc.1c05527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mitochondria play an essential role in maintaining cellular metabolic homeostasis. However, its dysfunction will cause different pathophysiological consequences. A specific mechanism of action has been developed by cells to adapt to changes in physiological conditions or in response to different stimuli, by meditating mitochondrial number, structure, and energy metabolism. Whole grains are considered healthier than refined grains for their higher amounts of bioactive components, with proven multiple health benefits. The modulation of an appropriate mitochondrial function contributes to the bioactive-component-based health improvements. Thus, this review aims to represent current studies that identify the impact of natural bioactive components in whole grains against metabolic disorders by modulating mitochondrial biogenesis and energy metabolism. It seems most attractive to aim nutritional intervention at the prevention or treatment of metabolic abnormalities and hence to target dietary management at improvement of mitochondrial function.
Collapse
Affiliation(s)
- Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
28
|
Effect of an active packaging with rice bran extract and high-pressure processing on the preservation of sliced dry-cured ham from Iberian pigs. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Toorani MR, Golmakani MT. Investigating relationship between water production and interfacial activity of γ-oryzanol, ethyl ferulate, and ferulic acid during peroxidation of bulk oil. Sci Rep 2021; 11:17026. [PMID: 34426600 PMCID: PMC8382700 DOI: 10.1038/s41598-021-96439-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, lecithin (as a surfactant) was added to promote the inhibitory-mechanism of γ-oryzanol, ethyl-ferulate and ferulic acid (based on the interfacial phenomena) so as to inhibit the oxidation of stripped sunflower oil. Monitoring the amount of water production as a byproduct of oxidation showed that the water content of the lipid system increased remarkably through the oxidation progress. Lecithin enhanced the critical concentration of hydroperoxides in reverse micelles, compared to the basic state (14.8 vs. 9.2 mM), thereby improving the hydrogen-donating mechanism of antioxidants. The size of reverse micelles increased progressively during the oxidation, while two breakpoints were pointed out in the micelles growth, i.e. at the end of the initiation and the propagation phases. Based on the kinetic data, ferulic acid showed the highest antioxidant activity (23.4), compared to ethyl-ferulate (15.5) and γ-oryzanol (13.7). Generally, lecithin enhanced antioxidant activity (~ 65%) by improving the interfacial performance of antioxidants.
Collapse
Affiliation(s)
- Mohamad Reza Toorani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran.
| |
Collapse
|
30
|
Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Biological and Pharmacological Effects of Gamma-oryzanol: An Updated Review of the Molecular Mechanisms. Curr Pharm Des 2021; 27:2299-2316. [PMID: 33138751 DOI: 10.2174/1381612826666201102101428] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gamma-oryzanol (γ-oryzanol) is one of the rice bran oil (RBO) compounds, known as a principal food source throughout the world. In recent numerous experimental studies, γ-oryzanol has been revealed to have several useful pharmacological properties, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, ameliorating unpleasant menopausal symptoms, cholesterol-lowering, improving plasma lipid pattern, etc. Methods: In this study, we reviewed the scientific literature published up until 2020, which has evaluated the biological and pharmacological activity of gamma-oryzanol. This review summarizes the published data found in PubMed, Science Direct, and Scopus. RESULTS AND CONCLUSION The present review attempts to summarize the most related articles about the pharmacological and therapeutic potential from recent studies on γ-oryzanol to gain insights into design further studies to achieve new evidence that confirm the observed effects.
Collapse
Affiliation(s)
- Elham Ramazani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Zeinali M, Abbaspour-Ravasjani S, Soltanfam T, Paiva-Santos AC, Babaei H, Veiga F, Hamishehkar H. Prevention of UV-induced skin cancer in mice by gamma oryzanol-loaded nanoethosomes. Life Sci 2021; 283:119759. [PMID: 34171381 DOI: 10.1016/j.lfs.2021.119759] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
AIMS Skin cancer is the most widespread cancer worldwide, mainly caused by exposure to ultraviolet radiation (UV) in sunlight. Utilizing topical preventive agents in routinely daily used cosmetics may prevent UV-related skin damages and skin cancers. γ-Oryzanol (GO) is a natural component derived from rice bran oil, with potential antioxidant and skin anti-aging properties. MAIN METHODS We biologically thorough studied the antioxidant and anticancer effects of GO in vitro to found the effective signaling pathways, then evaluated the sun protection factor of prepared formulation, and finally investigated the long-term preventive effects of GO-loaded nanoethosomes (GO-NEs) against UVB-induced skin cancer in mice. KEY FINDINGS GO-NEs could effectively prevent UVB-induced skin cancer. SIGNIFICANCE Our results suggest that GO-NEs could be utilized as an innovative ingredient in cosmetics.
Collapse
Affiliation(s)
- Mahdi Zeinali
- Biotechnology Research Center, Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Tannaz Soltanfam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research and Development Unit, Daana Pharma. Co. Tabriz, Iran.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Sari YP, Santoso U, Supriyadi, Raharjo S. Determination of singlet oxygen quenching rate and mechanism of γ-oryzanol. Heliyon 2021; 7:e07065. [PMID: 34041405 PMCID: PMC8141896 DOI: 10.1016/j.heliyon.2021.e07065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Photooxidation is one of the causes of quality deterioration in food. An antioxidant or singlet oxygen quencher is urgently needed to prevent photooxidation. γ-Oryzanol was recognized as a naturally present antioxidant in rice bran products. This research aimed to calculate the singlet oxygen quenching rate and its mechanism of γ-oryzanol to evaluate the potency of γ-oryzanol as singlet oxygen quencher. A series of linoleic acid (50 and 100 mM) or γ-oryzanol (0.7 and 1.5 mM) were prepared separately in ethanol: chloroform (96:4, v/v) containing 25 ppm of erythrosine. High-Performance Liquid Chromatography quantified the degradation of γ-oryzanol. Meanwhile, Gas Chromatography determined the changes in linoleic acid content during photooxidation. The singlet oxygen quenching rate was calculated by steady-state. The singlet oxygen quenching rate of γ-oryzanol was 3.04 × 106/M/s by physical and chemical quenching mechanism. Photooxidation caused the declined of γ-oryzanol by 0.1421 mM/h. Based on singlet oxygen quenching rate calculation, it suggests that γ-oryzanol can perform as a singlet oxygen quencher with slightly dominated by physical quenching mechanism (52.28%). The rest it performed via a chemical quenching mechanism.
Collapse
Affiliation(s)
- Yuli Perwita Sari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Umar Santoso
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Supriyadi
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sri Raharjo
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
33
|
Silva NC, Poetini MR, Bianchini MC, Almeida FP, Dahle MMM, Araujo SM, Bortolotto VC, Musachio EAS, Ramborger BP, Novo DLR, Roehrs R, Mesko MF, Prigol M, Puntel RL. Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17519-17531. [PMID: 33403631 DOI: 10.1007/s11356-020-11848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is an essential element that, in excess, seems to be involved in the development of different neurodegenerative conditions. Gamma-oryzanol (Ory) was previously reported to possess antioxidant and neuroprotective properties. Thus, we conducted this study to test the hypothesis that Ory can also protect flies in an Mn intoxication model. Adult wild-type flies were fed over 10 days with Mn (5 mM) and/or Ory (25 μM). Flies treated with Mn had a decrease in locomotor activity and a higher mortality rate compared to those in controls. Mn-treated flies also had a significant increase in acetylcholinesterase (AChE) activity, in Mn accumulation and in oxidative stress markers. Moreover, flies treated with Mn exhibited a significant decrease in dopamine levels and in tyrosine hydroxylase activity, as well as in mitochondrial and cellular viability. Particularly important, Ory protected against mortality and avoided locomotor and biochemical changes associated with Mn exposure. However, Ory did not prevent the accumulation of Mn. The present results support the notion that Ory effectively attenuates detrimental changes associated with Mn exposure in Drosophila melanogaster, reinforcing its neuroprotective action/potential.
Collapse
Affiliation(s)
- Neicí Cáceres Silva
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Márcia Rósula Poetini
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Matheus Chimelo Bianchini
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Polet Almeida
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Mustafá Munir Mustafa Dahle
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Bruna Piaia Ramborger
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Diogo La Rosa Novo
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marcia Foster Mesko
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil.
| | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
34
|
A comparative investigation on physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oils from different japonica rice (Oryza sativa L.) varieties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Punia S, Kumar M, Sandhu KS, Whiteside WS. Rice‐bran oil: An emerging source of functional oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sneh Punia
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR – Central Institute for Research on Cotton Technology Mumbai India
| | - Kawaljit Singh Sandhu
- Department of Food Science & Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | | |
Collapse
|
36
|
Vegetable oil structuring via γ-oryzanol crystallization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Tullio V, Gasperi V, Catani MV, Savini I. The Impact of Whole Grain Intake on Gastrointestinal Tumors: A Focus on Colorectal, Gastric, and Esophageal Cancers. Nutrients 2020; 13:E81. [PMID: 33383776 PMCID: PMC7824588 DOI: 10.3390/nu13010081] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Cereals are one of staple foods in human diet, mainly consumed as refined grains. Nonetheless, epidemiological data indicate that whole grain (WG) intake is inversely related to risk of type 2 diabetes, cardiovascular disease, and several cancer types, as well as to all-cause mortality. Particularly responsive to WG positive action is the gastrointestinal tract, daily exposed to bioactive food components. Herein, we shall provide an up-to-date overview on relationship between WG intake and prevention of gastrointestinal tumors, with a particular focus on colorectal, stomach, and esophagus cancers. Unlike refined counterparts, WG consumption is inversely associated with risk of these gastrointestinal cancers, most consistently with the risk of colorectal tumor. Some WG effects may be mediated by beneficial constituents (such as fiber and polyphenols) that are reduced/lost during milling process. Beside health-promoting action, WGs are still under-consumed in most countries; therefore, World Health Organization and other public/private stakeholders should cooperate to implement WG consumption in the whole population, in order to reach nutritionally effective intakes.
Collapse
|
38
|
Hajilou H, Farahpour MR, Hamishehkar H. Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds. Int J Biol Macromol 2020; 164:2358-2369. [PMID: 32791277 DOI: 10.1016/j.ijbiomac.2020.08.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/27/2022]
Abstract
This study was conducted to design and evaluate a wound dressing based on a polycaprolactone (PCL) nanofiber coated with gamma oryzanol (GO) and chitosan (CS) in mice model. All the dressings were prepared by electrospinning method, and their morphology and physical properties were investigated. The mice were divided into five groups and treated with I) PCL-sole (PCL), III) PCL-mupirocin (PCL-M), IV) PCL-GO, IV) PCL-CS, and V) PCL-CS-GO. Wound area, total bacterial count, histopathological parameters, and expressions of IL-1β, TNF-α, IL-10, MMP-9, EGF, and VEGF were assessed. The fibers were randomly distributed in PCL group, but loading CS and GO increased the complexity and placing on the dressings. PCLs loaded with GO and CS showed lower viscosity, surface tension, and fiber diameter and higher conductivity and water contact angle compared to unloaded PCLs (P < 0.05). The treatment with PCLs loaded with mupirocin, CS, and GO significantly reduced wound area and total bacterial count (P < 0.05). Loading PCLs with mupirocin, CS, and GO decreased the expressions of IL-1β, TNF-α, MMP-9, but increased the expressions of IL-10 and VEGF compared to the unloaded PCL group (P < 0.05). The most optimal responses to wound healing and physical parameters belonged to the PCL-CS-GO group.
Collapse
Affiliation(s)
- Hesaam Hajilou
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Enzymatic preparation and antioxidative activity of hydrolysate from Rice bran protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00563-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Hashimoto M, Hossain S, Matsuzaki K, Shido O, Yoshino K. The journey from white rice to ultra-high hydrostatic pressurized brown rice: an excellent endeavor for ideal nutrition from staple food. Crit Rev Food Sci Nutr 2020; 62:1502-1520. [PMID: 33190522 DOI: 10.1080/10408398.2020.1844138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although brown rice (BR) contains significantly higher levels of nutrients than the traditionally used polished white rice (WR), its consumption among the population is still not noteworthy. WR and BR are essentially same grain. The only difference between the two is the application of an exhaustive milling procedure during the processing of WR that removes all other layers of the grain except the portion of its white endosperm. BR, on the other hand, is prepared by removing only the outer hull of the rice seed. Thus, in addition to its inner endosperm, the bran and germ are also left on the BR. Hence, BR retains all its nutrients, including proteins, lipids, carbohydrates, fibers, vitamins, minerals, tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid (GABA) packed into the bran and germ of the seed. Since BR tastes nutty and takes longer to cook than WR, it is not appreciated by the consumers. However, these problems have been circumvented using non-thermal ultra-high hydrostatic pressure (UHHP)-processing for the treatment of BR. A superior modification in the physicochemical and functional qualities of UHHPBR, along with its ability to curb human diseases may make it a more palatable and nutritious choice of rice over WR or the untreated-BR. Here, we have reviewed the mechanism by which UHHP treatment leads to the modification of nutrients such as proteins, lipids, carbohydrates, and fibers. We have focused on the effects of rice on cell and animal models of different conditions such as hyperlipidemia, diabetes, and hypertension and the possible mechanisms. Finally, we have emphasized the effects of UHHPBR in human cases with rare conditions such as osteoporosis and brain cognition - two age-related degenerative diseases of the elderly population.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan
| | - Shahdat Hossain
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan.,Departmnet of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Bangladesh
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University, Faculty of Medicine, Izumo, Japan
| | | |
Collapse
|
41
|
Antioxidant activity and inhibitory mechanism of γ-oryzanol as influenced by the unsaturation degree of lipid systems. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Sawada K, Nakagami T, Rahmania H, Matsuki M, Ito J, Mohri T, Ogura Y, Kuwahara S, Hashimoto H, Nakagawa K. Isolation and structural elucidation of unique γ-oryzanol species in rice bran oil. Food Chem 2020; 337:127956. [PMID: 32919269 DOI: 10.1016/j.foodchem.2020.127956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 11/26/2022]
Abstract
Even though γ-oryzanol (OZ) such as 24-methylenecycloartanyl ferulate (24MCAFA) is abundant in purified rice bran oil, we realized that the oil contained the prospect of two additional novels of OZ species. To identify this, we isolated and analyzed their chemical structures by using HPLC-UV-MS, NMR, and IR. We revealed for the first time that the oil had also contained cyclobranyl ferulate (CBFA) and cyclosadyl ferulate (CSFA) which are likely to be exist due to the isomerism of 24MCAFA under acid condition. OZ profile including CBFA and CSFA was roughly similar between commercial rice bran oils and processed foods containing the oils, suggesting that people might have often consumed CBFA and CSFA from rice bran oils and/or processed foods. Since different OZ species are known to have different functionality, this study opens the chance to explore more the contribution of CBFA and CSFA for human health and wellness.
Collapse
Affiliation(s)
- Kazue Sawada
- Tsuno Food Industrial Co., Ltd., Ito, Wakayama 649-7194, Japan; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Takuya Nakagami
- Tsuno Food Industrial Co., Ltd., Ito, Wakayama 649-7194, Japan
| | - Halida Rahmania
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Midori Matsuki
- Tsuno Food Industrial Co., Ltd., Ito, Wakayama 649-7194, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Tomoyo Mohri
- Applied Bioorganic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Yusuke Ogura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigefumi Kuwahara
- Applied Bioorganic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | | | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
43
|
Liu J, Jin S, Song H, Huang K, Li S, Guan X, Wang Y. Effect of extrusion pretreatment on extraction, quality and antioxidant capacity of oat (Avena Sativa L.) bran oil. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Novel bio-analytical technique for estimation of gamma oryzanol in rat plasma and brain homogenate using HPLC. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 78:515-524. [PMID: 32681901 DOI: 10.1016/j.pharma.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Gamma oryzanol, a component of rice bran oil is used for its anticancer and antihyperlipidemic properties. Bioanalytical method for rat plasma and brain homogenate was developed by HPLC system with a PDA detector in which drug elution was performed using C-18 column (4.6mm×150cm, 5μ) with 1% acetic acid in methanol: acetonitrile (65/35, v/v) as mobile phase at 1.2ml/min flow rate and detected at 326nm wavelength. Liquid liquid extraction method was chosen for extraction of oryzanol from plasma as well as brain homogenate as it provided highest recovery (95% in plasma, 85% in brain homogenate). Various extraction solvents for each body fluid were analysed, out of which highest recovery for plasma (95%), in acetone: IPA (1/1, v/v) and for brain homogenate (85%) in isopropyl alcohol (IPA) was observed. Observed linearity was between 500ng/mL-5000ng/mL. The interday and intraday precision (i.e. %RSD) was less than 10% and accuracy was±5%. Selectivity and matrix effect was checked and found as per USFDA criteria. Plasma samples were found to be stable over the analysis period, HQC samples were stable up to third cycle in freeze and thaw stability while LQC samples were stable over fourth cycle. The method proved to be simple, useful and is appropriate, for preclinical and experimental research.
Collapse
|
45
|
Akter S, Uddin KR, Sasaki H, Shibata S. Gamma Oryzanol Alleviates High-Fat Diet-Induced Anxiety-Like Behaviors Through Downregulation of Dopamine and Inflammation in the Amygdala of Mice. Front Pharmacol 2020; 11:330. [PMID: 32256371 PMCID: PMC7090127 DOI: 10.3389/fphar.2020.00330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background A high-fat diet (HFD) can induce obesity and metabolic disorders that are closely associated with cognitive impairments, and the progression of several psychiatric disorders such as anxiety. We have previously demonstrated the anxiolytic-like effect of Gamma oryzanol (GORZ) in chronic restraint stressed mice. Objective We studied the neurochemical and molecular mechanisms that underlie the preventive effect of GORZ in HFD-induced anxiety-like behaviors, monoaminergic dysfunction, and inflammation. Methods Eight-week-old Institute of Cancer (ICR) male mice weighing 33–34 g were divided into the following groups and free-fed for 8 weeks: control (14% casein, AIN 93M); HFD; HFD + GORZ (0.5% GORZ). Body weight gain was checked weekly. The anxiolytic-like effects of GORZ were examined via open-field test (OFT) and elevated plus maze (EPM) test. Brain levels of monoamines [5-hydroxy tryptamine (5-HT), dopamine (DA), and norepinephrine (NE)] and their metabolites [5-hydroxyindole acetic acid (5-HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG)], proinflammatory cytokines such as tumor necrosis factor-αα (Tnf-α) mRNA levels, and interleukin 1-β (Il-1β) mRNA levels in the cerebral cortex and amygdala were examined using high-performance liquid chromatography-electrochemical detection (HPLC-ECD), and real-time reverse transcription-polymerase chain reaction (RT-PCR), respectively. Results Mice fed a HFD for eight weeks showed anxiety-like behaviors in association with HFD-induced body weight gain. GORZ potentially blocked HFD-induced anxiety-like behaviors via significant improvement of the primary behavioral parameters in behavioral tests, with a minor reduction in HFD-induced body weight gain. Furthermore, GORZ treatment significantly downregulated HFD-induced upregulation of dopamine levels in the brain's amygdala. Significant reduction of the relative mRNA expression of Tnf-α and Il-1 β was also observed in the amygdala of HFD + GORZ mice, compared to HFD mice. Conclusions Our findings strongly suggest that 0.5% GORZ exerts anxiolytic-like effects, possibly through downregulation of dopamine, and via expression of proinflammatory cytokines Tnf-α and Il-1 β in the case of chronic HFD exposure.
Collapse
Affiliation(s)
- Salina Akter
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kazi Rasel Uddin
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
46
|
Takebayashi J, Oki T, Tsubota-Utsugi M, Ohkubo T, Watanabe J. Antioxidant Capacities of Plant-Derived Foods Commonly Consumed in Japan. J Nutr Sci Vitaminol (Tokyo) 2020; 66:68-74. [PMID: 32115456 DOI: 10.3177/jnsv.66.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To provide reliable data for high quality epidemiological studies examining the relationship between health and antioxidant intake from daily foods, 107 plant-derived food items (12 rice, bread and noodles, 5 potatoes and starches, 9 pulses, 6 nuts/seeds, 29 vegetables, 22 fruits, 5 mushrooms, 7 algae, and 12 beverages) were selected as commonly consumed foods in Japan based on dietary records, and their antioxidant capacities were evaluated by validated hydrophilic- and lipophilic-oxygen radical absorbance capacity (H-ORAC and L-ORAC) methods. The food items covered more than 60% of total food intake for each category on a weight basis. The H-ORAC and L-ORAC values were widely distributed at 0-210 and 0-30 μmol-Trolox equivalent/g, respectively. The foods possessing potent antioxidant capacities were found in vegetables and fruits as well as other plant-derived foods. In most foods measured, the H-ORAC values were much larger than the L-ORAC values, except for certain kinds of pulses, nuts/seeds, mushrooms, and algae. The ORAC data shown here is sufficient to accurately estimate the antioxidant intake from plant-derived foods in Japan, and should be useful in future epidemiological studies aiming to clarify the biological significance of ORAC values.
Collapse
Affiliation(s)
- Jun Takebayashi
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation and Health and Nutrition
| | - Tomoyuki Oki
- Graduate School of Nutritional Sciences, Nakamura Gakuen University
| | - Megumi Tsubota-Utsugi
- Department of Hygiene and Preventive Medicine, Iwate Medical University School of Medicine
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine
| | - Jun Watanabe
- Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
47
|
Li D, Zhang C, Zhang A, Qian L, Zhang D. Changes of liposome and antioxidant activity in immature rice during seed development. J Food Sci 2020; 85:86-95. [DOI: 10.1111/1750-3841.14967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Dan Li
- College of Food ScienceHeilongjiang Bayi Agricultural University Daqing People's Republic of China
| | - Chao Zhang
- College of Food ScienceHeilongjiang Bayi Agricultural University Daqing People's Republic of China
| | - Ai‐wu Zhang
- College of Food ScienceHeilongjiang Bayi Agricultural University Daqing People's Republic of China
| | - Li‐li Qian
- College of Food ScienceHeilongjiang Bayi Agricultural University Daqing People's Republic of China
| | - Dong‐jie Zhang
- College of Food ScienceHeilongjiang Bayi Agricultural University Daqing People's Republic of China
| |
Collapse
|
48
|
Martillanes S, Ramírez R, Amaro‐Blanco G, Ayuso‐Yuste MC, Gil MV, Delgado‐Adámez J. Effect of rice bran extract on the preservation of pork burger treated with high pressure processing. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sara Martillanes
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
- Agricultural Engineering School University of Extremadura Badajoz Spain
| | - Rosario Ramírez
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
| | - Gonzalo Amaro‐Blanco
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
| | - María Concepción Ayuso‐Yuste
- Agricultural Engineering School University of Extremadura Badajoz Spain
- University Research Institute of Agricultural Resource Badajoz Spain
| | - María Victoria Gil
- IACYS‐Unidad de Química Verde y Desarrollo Sostenible Department of Organic and Inorganic Chemistry Faculty of Sciences University of Extremadura Badajoz Spain
| | - Jonathan Delgado‐Adámez
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
| |
Collapse
|
49
|
Tan Y, Zhou C, Goßner S, Li Y, Engel KH, Shu Q. Phytic Acid Contents and Metabolite Profiles of Progenies from Crossing Low Phytic Acid OsMIK and OsMRP5 Rice ( Oryza sativa L.) Mutants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11805-11814. [PMID: 31566383 DOI: 10.1021/acs.jafc.9b05098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The impact of cross-breeding two low phytic acid (lpa) rice mutants on the content of phytic acid and the metabolite profile of the resulting double mutant was investigated. Progenies resulting from the cross of Os-lpa-XS110-1, a rice mutant carrying the myo-inositol kinase (OsMIK) mutated gene, and Os-lpa-XS110-2, with the multidrug resistance-associated protein ABC transporter gene 5 (OsMRP5) as the mutation target, were subjected to high-pressure ion chromatography. The reduction of the phytic acid content in the double mutant (-63%) was much more pronounced than in the single mutants (-26 and -47%). Gas chromatography-based metabolite profiling revealed a superimposition of the metabolite profiles inherited from the lpa progenitors in the double mutant progenies; the resulting metabolite signature was predominated by the OsMIK mutation effect. The study demonstrated that cross-breeding of two single lpa mutants can be employed to generate double lpa rice mutants showing both a significant reduction in the content of phytic acid and the imprinting of a specific mutation-induced metabolite signature.
Collapse
Affiliation(s)
- Yuanyuan Tan
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Chenguang Zhou
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Weihenstephan, D-85354 Freising , Germany
| | - Sophia Goßner
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Weihenstephan, D-85354 Freising , Germany
| | - Youfa Li
- Jiaxing Academy of Agricultural Sciences , Jiaxing 314016 , China
| | - Karl-Heinz Engel
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Weihenstephan, D-85354 Freising , Germany
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
50
|
Ina S, Hamada A, Kumagai H, Yamaguchi Y. Bioactive Ingredients in Rice (Oryza sativa L.) Function in the Prevention of Type 2 Diabetes. J Nutr Sci Vitaminol (Tokyo) 2019; 65:S113-S116. [PMID: 31619608 DOI: 10.3177/jnsv.65.s113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus (DM) greatly impacts human health worldwide as over 400 million patients suffer from DM-related symptoms. Type 2 DM accounts for more than 90% of DM and is caused mainly by unhealthy lifestyles, such as high-calorie and high-fat diets. Such undesirable eating habitats induce resistance to insulin resulting in high blood sugar levels that cause induction of various symptoms and complications of DM. Therefore, management of blood sugar levels is important for preventing DM. Our group has recently found that rice (Oryza sativa L.) contains anti-diabetes compounds. Here, we summarize the effect of the bioactive ingredients in rice on preventing type 2 DM.
Collapse
Affiliation(s)
- Shigenobu Ina
- Department of Chemistry and Life Science, Nihon University
| | - Aya Hamada
- Department of Chemistry and Life Science, Nihon University
| | - Hitomi Kumagai
- Department of Chemistry and Life Science, Nihon University
| | | |
Collapse
|