1
|
Alminderej FM, Saleh SM, Abdallah OI. Monitoring pesticide residues in pepper ( Capsicum annuum L.) from Al-Qassim region, Saudi Arabia: Occurrence, quality, and risk evaluations. Heliyon 2024; 10:e36805. [PMID: 39296155 PMCID: PMC11408781 DOI: 10.1016/j.heliyon.2024.e36805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
The Al-Qassim region, a prominent agricultural hub in Saudi Arabia, significantly contributes to the national production of vegetables and fruits. This study validated the standard EN-QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine 90 multiple pesticide residues in three categories of peppers: green bell, green hot and red chilli peppers. Validation criteria, including linearity range, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ), were within the acceptance range of the SANTE/11312/2021 guideline. The validated method was then used to analyse 536 pepper samples collected in 2023 from the Al-Qassim region of Saudi Arabia. The analysis of 536 pepper samples revealed that 394 samples (73.51 %) contained pesticide residues, with 126 (23.51 %) exceeding the established maximum residue limits (MRLs). The most frequently identified pesticide was imidacloprid (171 samples, 31.9 %) and acetamiprid (94 samples, 17.54 %), followed by bifenazate and difenoconazole, which were each detected in 66 samples (12.31 %). Among the remaining 32 pesticides, 24 were detected in 1%-10 % of the samples, whereas 8 were detected in <1 %. The 36 pesticides detected were classified into 14 insecticides (38.9 %), 14 fungicides (38.9 %) and 8 acaricides (22.2 %). Notably, the overall detection rate of the pesticides was relatively higher in red chilli peppers (232 %) compared with bell peppers (165 %), followed by green hot peppers (132 %). Red chilli peppers also showed the highest residue concentrations of various pesticides. Neonicotinoids and triazoles exhibited the highest detection rates in this study. The residue quality index (IqR) of the samples analysed fell into the categories excellent (26.49 %), good (31.72 %), and adequate (14.06 %), with 28.73 % of the samples deemed inadequate. Long-term dietary exposure was examined for adults and children. This study highlights the crucial role of continual observation in defending public health and securing the trade standardisation and safety.
Collapse
Affiliation(s)
- Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Osama I Abdallah
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Dokki, Giza, 12618, Egypt
- Food Safety Laboratory, Al-Qassim Municipality, Buraidah, Saudi Arabia
| |
Collapse
|
2
|
Cardoso RV, da Silva DVT, Santos-Sodré SDJL, Pereira PR, Freitas CS, Moterle D, Kanis LA, Silva LHMD, Rodrigues AMDC, Paschoalin VMF. Green Ultrasound-Assisted Extraction of Bioactive Compounds from Cumari-Do-Pará Peppers ( Capsicum chinense Jacq.) Employing Vegetable Oils as Solvents. Foods 2024; 13:2765. [PMID: 39272529 PMCID: PMC11394977 DOI: 10.3390/foods13172765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Capsaicin, carotenoids, and phenolic compounds from cumari-do-Pará peppers (Capsicum chinense Jacq.) harvested from two different locations in Pará, Brazil, and at different ripening stages were extracted by employing green methodologies as an alternative to organic solvents. Edible vegetable oils from soybeans (Glycine max), Brazilian nuts (Bertholettia excelsa H.B.), and palm olein were used in combination with ultrasonic-assisted extraction (UAE). The proximate composition of the pepper extracts and vitamin C were determined through AOAC methods, total phenolics and carotenoids were assessed by UV/Vis spectrophotometry, and capsaicin by high-performance liquid chromatography. Antioxidant cumari-do-Pará extract activities were evaluated by the ABTS radical scavenging and β-carotene/linoleic acid assays. The vegetable oils were suitable for extracting and preserving bioactive pepper compounds, especially mature ones harvested from Igarapé-Açu. Bioactive compound content and antioxidant activity varied with harvesting location and ripening stage. Soybean oil was the most effective in extracting bioactive pepper compounds, particularly carotenoids, with 69% recovery. Soybean oil extracts enriched in capsaicin, carotenoids, and phenolics obtained from cumari-do-Pará can be used as spices in foodstuffs and/or as additives in pharmaceutical and nutraceutical formulations. Edible vegetable oils combined with UAE are promising for bioactive compound extraction, representing an environmentally friendly, safe, low-cost, versatile, and fast alternative.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | | | - Patricia Ribeiro Pereira
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cyntia Silva Freitas
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Moterle
- Health Science Institute, South University of Santa Catarina (UNISul), Avenida Jose Acacio Moreira 787, Tubarão 88704-900, SC, Brazil
| | - Luiz Alberto Kanis
- Health Science Institute, South University of Santa Catarina (UNISul), Avenida Jose Acacio Moreira 787, Tubarão 88704-900, SC, Brazil
| | - Luiza Helena Meller da Silva
- Institute of Technology, Federal University of Para (UFPA), Augusto Corrêa 1, Guamá, Belém 66075-110, PA, Brazil
| | | | - Vania Margaret Flosi Paschoalin
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
3
|
Li S, Yang L, Wang M, Chen Y, Yu J, Chen H, Yang H, Wang W, Cai Z, Hong L. Effects of rootstocks and developmental time on the dynamic changes of main functional substances in 'Orah' ( Citrus reticulata Blanco) by HPLC coupled with UV detection. FRONTIERS IN PLANT SCIENCE 2024; 15:1382768. [PMID: 39263418 PMCID: PMC11388320 DOI: 10.3389/fpls.2024.1382768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Introduction Citrus fruit is rich in important functional constituents such as flavonoids, phenolic acids terpenes and other functional substances that play an important role for treating clinical diseases or controlling major agricultural diseases and pests. Plant secondary metabolites have become one of the most important resources of novel lead compounds, especially young citrus fruits contain multiple functional substances. 'Orah', a type of citrus reticulata, is known for its fine appearance, productivity, delicious sweetness, late-maturing characteristics, and is widely cultivated in China. Fruit thinning and rootstock selection are commonly used agronomic measures in its production to ensure its quality and tree vigor. However, few studies have demonstrated the effects of these agronomic measures on the functional substances of 'Orah'. Methods In this study, we used HPLC coupled with UV to detect the dynamic changes of fruit quality, 13 main flavonoids, 7 phenolic acids, 2 terpenes, synephrine and antioxidant capacity in both peel and pulp of citrus fruits grafted on four rootstocks (Red orange Citrus reticulata Blanco cv. red tangerine, Ziyang xiangcheng Citrus junos Sieb. ex Tanaka, Trifoliate orange Poncirus trifoliata L. Raf, and Carrizo citrange Citrus sinensis Osb.×P.trifoliate Raf) at six different developmental stages (from 90 DAF to 240 DAF). Results The results indicated that rootstock can significantly affect the contents of functional constituents and antioxidant capacity in 'Orah'. Additionally, it was found that pruning at either 90 DAF (days after flowering) or 150 DAF produced the most favorable outcomes for extracting functional substances. We also identified rootstock 'Trifoliate orange' has the highest total soluble solids (TSS) and 'Ziyang xiangcheng' to be the optimal in terms of comprehensive sensory of fruit quality, while 'Red orange' and 'Ziyang xiangcheng' are optimal in terms of functional substance quality, and 'Red orange' excels in antioxidant capacity. Discussion Overall, the findings demonstrate the important role of rootstocks and developmental stage in shaping fruit sensory quality and functional substance synthesis, providing valuable insights for guiding rootstock selection, determining thinning time, and utilizing pruned fruits in a more informed manner.
Collapse
Affiliation(s)
- Shuang Li
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lei Yang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Min Wang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Chen
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Jianjun Yu
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Hao Chen
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Haijian Yang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wu Wang
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhiyong Cai
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lin Hong
- Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
4
|
Wu C, Sun Q, Ren Z, Xia N, Wang Z, Sun H, Wang W. Combined effects of nitrogen fertilizer and biochar on the growth, yield, and quality of pepper. Open Life Sci 2024; 19:20220882. [PMID: 38911928 PMCID: PMC11193394 DOI: 10.1515/biol-2022-0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
A pot experiment was conducted to investigate the combined effects of different nitrogen fertilizer levels (5, 25, and 45 kg of pure nitrogen per 667 m²) and biochar concentrations (0, 0.7, 1.4, and 2.1%) on the growth, yield, and fruit quality of pepper. The findings indicated that a combination of 25 kg/667 m2 of nitrogen and either 0.7% or 1.4% biochar significantly enhanced plant growth, yield, and fruit quality. Specifically, the N2 treatment (25 kg of pure nitrogen per 667 m²) increased substrate porosity, alkali-hydrolyzed nitrogen content, and available phosphorus content. It also boosted root activity and superoxide dismutase activity in pepper leaves, resulting in increased yield and better fruit quality. Furthermore, the proper addition of biochar (0.7-1.4% by weight) enhanced the physical and chemical properties of the substrate, including increased chlorophyll content and enzyme activity in plants, thereby leading to improved overall plant growth, yield, and fruit quality.
Collapse
Affiliation(s)
- Chunyan Wu
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Qiyuan Sun
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zeyue Ren
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Nan Xia
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhuang Wang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, Jilin, 132001, China
| | - Hong Sun
- Institute of Facility Agricultural Technology, Jilin Provincial Academy of Agricultural Machinery, Changchun, Jilin, 130022, China
| | - Wei Wang
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| |
Collapse
|
5
|
Bhattarai A, Nimmakayala P, Davenport B, Natarajan P, Tonapi K, Kadiyala SS, Lopez-Ortiz C, Ibarra-Muñoz L, Chakrabarti M, Benedito V, Adjeroh DA, Balagurusamy N, Reddy UK. Genetic tapestry of Capsicum fruit colors: a comparative analysis of four cultivated species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:130. [PMID: 38744692 DOI: 10.1007/s00122-024-04635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/17/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE Genome-wide association study of color spaces across the four cultivated Capsicum spp. revealed a shared set of genes influencing fruit color, suggesting mechanisms and pathways across Capsicum species are conserved during the speciation. Notably, Cytochrome P450 of the carotenoid pathway, MYB transcription factor, and pentatricopeptide repeat-containing protein are the major genes responsible for fruit color variation across the Capsicum species. Peppers (Capsicum spp.) rank among the most widely consumed spices globally. Fruit color, serving as a determinant for use in food colorants and cosmeceuticals and an indicator of nutritional contents, significantly influences market quality and price. Cultivated Capsicum species display extensive phenotypic diversity, especially in fruit coloration. Our study leveraged the genetic variance within four Capsicum species (Capsicum baccatum, Capsicum chinense, Capsicum frutescens, and Capsicum annuum) to elucidate the genetic mechanisms driving color variation in peppers and related Solanaceae species. We analyzed color metrics and chromatic attributes (Red, Green, Blue, L*, a*, b*, Luminosity, Hue, and Chroma) on samples cultivated over six years (2015-2021). We resolved genomic regions associated with fruit color diversity through the sets of SNPs obtained from Genotyping by Sequencing (GBS) and genome-wide association study (GWAS) with a Multi-Locus Mixed Linear Model (MLMM). Significant SNPs with FDR correction were identified, within the Cytochrome P450, MYB-related genes, Pentatricopeptide repeat proteins, and ABC transporter family were the most common among the four species, indicating comparative evolution of fruit colors. We further validated the role of a pentatricopeptide repeat-containing protein (Chr01:31,205,460) and a cytochrome P450 enzyme (Chr08:45,351,919) via competitive allele-specific PCR (KASP) genotyping. Our findings advance the understanding of the genetic underpinnings of Capsicum fruit coloration, with developed KASP assays holding potential for applications in crop breeding and aligning with consumer preferences. This study provides a cornerstone for future research into exploiting Capsicum's diverse fruit color variation.
Collapse
Affiliation(s)
- Ambika Bhattarai
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA.
| | - Brittany Davenport
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
| | - Krittika Tonapi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
| | - Sai Satish Kadiyala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
| | - Lizbeth Ibarra-Muñoz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, 27275, Torreon, Coahuila, Mexico
| | - Manohar Chakrabarti
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Vagner Benedito
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, 27275, Torreon, Coahuila, Mexico.
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, USA.
| |
Collapse
|
6
|
Bouziane-Ait Bessai K, Brahmi-Chendouh N, Brahmi F, Dairi S, Mouhoubi K, Kermiche F, Bedjaoui K, Madani K, Boulekbache-Makhlouf L. Effect of storage on bioactivity of an Algerian spice "paprika": optimization of phenolic extraction and study of antioxidant and antibacterial activities. Food Sci Biotechnol 2024; 33:999-1011. [PMID: 38371693 PMCID: PMC10866826 DOI: 10.1007/s10068-023-01375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 02/20/2024] Open
Abstract
The effect of different storage methods (ambient temperature (A), refrigeration at 4 °C (R) and freezing at - 18 °C (F)), on the phytochemistry of an Algerian spice (paprika powder), was assessed. The optimized extract was obtained under the optimum conditions of ultrasound-assisted extraction (UAE) using response surface methodology (RSM) coupled with a Box-Behnken Design (BBD). This extract was evaluated for its total phenolics content (TPC), total flavonoids content (TFC) and its antioxidant and antibacterial activities. Under the optimum conditions (5 min for the irradiation time, 40% for the amplitude, 80% for ethanol concentration and 50% for solid-liquid ratio) the TPC was 12.23 ± 1.01 mg Gallic Acid Equivalent/gram of Dried Powder (mg GAE/g DP) which is very close with experimental assay. The TPC are better preserved at A whereas TFC and the antioxidant activity at F, and the antibacterial activity depend on the storage methods and the strains tested.
Collapse
Affiliation(s)
- Keltoum Bouziane-Ait Bessai
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
| | - Nabila Brahmi-Chendouh
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
| | - Fatiha Brahmi
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
| | - Sofiane Dairi
- Laboratory of Biomathematics, Biophysics, Biochemistry and Scientometrics, Department of Microbiology and Food Sciences, Faculty of Nature and Life Sciences, University of Jijel, Jijel, Algeria
| | - Khokha Mouhoubi
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
- Research Center in Agro-Food Technologies, Road of Targua Ouzemmour, 06000 Bejaia, Algeria
| | - Ferriel Kermiche
- Higher School of Food Sciences and Agrifood Industries, Avenue Ahmed Hamidouche, Oued Smar, Algiers, Algeria
| | - Kenza Bedjaoui
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
| | - Khodir Madani
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
- Research Center in Agro-Food Technologies, Road of Targua Ouzemmour, 06000 Bejaia, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory of Biomathematics, Biophysics, Biochemistry, and Scientometrics (L3BS), Faculty of Nature and Life Sciences, University of Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
7
|
Hu Q, Liu H, Wang R, Yao L, Chen S, Wang Y, Lv C. Capsaicin Attenuates LPS-Induced Acute Lung Injury by Inhibiting Inflammation and Autophagy Through Regulation of the TRPV1/AKT Pathway. J Inflamm Res 2024; 17:153-170. [PMID: 38223422 PMCID: PMC10787572 DOI: 10.2147/jir.s441141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Purpose Acute lung injury (ALI) is a severe pulmonary disease characterized by damage to the alveoli and pulmonary blood vessels, leading to severe impairment of lung function. Studies on the effect of capsaicin (8-methyl-N-geranyl-6-nonamide, CAP) on lipopolysaccharide (LPS)-induced ALI in bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B) are still limited. This study aimed to investigate the effect and specific mechanism by which CAP improves LPS-induced ALI. Methods The present study investigated the effect of CAP and the potential underlying mechanisms in LPS-induced ALI in vitro and vivo via RNA sequencing, Western blotting (WB), quantitative real-time reverse transcription PCR (qRT‒PCR), enzyme-linked immunosorbent assay (ELISA), and transmission electron microscopy (TEM). The TRPV1 inhibitor AMG9810 and the AKT agonist SC79 were used to confirm the protective effect of the TRPV1/AKT axis against ALI. The autophagy agonist rapamycin (Rapa) and the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin A1 (Baf-A1) were used to clarify the characteristics of LPS-induced autophagy. Results Our findings demonstrated that CAP effectively suppressed inflammation and autophagy in LPS-induced ALI, both in vivo and in vitro. This mechanism involves regulation by the TRPV1/AKT signaling pathway. By activating TRPV1, CAP reduces the expression of P-AKT, thereby exerting its anti-inflammatory and inhibitory effects on pro-death autophagy. Furthermore, prior administration of CAP provided substantial protection to mice against ALI induced by LPS, reduced the lung wet/dry ratio, decreased proinflammatory cytokine expression, and downregulated LC3 expression. Conclusion Taken together, our results indicate that CAP protects against LPS-induced ALI by inhibiting inflammatory responses and autophagic death through the TRPV1/AKT signaling pathway, presenting a novel strategy for ALI therapy.
Collapse
Affiliation(s)
- Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, People’s Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, People’s Republic of China
| | - Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, People’s Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, People’s Republic of China
| | - Ruiyu Wang
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Li Yao
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Shikun Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, People’s Republic of China
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|
8
|
Schulz M, Hübner F, Humpf HU. Evaluation of Food Intake Biomarkers for Red Bell Peppers in Human Urine Based on HPLC-MS/MS Analysis. Mol Nutr Food Res 2024; 68:e2300464. [PMID: 38015099 DOI: 10.1002/mnfr.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Indexed: 11/29/2023]
Abstract
SCOPE The validation of dietary biomarkers is essential for the use in objective and quantitative assessment of the human dietary intake. In this study, the urinary excretion of previously identified potential biomarkers after intake of red bell peppers is analyzed. METHODS AND RESULTS The urine samples obtained after a two-phase dietary intervention study in which 14 volunteers participated are quantitatively analyzed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) after an extensive validation. In the first phase, the volunteers abstain completely from bell peppers and paprika products (control group) and in the second phase, the volunteers consume a defined amount of fresh red bell peppers (case group). After analysis, all potential biomarkers show high dispersions of their concentration, indicating interindividual differences. The glucuronidated apocarotenoid (compound 1), which probably resulted from the main carotenoids of red Capsicum fruits, shows a rapid urinary excretion. The other glucuronidated metabolites (compounds 2-8), described as potential derivatives of capsianosides from Capsicum, show a slightly delayed but longer urinary excretion. CONCLUSIONS A correlation between an intake of red bell pepper and the urinary excretion of recently described potential biomarkers is observed. Due to large interindividual differences, it is reasonable to assume that at least the qualitative detection of the consumption of bell peppers and possibly all Capsicum fruits is feasible.
Collapse
Affiliation(s)
- Mareike Schulz
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstrasse 45, 48149, Münster, Germany
| |
Collapse
|
9
|
Yeboah S, Hong SJ, Park Y, Choi JH, Eum HL. Postharvest Quality Improvement of Bell Pepper ( Capsicum annuum L. cv Nagano) with Forced-Air Precooling and Modified Atmosphere Packaging. Foods 2023; 12:3961. [PMID: 37959080 PMCID: PMC10650560 DOI: 10.3390/foods12213961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Optimum postharvest storage conditions increase the postharvest quality and shelf life of horticultural crops. The effects of forced-air precooling (FAP) and modified atmosphere packaging (MAP) on shelf life, physicochemical quality, and health-promoting properties of bell pepper (Capsicum annuum L. cv. Nagano) harvested at 90 and 50% coloring stages in May and July respectively, stored at 11 °C, 95% relative humidity were assessed. Fruits were subjected to four treatments: FAP + 30 μm polyethylene liner (FOLO); FAP-only (FOLX); 30 μm polyethylene liner-only (FXLO); and control (FXLX). The quality attributes, viz. weight loss, firmness, color, soluble solids content (SSC), soluble sugars, total phenolic content (TPC), total flavonoid content (TFC), 2,2-dephenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS) were evaluated. The investigated parameters differed significantly (p < 0.05) among treatments except for soluble sugars. FOLO maintained sensory quality (weight loss, firmness, and color), physicochemical (SSC and soluble sugars), and health-promoting properties compared to other treatments during storage. The 50% coloring fruits had a huge variation between treatments than 90% coloring. The results revealed more TPC and antioxidant capacity in the 50% than in the 90% coloring fruits. The study highlights the need to consider the ideal fruit coloring stage at harvest under the effect of FAP and MAP treatments in preserving bell pepper's postharvest quality and shelf life.
Collapse
Affiliation(s)
- Samuel Yeboah
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea;
- Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Sae Jin Hong
- Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Yeri Park
- Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Jeong Hee Choi
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Hyang Lan Eum
- Postharvest Technology Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
10
|
Lahbib K, Bnejdi F, Pandino G, Lombardo S, El-Gazzah M, El-Bok S, Dabbou S. Changes in Yield-Related Traits, Phytochemical Composition, and Antioxidant Activity of Pepper ( Capsicum annuum) Depending on Its Variety, Fruit Position, and Ripening Stage. Foods 2023; 12:3948. [PMID: 37959067 PMCID: PMC10648119 DOI: 10.3390/foods12213948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The relationship between fruit position, ripening stage, and variety has not been well studied in pepper plants. To understand the interaction of these factors, a diversity of phytochemical traits as well as antioxidant activity were investigated with agronomic traits in eleven hot pepper varieties collected from the upper and lower parts of the plant and harvested at three maturity stages (green, orange, and red). Capsaicin content (CAP) showed a relatively high genetic effect; on the contrary, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity were more affected by the ripening stage and fruit position. The CAP values ranged from 0.29 ('FKbM') to 0.77 ('Bka') mg CAP equivalents g-1 DW. The ripening stage was the predominant factor for TPC, TFC, DPPH, and FRAP. There was no significant interaction between A × FP, A × RS, and FP × RS for all agro-morphological fruit traits. Variety, fruit position, and ripening stage effects are more significant than all interactions calculated. Lower fruit positions in all samples showed a maximum fruit size, whereas phytochemical traits and yield per plant were relevant in the upper parts, and Phytochemical traits and yield per plant were significantly correlated. From PCA and cluster analysis, all varieties showed the highest biochemical and antioxidant levels with moderate fruit size, except the 'Bel' variety that showed the smallest fruit traits with high yields, and the 'FKbM' and 'FKbK' varieties that showed the highest fruit size but low yields. This study supplies information to identify interesting cultivars with considerable levels of bioactive and phytochemical metabolites, which is useful for breeding programs of novel varieties.
Collapse
Affiliation(s)
- Karima Lahbib
- Laboratory of Biodiversity, Biotechnology, and Climate Changes, Faculty of Sciences of Tunis El Manar El Manar II, Tunis 2092, Tunisia; (F.B.); (M.E.-G.); (S.E.-B.)
| | - Fethi Bnejdi
- Laboratory of Biodiversity, Biotechnology, and Climate Changes, Faculty of Sciences of Tunis El Manar El Manar II, Tunis 2092, Tunisia; (F.B.); (M.E.-G.); (S.E.-B.)
| | - Gaetano Pandino
- Department of Agriculture, Food and Environment, University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (G.P.); (S.L.)
| | - Sara Lombardo
- Department of Agriculture, Food and Environment, University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (G.P.); (S.L.)
| | - Mohamed El-Gazzah
- Laboratory of Biodiversity, Biotechnology, and Climate Changes, Faculty of Sciences of Tunis El Manar El Manar II, Tunis 2092, Tunisia; (F.B.); (M.E.-G.); (S.E.-B.)
| | - Safia El-Bok
- Laboratory of Biodiversity, Biotechnology, and Climate Changes, Faculty of Sciences of Tunis El Manar El Manar II, Tunis 2092, Tunisia; (F.B.); (M.E.-G.); (S.E.-B.)
| | - Samia Dabbou
- Faculty of Dental Medicine, University of Monastir, Avicenne Street, Monastir 5019, Tunisia
- Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5019, Tunisia
| |
Collapse
|
11
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
12
|
Alonso-Villegas R, González-Amaro RM, Figueroa-Hernández CY, Rodríguez-Buenfil IM. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules 2023; 28:molecules28104239. [PMID: 37241977 DOI: 10.3390/molecules28104239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.
Collapse
Affiliation(s)
- Rodrigo Alonso-Villegas
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Av. Pascual Orozco s/n, Campus 1, Santo Niño, Chihuahua 31350, Chihuahua, Mexico
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa 91073, Veracruz, Mexico
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Veracruz, Mexico
| | - Ingrid Mayanin Rodríguez-Buenfil
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Subsede Sureste, Tablaje Catastral, 31264, Carretera Sierra Papacal-Chuburna Puerto km 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico
| |
Collapse
|
13
|
Karaman K, Pinar H, Ciftci B, Kaplan M. Characterization of phenolics and tocopherol profile, capsaicinoid composition and bioactive properties of fruits in interspecies (Capsicum annuum X Capsicum frutescens) recombinant inbred pepper lines (RIL). Food Chem 2023; 423:136173. [PMID: 37209546 DOI: 10.1016/j.foodchem.2023.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
In this study, 104 RIL (Recombinant Inbred Pepper Lines: F6) populations which generated by selfing Capsicum annuum (Long pepper) × Capsicum frutescens (PI281420) F6 population were characterized in terms of detailed bioactive properties, major phenolic composition, tocopherol and capsaicinoid profile. Total phenolics, flavonoid and total anthocyanin contents of the red pepper lines were in the range of 7.06-17.15 mg gallic acid equivalent (GAE)/g dw, 1.10-5.46 mg catechin equivalent (CE)/g dw and 7.9-516.6 mg/kg dw extract, respectively. Antiradical activity and antioxidant capacity values also ranged between 18.99 and 49.73% and 6.97-16.47 mg ascorbic acid equivalent (AAE)/kg dw, respectively. Capsaicin and dihydrocapsaicin levels showed a wide variance with the range of 27.9-1405.9 and 12.3-640.4 mg/100 g dw, respectively. Scoville heat unit revealed that the 95% of the peppers were highly pungent. The major tocopherol was alpha tocopherol for the pepper samples with the highest level of 1078.4 µg/g dw. The major phenolics were detected as p-coumaric acid, ferulic acid, myricetin, luteolin and quercetin. Pepper genotypes showed significant differences in terms of the characterized properties and principal component analysis was applied successfully to reveal the similar genotypes.
Collapse
Affiliation(s)
- Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye.
| | - Hasan Pinar
- Department of Horticulture, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Beyza Ciftci
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| | - Mahmut Kaplan
- Department of Field Crops, Faculty of Agriculture, University of Erciyes, Kayseri, Turkiye
| |
Collapse
|
14
|
Hill T, Cassibba V, Joukhadar I, Tonnessen B, Havlik C, Ortega F, Sripolcharoen S, Visser BJ, Stoffel K, Thammapichai P, Garcia-Llanos A, Chen S, Hulse-Kemp A, Walker S, Van Deynze A. Genetics of destemming in pepper: A step towards mechanical harvesting. Front Genet 2023; 14:1114832. [PMID: 37007971 PMCID: PMC10064014 DOI: 10.3389/fgene.2023.1114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: The majority of peppers in the US for fresh market and processing are handpicked, and harvesting can account for 20-50% of production costs. Innovation in mechanical harvesting would increase availability; lower the costs of local, healthy vegetable products; and perhaps improve food safety and expand markets. Most processed peppers require removal of pedicels (stem and calyx) from the fruit, but lack of an efficient mechanical process for this operation has hindered adoption of mechanical harvest. In this paper, we present characterization and advancements in breeding green chile peppers for mechanical harvesting. Specifically, we describe inheritance and expression of an easy-destemming trait derived from the landrace UCD-14 that facilitates machine harvest of green chiles. Methods: A torque gauge was used for measuring bending forces similar to those of a harvester and applied to two biparental populations segregating for destemming force and rate. Genotyping by sequencing was used to generate genetic maps for quantitative trait locus (QTL) analyses. Results: A major destemming QTL was found on chromosome 10 across populations and environments. Eight additional population and/or environment-specific QTL were also identified. Chromosome 10 QTL markers were used to help introgress the destemming trait into jalapeño-type peppers. Low destemming force lines combined with improvements in transplant production enabled mechanical harvest of destemmed fruit at a rate of 41% versus 2% with a commercial jalapeńo hybrid. Staining for the presence of lignin at the pedicel/fruit boundary indicated the presence of an abscission zone and homologs of genes known to affect organ abscission were found under several QTL, suggesting that the easy-destemming trait may be due to the presence and activation of a pedicel/fruit abscission zone. Conclusion: Presented here are tools to measure the easy-destemming trait, its physiological basis, possible molecular pathways, and expression of the trait in various genetic backgrounds. Mechanical harvest of destemmed mature green chile fruits was achieved by combining easy-destemming with transplant management.
Collapse
Affiliation(s)
- Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Vincenzo Cassibba
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Israel Joukhadar
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Bradley Tonnessen
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Charles Havlik
- Los Lunas Agricultural Science Center, Los Lunas, NM, United States
| | - Franchesca Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | | | | | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Paradee Thammapichai
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Armando Garcia-Llanos
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Shiyu Chen
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Amanda Hulse-Kemp
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Walker
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Sheng O, Yin Z, Huang W, Chen M, Du M, Kong Q, Fernie AR, Yi G, Yan S. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening. Food Chem 2023; 403:134380. [DOI: 10.1016/j.foodchem.2022.134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
|
16
|
Choi MH, Kim MH, Han YS. Physicochemical properties and antioxidant activity of colored peppers ( Capsicum annuum L.). Food Sci Biotechnol 2023; 32:209-219. [PMID: 36647520 PMCID: PMC9839908 DOI: 10.1007/s10068-022-01177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023] Open
Abstract
Peppers are spices consumed all around the world. This study evaluated the physicochemical properties and antioxidant activities of red, orange, yellow, green, and purple peppers. Total capsaicinoids showed the highest concentration in the green pepper (2416.50 µg/g). Vitamin C showed similar concentrations in all peppers (28.90-30.95 mg/g), except for the purple pepper (25.59 mg/g). Chlorophyll was abundant in the green and the purple peppers (280.36 and 102.13 mg/100 g). Total carotenoid was abundant in the red and the orange peppers (237.04 and 276.94 mg/100 g). Total anthocyanin was detected only in the purple pepper (67.13 mg/100 g). Total flavonoid showed a high concentration in the green and the purple peppers (24.27 and 22.27 CAE mg/g). The yellow pepper showed the highest antioxidant activity according to total polyphenol, DPPH radical scavenging activity, ABTS radical scavenging activity and reducing power assays. Therefore, peppers showed potential for the development of functional food materials.
Collapse
Affiliation(s)
- Mun-Hee Choi
- Department of Food & Nutrition, Sookmyung Women’s University, 100 Cheongpa-ro 47gil, Seoul, 04310 Korea
| | - Myung-Hyun Kim
- Department of Food & Nutrition, Sookmyung Women’s University, 100 Cheongpa-ro 47gil, Seoul, 04310 Korea
| | - Young-Sil Han
- Department of Food & Nutrition, Sookmyung Women’s University, 100 Cheongpa-ro 47gil, Seoul, 04310 Korea
| |
Collapse
|
17
|
Chronic Gastric Ulcer Healing Actions of the Aqueous Extracts of Staple Plant Foods of the North-West, Adamawa, and West Regions of Cameroon. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2657278. [PMID: 36654868 PMCID: PMC9842419 DOI: 10.1155/2023/2657278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Aim This study is aimed at establishing phenolic compound profile and assessing the possible antiulcer activities of aqueous extracts of some staple plant foods from the West and North-West regions of Cameroon against chronic gastric ulcer models in rats. Materials and Methods Phenolic constituents of extracts were evaluated using HPLC-DAD. Aqueous extracts of Corchorus olitorius, Solanum nigrum, Vigna unguiculata, Triumfetta pentandra, "nkui" spices, and "yellow soup" spices were tested at two doses (200 and 400 mg/kg). After treatments, animals were sacrificed, healing percentage and antioxidant status (catalase, superoxide dismutase, and glutathione peroxidase) were evaluated, and histological examination of gastric mucosa was realized. Results HPLC-DAD revealed that p-hydroxybenzoic and protocatechuic acids were the phenolic compound present in all extracts. Oral administration of extracts (200 and 400 mg/kg) significantly reduced ulcer surface value and significantly increased mucus production compared to the control groups (p < 0.05). Histological study supported the observed healing activity of different extracts characterized by a reduced inflammatory response. Moreover, administration of aqueous extracts increased the activity of antioxidant enzymes. Conclusion This study revealed that aqueous extracts of Solanum nigrum, Corchorus olitorius, Vigna unguiculata, Triumfetta pentandra, "yellow soup" spices, and "nkui" spices possess healing antiulcer effects against models of gastric ulcers. The antiulcer mechanisms involved may include increase of gastric mucus production and improvement of the antioxidant activity of gastric tissue. These activities may be due to the phenolic compounds identified in the extracts, especially p-hydroxybenzoic and protocatechuic acids present in all extracts and with known antioxidant, cytoprotective, and healing properties. However, all the diets may promote the healing process of chronic ulcers caused by excessive alcohol consumption/stress.
Collapse
|
18
|
Olveira-Bouzas V, Pita-Calvo C, Romero-Rodríguez MÁ, Vázquez-Odériz ML. Evaluation of a Packaging System in Pallets Under Modified Atmosphere to Extend the Shelf-life of ‘Padrón’ Peppers Stored at Refrigeration Temperature. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractA modified atmosphere packaging (MAP) system in pallets was developed for ‘Padrón’ peppers as a way to extend their shelf-life while maintaining good fruit quality. Peppers were stored at 6 °C in cardboard boxes arranged on pallets wrapped in micro-perforated low-density polyethylene (LDPE) bags. Physico-chemical (moisture, firmness, color, chlorophylls, carotenoids, ascorbic acid, and total phenolic content) and sensory analysis were carried out after 0, 7, 14, and 21 days of storage. An initial mixture of 11.8% O2–8.5% CO2 prevented anaerobic conditions and kept suitable CO2 levels throughout the entire storage period. Silica gel was tested as a moisture absorbent and considerably reduced water vapor condensation inside packaging bags. The MAP system developed maintained the shelf-life of peppers until the end of the 21-day storage period. The fruit always showed a good appearance and color. No rotting or other types of undesirable alterations were observed. MAP markedly reduced the fraction of peppers with water loss as evidenced by a minimum percentage of fruit with wrinkles (12.5%) as compared to unpackaged samples (75%). Good pigment stability was also observed.
Collapse
|
19
|
Janiszewska-Turak E, Witrowa-Rajchert D, Rybak K, Rolof J, Pobiega K, Woźniak Ł, Gramza-Michałowska A. The Influence of Lactic Acid Fermentation on Selected Properties of Pickled Red, Yellow, and Green Bell Peppers. Molecules 2022; 27:molecules27238637. [PMID: 36500730 PMCID: PMC9741357 DOI: 10.3390/molecules27238637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Red, yellow, and green peppers are vegetables rich in natural pigments. However, they belong to seasonal vegetables and need to be treated to prolong their shelf life. One new approach to processing vegetables is to pickle them using lactic acid bacteria. The use of such a process creates a new product with high health value, thanks to the active ingredients and lactic acid bacteria. Therefore, this study aimed to evaluate the effect of the applied strain of lactic acid bacteria (LAB) on the chemical properties, including the content of active compounds (pigments) and the physical properties of the peppers. Levilactobacillus brevis, Limosilactobacillus fermentum, and Lactoplantibacillus plantarum were used for fermentation and spontaneous fermentation. The pigments, polyphenols content, and antioxidant properties were determined in the pickled peppers, as well as sugar content, color, dry matter, texture properties, and the count of lactic acid bacteria. In all samples, similar growth of LAB was observed. Significant degradation of chlorophylls into pheophytins was observed after the fermentation process. No significant differences were observed in the parameters tested, depending on the addition of dedicated LAB strains. After the fermentation process, the vitamin C and total polyphenols content is what influenced the antioxidant activity of the samples. It can be stated that the fermentation process changed the red bell pepper samples in the smallest way and the green ones in the highest way.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
- Correspondence: (E.J.-T.); (A.G.-M.); Tel.: +48-22-593-7366 (E.J.-T.); +48-61-848-7327 (A.G.-M.)
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Joanna Rolof
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Łukasz Woźniak
- Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
- Correspondence: (E.J.-T.); (A.G.-M.); Tel.: +48-22-593-7366 (E.J.-T.); +48-61-848-7327 (A.G.-M.)
| |
Collapse
|
20
|
Isa DA, Kim HT. Cytochrome b Gene-Based Assay for Monitoring the Resistance of Colletotrichum spp. to Pyraclostrobin. THE PLANT PATHOLOGY JOURNAL 2022; 38:616-628. [PMID: 36503190 PMCID: PMC9742800 DOI: 10.5423/ppj.oa.06.2022.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Resistance to pyraclostrobin due to a single nucleotide polymorphism at 143rd amino acid position on the cytochrome b gene has been a major source of concern in red pepper field infected by anthracnose in Korea. Therefore, this study investigated the response of 24 isolates of C. acutatum and C. gloeosporioides isolated from anthracnose infected red pepper fruits using agar dilution method and other molecular techniques such as cytochrome b gene sequencing, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and allele-specific polymerase chain reaction (PCR). The result showed that four isolates were resistant to pyraclostrobin on agar dilution method and possessed GCT (alanine) codon at 143rd amino acid position, whereas the sensitive isolates possessed GGT (glycine). Furthermore, this study illustrated the difference in the cytochrome b gene structure of C. acutatum and C. gloeosporioides. The use of cDNA in this study suggested that the primer Cacytb-P2 can amplify the cytochrome b gene of both C. acutatum and C. gloeosporioides despite the presence of various introns in the cytochrome b gene structure of C. gloeosporioides. The use of allele-specific PCR and PCR-RFLP provided clear difference between the resistant and sensitive isolates. The application of molecular technique in the evaluation of the resistance status of anthracnose pathogen in red pepper provided rapid, reliable, and accurate results that can be helpful in the early adoption of fungicide-resistant management strategies for the strobilurins in the field.
Collapse
Affiliation(s)
| | - Heung Tae Kim
- Corresponding author: Phone, FAX) +82-43-271-4414, E-mail)
| |
Collapse
|
21
|
Bal S, Sharangi AB, Upadhyay TK, Khan F, Pandey P, Siddiqui S, Saeed M, Lee HJ, Yadav DK. Biomedical and Antioxidant Potentialities in Chilli: Perspectives and Way Forward. Molecules 2022; 27:6380. [PMID: 36234927 PMCID: PMC9570844 DOI: 10.3390/molecules27196380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being.
Collapse
Affiliation(s)
- Solanki Bal
- Department of Vegetable Science, BCKV-Agricultural University, Mohanpur 741252, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur 741252, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
| | - Samra Siddiqui
- Department Health Services Management, College of Public Health and Health Informatics, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Hae-Jeung Lee
- Department of Food & Nutrition, College of Bionano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Korea
| | - Dharmendra K. Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Hambakmoeiro 191, Gachon University, Incheon 21924, Korea
| |
Collapse
|
22
|
Effects of Chlorella extracts on growth of Capsicum annuum L. seedlings. Sci Rep 2022; 12:15455. [PMID: 36104483 PMCID: PMC9474868 DOI: 10.1038/s41598-022-19846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The long-term application of chemical fertilizers has caused to the farmland soil compaction, water pollution, and reduced the quality of vegetable to some extent. So, its become a trend in agriculture to find new bio-fertilizers. Chlorella extract is rich in amino acids, peptides, nucleic acids, growth hormones, potassium, calcium, magnesium, iron, zinc ions, vitamin E, B1, B2, C, B6, folic acid, free biotin and chlorophyll. Chlorella extract can promote biological growth, mainly by stimulating the speed of cell division, thereby accelerating the proliferation rate of cells and playing a role in promoting plant growth. Whether Chlorella extract can be used to improve the growth of pepper (Capsicum annuum), needs to be verified. In current study, a pepper variety 'Chao Tian Jiao' was used as experiment material, by determining the changes of the related characteristics after spraying the seedlings with Chlorella extract, and its effect on growth of Capsicum annuum plants was investigated. The results showed that the Chlorella extract significantly increased plant height of pepper seedlings (treatment: 32.2 ± 0.3 cm; control: 24.2 ± 0.2 cm), stem diameter (treatment: 0.57 ± 0.02 cm; control: 0.41 ± 0.03 cm) and leaf area (treatment: 189.6 ± 3.2 cm2; control: 145.8 ± 2.5 cm2). Particularly, the pepper seedlings treated with Chlorella extract, developed the root system in better way, significantly increased the chlorophyll a, and the activities of SOD, POD and CAT enzymes were also improved significantly. Based on our results, we can speculate that it is possible to improve the growth of Capsicum annuum seedlings and reduce the application of chemical fertilizers in pepper production by using Chlorella extract.
Collapse
|
23
|
Fernando AJ, Amaratunga S. Application of far-infrared radiation for sun-dried chili pepper (Capsicum annum L.): drying characteristics and color during roasting. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3781-3787. [PMID: 34921411 DOI: 10.1002/jsfa.11726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chili is hygroscopic and needs a fast-drying method before feeding into pulverizers. The far-infrared radiation (FIR) roasting technique provides various benefits, such as higher drying rates within a short duration, reduction of mycotoxins, and improvement in the textural quality of agricultural produce. In addition, thin-layer modeling supports understanding the drying kinetics of agricultural produce. Therefore, the objective of this research was to study the thin-layer drying characteristics and color of whole chili pod and its components (i.e. seeds, pedicel, and placenta) of sun-dried chili during FIR roasting. The samples were dried at 7.76 μm (100 °C), 6.12 μm (200 °C), 5.056 μm (300 °C), and 4.30 μm (400 °C) by exposing them to FIR in a single layer and the drying kinetics were studied using the Midilli model. Further, the color variation during FIR roasting was studied. RESULTS FIR roasting of chili pods and their components (i.e. seeds, pedicel, and placenta) shows a falling rate drying period at each wavelength. The moisture content decreased with decreasing FIR wavelength. The ∆E values for pods, pedicel, and placenta were increased during FIR roasting. The Midilli model results in R2 and root-mean-square error value ranges of 0.7563-1.000 and 5 × 10-8 -0.1238 respectively for the current study. The Midilli model at 300 °C shows that the FIR has minor variation compared with other FIR temperatures. CONCLUSION FIR technology can be implemented to roast chili pods and their components (i.e. seeds, pedicel, and placenta) within a short period. Further, the application of FIR for roasting purposes desirably increases the color variation. The Midilli model can effectively describe the drying kinetics of the chili pods and their components during FIR roasting. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- A Jayaruwani Fernando
- Department of Agricultural Engineering and Soil Science, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Sri Lanka
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sanath Amaratunga
- Department of Agricultural Engineering, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
24
|
Cervantes-Hernández F, Ochoa-Alejo N, Martínez O, Ordaz-Ortiz JJ. Metabolomic Analysis Identifies Differences Between Wild and Domesticated Chili Pepper Fruits During Development ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:893055. [PMID: 35769305 PMCID: PMC9234519 DOI: 10.3389/fpls.2022.893055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Capsicum spp. members are a rich source of specialized compounds due to their secondary metabolism. Some metabolic pathways have suffered modifications during the domestication process and improvement of agricultural traits. Here, we compared non-targeted LC-MS profiles from several areas: wild accessions (C. annuum L. var. glabriusculum), domesticated cultivars (C. annuum L.), and the F1 progeny of a domesticated, and a wild accession cross (in both directions) throughout seven stages of fruit development of chili pepper fruits. The main detected differences were in glycerophospholipid metabolism, flavone and flavonol biosynthesis, sphingolipid metabolism, and cutin biosynthesis. The domesticated group exhibited a higher abundance in 12'-apo-β-carotenal, among others capsorubin, and β-tocopherol. Palmitic acid and derivates, terpenoids, and quercitrin were prevalent in the wild accessions. F1 progeny showed a higher abundance of capsaicin, glycol stearate, and soyacerebroside I. This work supports evidence of the side-affectation of trait selection over the metabolism of chili pepper fruit development. Furthermore, it was also observed that there was a possible heterosis effect over the secondary metabolism in the F1 progeny.
Collapse
Affiliation(s)
- Felipe Cervantes-Hernández
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico
| | - Octavio Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| | - José Juan Ordaz-Ortiz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Irapuato, Mexico
| |
Collapse
|
25
|
Nguyen VT, Tran LH, Van TK, Le DV. Determination of Chlorpyrifos Pesticide Residue in Bell Peppers Grown in Dalat (Vietnam) by GC-MS/MS Using QuEChERS Extraction. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482205015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
El-Beltagi HS, Ahmad I, Basit A, Shehata WF, Hassan U, Shah ST, Haleema B, Jalal A, Amin R, Khalid MA, Noor F, Mohamed HI. Ascorbic Acid Enhances Growth and Yield of Sweet Peppers (Capsicum annum) by Mitigating Salinity Stress. GESUNDE PFLANZEN 2022; 74:423-433. [DOI: 10.1007/s10343-021-00619-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 10/26/2023]
|
27
|
Effect of Fruit Weight and Fruit Locule Number in Bell Pepper on Industrial Waste and Quality of Roasted Pepper. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bell pepper (Capsicum annuum L.), one of the most consumed vegetables worldwide, shows great differences between its diverse varieties. These differences affect the fruit type, size and shape. Food preservation techniques prolong the availability of sweet pepper. Roasted pepper is a product marketed with the European recognition of Protected Geographical Indication ‘Pimiento Asado del Bierzo’. The objective of this work was to analyse the effect of the fruit weight and fruit locule number of the industrial fresh pepper on quality and roasted pepper yield. Large trilocular fruits and large tetralocular fruits reached higher roast yield and uniformity than small trilocular fruits. Regardless of fruit locule number and fruit weight, the overall quality of all the samples of roasted pepper was categorised as very good. Large tetralocular and large trilocular fruits are the most appropriate peppers for industrial purposes, whereas small trilocular fruits should be intended for the fresh product market. This easy method of sorting bell pepper fruit attending to fruit weight will decrease the amount of pepper waste in the industrial roasting process (around 18%), while maintaining the high overall quality of the final product. Moreover, the faster peeling of large peppers will also contribute to increasing the productivity of the industrial processing of roasted pepper.
Collapse
|
28
|
Al-Ani MTH, Ulaiwi WS, Abd-Alhameed WM. Nаtural Antioxidants and their Effect on Human Health. EARTHLINE JOURNAL OF CHEMICAL SCIENCES 2022:115-129. [DOI: 10.34198/ejcs.8122.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Fruit, vegetables and spice antioxidants are recognized for their important role in human health against some diseases for instance cancer and cardiovascular diseases. Phenolic antioxidants, vitamins (C and E), flavonoids, and cаtеchins are among the major nаturally bioavailable antioxidants. Nаtural antioxidants positive impact on human health can be summarized on their potential to act against inflammation, bacteria, aging, oxidаtive stress and cаncer. The evaluation of antioxidants bioavailability in food and medicinal plants are essential to understand the best antioxidant sources and to elevate their use in food, pharmaceuticals and food additives.
Collapse
|
29
|
Kádár CB, Păucean A, Simon E, Vodnar DC, Ranga F, Rusu IE, Vișan VG, Man S, Chiș MS, Drețcanu G. Dynamics of Bioactive Compounds during Spontaneous Fermentation of Paste Obtained from Capsicum ssp.-Stage towards a Product with Technological Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:1080. [PMID: 35448807 PMCID: PMC9025496 DOI: 10.3390/plants11081080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Six cultivars of chili (Cherry, Bulgarian Chilli, Cayenne, Fatalii, Habanero, and Carolina Reaper) from two species (Capsicum annuum and Capsicum chinense) have been studied. Anaerobic, spontaneous fermentation of pure chili paste was conducted for 21 days at 20 °C. The unfermented (UCP) and fermented chili pastes (FCP) were both subjected to physicochemical and microbiological characterization consisting of capsaicinoid, ascorbic acid, short-chain organic acids, phenolic compounds, and simple sugars analysis. Cell viability for Lactic Acid Bacteria (LAB) and Leuconostoc was determined before and after fermentation. Results indicate that capsaicinoids are very stable compounds, as notable differences between unfermented and fermented samples could not be seen. Carolina Reaper and Fatalii cultivars were amongst the most pungent, whereas Cherry, Cayenne, and Bulgarian types were low to moderate in pungency. Average loss of total ascorbic acid was 19.01%. Total phenolic compounds ranged between 36.89−195.43 mg/100 g for the fresh fruits and 35.60−180.40 mg/100 g for the fermented product. Losses through fermentation were not significant (p < 0.05). Plate counts indicated low initial numbers for LAB in the fresh samples, values ranging between 50−3700 CFU/g (colony-forming units). After fermentation, day 21, concentration of LAB (3.8 × 106−6.2 × 108 CFU/g) was high in all samples. Fermented chilies paste with enhanced biochemical and bacterial properties might further be used in the technology of vegetable (brining) or meat (curing) products, processes that generally involve the fermenting activity of different microorganisms, especially (LAB). Thus, the purpose of this research was the investigation of biochemical and microbial transformations that naturally occur in fermented chilies with a future perspective towards technological applications in cured meat products.
Collapse
Affiliation(s)
- Csaba Balázs Kádár
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Elemér Simon
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| | - Dan Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| | - Iulian Eugen Rusu
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Vasile-Gheorghe Vișan
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Simona Man
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Georgiana Drețcanu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| |
Collapse
|
30
|
Coronel E, Mereles L, Caballero S, Alvarenga N. Crushed Capsicum chacoense Hunz Fruits: A Food Native Resource of Paraguay with Antioxidant and Anthelmintic Activity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:1512505. [PMID: 35400147 PMCID: PMC8993580 DOI: 10.1155/2022/1512505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
The nutritional composition and toxicity of native plants with food potential like Capsicum chacoense are important for the safe use of populations and could be used as a source for searching for new drug candidates. Infections produced by parasites such as helminths are a public health concern for many countries. The drugs used for treating these diseases are few, and the emergence of resistance is a risk. In this work, the nutritional composition, acute toxicity, antioxidant activity, and anthelmintic activity of crushed C. chacoense fruits were evaluated. The composition was analyzed by standard procedures. Antioxidant activity was evaluated using the ABTS radical and the total phenolic compound (TPC) tests. The toxicity was evaluated on Swiss albino mice by the single-DL50-dose procedure. The anthelmintic activity was tested against Eisenia foetida. The samples presented high levels of dietary fiber (47.05-49.19 g/100 g), proteins (14.43-15.60 g/100 g), and potassium (1708-1733 mg/100 g). In the samples, the absence of acute lethal effects in doses lower than 2000 mg/kg was observed. A rich composition of TPC (517.26-543.32 mg GAE/100 g sample), total carotenoids (125.72-239.57 mg/kg), β-carotene (3.29-5.60 mg/kg), and good TAC was observed (154-158 mM TEAC/g SMTC). The methanolic extracts at the doses tested (2.5 to 40 mg/mL) showed good anthelmintic activity. The presence of alkaloids was demonstrated in the methanolic extract, consistent with the levels of capsaicin (131.85 and 98.80 mg/100 g) and dihydrocapsaicin (80.75 and 63.68 mg/100 g), with significant statistical differences between samples (p < 0.05). These results show that through the chemical composition of this underutilized native resource and good fruit processing procedures, the C. chacoense fruits have a great nutraceutical potential of interest for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Eva Coronel
- Food Biochemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción Campus Universitario, Ruta Mcal. Estigarribia Km 9,5, PO Box 1055, San Lorenzo, Paraguay
| | - Laura Mereles
- Food Biochemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción Campus Universitario, Ruta Mcal. Estigarribia Km 9,5, PO Box 1055, San Lorenzo, Paraguay
| | - Silvia Caballero
- Food Biochemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción Campus Universitario, Ruta Mcal. Estigarribia Km 9,5, PO Box 1055, San Lorenzo, Paraguay
| | - Nelson Alvarenga
- Phytochemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción Campus Universitario, Ruta Mcal. Estigarribia Km 9,5, PO Box 1055, San Lorenzo, Paraguay
| |
Collapse
|
31
|
Kovács Z, Bedő J, Pápai B, Tóth-Lencsés AK, Csilléry G, Szőke A, Bányai-Stefanovits É, Kiss E, Veres A. Ripening-Induced Changes in the Nutraceutical Compounds of Differently Coloured Pepper (Capsicum annuum L.) Breeding Lines. Antioxidants (Basel) 2022; 11:antiox11040637. [PMID: 35453324 PMCID: PMC9027134 DOI: 10.3390/antiox11040637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
To date, several research studies addressed the topic of phytochemical analysis of the different coloured pepper berries during ripening, but none discussed it in the case of purple peppers. In this study we examine whether the anthocyanin accumulation of the berries in the early stages of ripening could result in a higher antioxidant capacity due to the elevated amount of polyphenolic compounds. Therefore, enzymatic and non-enzymatic antioxidant capacity was measured in four distinct phenophases of fruit maturity. Furthermore, the expression of structural and regulatory genes of the anthocyanin biosynthetic pathway was also investigated. An overall decreasing trend was observed in the polyphenolic and flavonoid content and antioxidant capacity of the samples towards biological ripeness. Significant changes both in between the genotypes and in between the phenophases were scored, with the genotype being the most affecting factor on the phytonutrients. An extreme purple pepper yielded outstanding results compared to the other genotypes, with its polyphenolic and flavonoid content as well as its antioxidant capacity being the highest in every phenophase studied. Based on our results, besides MYBa (Ca10g11650) two other putative MYBs participate in the regulation of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Zsófia Kovács
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
- Correspondence:
| | - Janka Bedő
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Bánk Pápai
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Andrea Kitti Tóth-Lencsés
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | | | - Antal Szőke
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Éva Bányai-Stefanovits
- Institute of Food Science and Technology, Hungarian University of Agricultural Sciences, 1118 Budapest, Hungary;
| | - Erzsébet Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| | - Anikó Veres
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (J.B.); (B.P.); (A.K.T.-L.); (A.S.); (E.K.); (A.V.)
| |
Collapse
|
32
|
Razola-Díaz MDC, Gómez-Caravaca AM, López de Andrés J, Voltes-Martínez A, Zamora A, Pérez-Molina GM, Castro DJ, Marchal JA, Verardo V. Evaluation of Phenolic Compounds and Pigments Content in Yellow Bell Pepper Wastes. Antioxidants (Basel) 2022; 11:557. [PMID: 35326207 PMCID: PMC8944693 DOI: 10.3390/antiox11030557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Bell peppers are one of the most important species consumed and cultivated in Spain. Peppers are a source of carotenoids and phenolic compounds widely associated with biological activities such as antimicrobial, antiseptic, anticancer, counterirritant, cardioprotective, appetite stimulator, antioxidant, and immunomodulator. However, undersized and damaged fruits are usually wasted. Thus, in order to evaluate the phenolic content, a Box-Behnken design has been carried out to optimize the extraction from Capsicum annuum yellow pepper by ultrasound-assisted extraction (UAE). The independent factors were time (min), ethanol/water (% v/v) and solvent/sample ratio (v/w). The model was validated by ANOVA and confirmed. Furthermore, the whole pepper and the pepper without peduncles and seeds were extracted using optimal conditions and characterized by HPLC-ESI-TOF-MS. Moreover, their antioxidant activities, measured by three different methods (DPPH, ABTS, and FRAP), carotenoid composition, assessed by HPLC-MS, and chlorophyll content, assessed by a spectrophotometric method, were compared. A total of 38 polar compounds were found of which seven have been identified in pepper fruit extracts for the first time. According to the results, whole pepper (WP) samples presented higher content in phenolic acids; meanwhile, the edible portion (EP) was higher in flavonoids. No differences were found in the antioxidant activity except for the FRAP assay where the WP sample showed higher radical scavenging activity. EP samples showed the highest content of carotenoids and WP ones in chlorophylls.
Collapse
Affiliation(s)
| | - Ana Mª Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071 Granada, Spain;
- Biomedical Research Center, Institute of Nutrition and Food Technology ‘José Mataix’, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| | - Julia López de Andrés
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (J.L.d.A.); (A.V.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Grana-da-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| | - Ana Voltes-Martínez
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (J.L.d.A.); (A.V.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Grana-da-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| | - Alberto Zamora
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital de Blanes, Corporació de Salut del Maresme i la Selva, 17300 Blanes, Spain;
- Grupo de Medicina Traslacional y Ciencias de la Decisión, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Girona, 17004 Girona, Spain
- Grupo Epidemiología Cardiovascular y Genética, CIBER, Enfermedades Cardiovasculares (CIBERCV), 08003 Barcelona, Spain
| | - Gema M. Pérez-Molina
- Department I+D+i Vellsam Materias Bioactivas S.L., 04200 Tabernas, Spain; (G.M.P.-M.); (D.J.C.)
| | - David J. Castro
- Department I+D+i Vellsam Materias Bioactivas S.L., 04200 Tabernas, Spain; (G.M.P.-M.); (D.J.C.)
| | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (J.L.d.A.); (A.V.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Grana-da-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
- Biomedical Research Center, Institute of Nutrition and Food Technology ‘José Mataix’, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| |
Collapse
|
33
|
Quality of Pepper Seed By-Products: A Review. Foods 2022; 11:foods11050748. [PMID: 35267381 PMCID: PMC8908976 DOI: 10.3390/foods11050748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Peppers are grown all around the world, usually for fresh consumption, as well as for the industrial production of different products. Pepper (Capsicum annuum L.) seeds are mostly considered a by-product. Recent investigations have shown that pepper seeds have the potential to be a valuable source of edible oil and fiber-rich flour and protein after processing. Pepper seed oil is a high-quality edible oil according to quality analysis (nutritional, chemical, sensory and antioxidant characteristics) and is suitable as an ingredient for use in the food and nonfood industries (pharmaceutical, chemical, cosmetic industries). The literature review presented in this paper revealed the high quality of two pepper seed by-products (pepper seed oil and pepper seed flour (Capsicum annuum L.)), which could guide the food industry toward new product development based on the circular bioeconomy.
Collapse
|
34
|
Leng Z, Zhong B, Wu H, Liu Z, Rauf A, Bawazeer S, Suleria HAR. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS OMEGA 2022; 7:4563-4576. [PMID: 35155947 PMCID: PMC8829910 DOI: 10.1021/acsomega.1c06532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.
Collapse
Affiliation(s)
- Zexing Leng
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ziyao Liu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Sami Bawazeer
- Department
of Pharmacognosy, Faculty of Pharmacy, Umm
Al-Qura University, P.O. Box 42, Makkah 21421, Kingdom of Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Campos-Montiel R, Medina-Pérez G, Vázquez-Nuñez E, Afanador-Barajas L, Hernández-Soto I, Ahmad Nayik G, González-Montiel L, Alkafafy M. Nutritional and Nutraceutical Properties of Mexican Traditional Mole Sauce. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030966. [PMID: 35164230 PMCID: PMC8839710 DOI: 10.3390/molecules27030966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
Mole sauce is one of the traditional Mexican foods; it is a complex mixture of ingredients of diverse origins that directly influence its nutritional value. The objective of this study was to investigate the antioxidant properties and nutritional components in five varieties of mole from Hidalgo in Mexico namely verde (V), ranchero (R), almendrado (A), casero (C), and pipian (P). Proximal chemical analysis and determination of the color index and the content of total starch, dietary fiber, mineral content (Ca, Na, K, and Mg), total phenolic content, and antioxidant activity by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and DPPH (2,2-diphenylpicrylhydrazyl) were carried out. All the five varieties of mole reported less than 25% moisture content while fat content varied from 42.9% to 58.25%. The color index ranged from a deep orange to a deep red color. A fair percentage of dietary fiber was found in all mole varieties with a low amount of starch as well. The presence of mostly insoluble dietary fiber, high phenolic content (36.13–79.49 mg GAE/100 g), and high antioxidant activity could be considered important strengths to boost the consumption of these traditional preparations. This research will contribute to a better scientific knowledge of traditional Mexican sauces as functional foods or nutraceuticals that could be used to avoid health disorders.
Collapse
Affiliation(s)
- Rafael Campos-Montiel
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo 3600, Mexico; (R.C.-M.); (I.H.-S.)
| | - Gabriela Medina-Pérez
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo 3600, Mexico; (R.C.-M.); (I.H.-S.)
- Correspondence:
| | - Edgar Vázquez-Nuñez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León, Guanajuato 37150, Mexico;
| | - Laura Afanador-Barajas
- Natural Sciences Department, Engineering and Sciences Faculty, Universidad Central, Bogotá 110311, Colombia;
| | - Iridiam Hernández-Soto
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo 3600, Mexico; (R.C.-M.); (I.H.-S.)
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Government Degree College, Shopian 192303, India;
| | | | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
36
|
Azlan A, Sultana S, Huei CS, Razman MR. Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review. Molecules 2022; 27:898. [PMID: 35164163 PMCID: PMC8839052 DOI: 10.3390/molecules27030898] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/28/2023] Open
Abstract
Fruits and vegetables are important components of a healthy diet. They are rich sources of vitamins and minerals, dietary fibre and a host of beneficial non-nutrient substances including plant sterols, flavonoids and other antioxidants. It has been reported that reduced intake of fruits and vegetables may increase the risk of non-communicable diseases (NCDs). Chili pepper, is a common and important spice used to enhance taste and nutrition. Over the years, reports have shown its potential as antioxidant and an anti-obesity agent. Obesity is a serious health concern as it may initiate other common chronic diseases. Due to the side effects of synthetic antioxidants and anti-obesity drugs, scientists are now focusing on natural products which produce similar effects to synthetic chemicals. This up-to-date review addresses this research gap and presents, in an accessible format, the nutritional, antioxidant and anti-obesity properties of different chili peppers. This review article serves as a reference guide for use of chili peppers as anti-obesity agents.
Collapse
Affiliation(s)
- Azrina Azlan
- Department of Nutrition, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Research Centre of Excellence for Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Sharmin Sultana
- Grain Quality Testing Laboratory, International Rice Research Institute (IRRI), Dhaka 1213, Bangladesh;
| | - Chan Suk Huei
- Department of Nutrition, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
37
|
Kasampalis DS, Tsouvaltzis P, Ntouros K, Gertsis A, Gitas I, Moshou D, Siomos AS. Nutritional composition changes in bell pepper as affected by the ripening stage of fruits at harvest or postharvest storage and assessed non-destructively. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:445-454. [PMID: 34143899 DOI: 10.1002/jsfa.11375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nutritional quality in bell pepper is related to the ripening stage of the fruit at harvest and postharvest storage. Its determination requires time-consuming, tissue-destructive, analytical laboratory techniques. The objective of this study was to investigate the effect of ripening stage and of postharvest storage period on fruit nutritional quality, and whether it is feasible to develop reliable models for assessing the nutritional components in peppers using non-destructive methods. The dry matter, soluble solids, ascorbic acid, phenolics, chlorophylls, carotenoids and the total antioxidant capacity were determined in bell pepper fruits at six ripening stages, from green to full red, during storage at 10 °C for 8 days. Color, chlorophyll fluorescence, visible/near infrared (Vis/NIR) spectroscopy, red-green-blue (R-G-B) and red-green-near infrared (R-G-NIR) digital imaging were tested for assessing the nutritional quality of peppers. RESULTS The nutritional composition was mainly affected by the ripening stage of bell pepper fruits at harvest and only to a small degree by the storage period. Indeed, the more advanced ripening stage of fruit at harvest resulted in superior nutritional quality. Most of the non-destructive techniques reliably predicted the internal quality of the fruit. The genetic algorithm (GA), the variable importance in projection (VIP) scores, and the variable inflation factor (VIF) tests identified nine distinct regions and four specific wavelengths on the whole visible/NIR electromagnetic spectrum that exhibited the most significant effect in the assessment of the nutritional components. CONCLUSION It is possible to predict individual nutritional components in bell pepper fruit reliably and non-destructively, and irrespective of the ripening stage of fruits at harvest. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dimitrios S Kasampalis
- Laboratory of Vegetable Crops, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pavlos Tsouvaltzis
- Laboratory of Vegetable Crops, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Ntouros
- Department of Surveying Engineering & Geoinformatics, International Hellenic University, Serres, Greece
- NubiGroupGeoservices & Research Private Company, Thessaloniki, Greece
| | - Athanasios Gertsis
- Department of Agro-Environmental Systems Management, Precision Agriculture Pathway, Perrotis College, American Farm School, Thermi, Greece
| | - Ioannis Gitas
- Laboratory of Forest Management and Remote Sensing, Department of Planning and Development of Natural Resources, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Moshou
- Laboratory of Agricultural Engineering, Department of Hydraulics, Soil Science and Agricultural Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios S Siomos
- Laboratory of Vegetable Crops, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
Lei S, Wang Q, Chen Y, Song Y, Zheng M, Hsu YF. Capsicum SIZ1 contributes to ABA-induced SUMOylation in pepper. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111099. [PMID: 34895537 DOI: 10.1016/j.plantsci.2021.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Abiotic and biotic stresses are the major factors limiting plant growth. Arabidopsis E3 SUMO ligase SIZ1 plays an essential role in plant stress tolerance. Herein, we identified a SIZ/PAIS-type protein in pepper (Capsicum annuum), namely CaSIZ1, which shares 60 % sequence identity with AtSIZ1. The stems and flowers of pepper had a relatively higher expression of CaSIZ1 than the fruits, leaves, and roots. ABA and NaCl treatments induced CaSIZ1. CaSIZ1 protein was localized in the nucleus and partially rescued the dwarf and ABA-sensitive phenotypes of Atsiz1-2, suggesting the functional replacement of CaSIZ1 with AtSIZ1. We found that CaSIZ1 interacted with CaABI5, and ABA promoted the accumulation of SUMO conjugates in pepper. CaSIZ1 knockdown did not only reduce ABA-induced SUMOylation, but also attenuated the salt tolerance of pepper. Overall, the results of this study suggest that CaSIZ1 has a significant role in ABA-induced SUMOylation and stress response.
Collapse
Affiliation(s)
- Shikang Lei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Qingzhu Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yu Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Min Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| | - Yi-Feng Hsu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
39
|
Vanadium Toxicity Induced Changes in Growth, Antioxidant Profiling, and Vanadium Uptake in Pepper (Capsicum annum L.) Seedlings. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy metal contamination is one of the current serious environmental and agricultural soil issues, and it is mainly due to anthropogenic activities. Vanadium (V) is found in low concentrations in a wide range of plants and is widely distributed in soils. The current study aimed to determine how pepper seedlings responded to various V concentrations, as well as the detrimental effects of V on growth, root morphological traits, photosynthetic performance, reactive oxygen species (ROS), osmolytes production, antioxidant enzyme activities, and V uptake. Pepper seedlings (5 weeks old) were grown in hydroponic culture with six V levels (0, 10, 20, 30, 40, and 50 mg L−1 NH4VO3). After two weeks of V treatment, low level of V (10, 20 mg L−1) enhanced the growth status, conversely higher V (30, 40, and 50 mg L−1) level reduced the growth. The leaf gas exchange elements, pigments molecules, and root growth characteristics are also affected by higher V concentrations. Moreover, V uptake was higher in roots than in the shoot of pepper seedlings. Similarly, osmolytes content, ROS production, and antioxidant enzymes activities were significantly improved under V stress. Concluding, lower V (10, 20 mg L−1) concentration positively affected pepper growth, and higher V (30, 40, and 50 mg L−1) concentration had a detrimental effect on pepper physiological and biochemical mechanisms.
Collapse
|
40
|
Kantakhoo J, Imahori Y. Antioxidative Responses to Pre-Storage Hot Water Treatment of Red Sweet Pepper ( Capsicum annuum L.) Fruit during Cold Storage. Foods 2021; 10:foods10123031. [PMID: 34945582 PMCID: PMC8701787 DOI: 10.3390/foods10123031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
The effects of hot water treatments on antioxidant responses in red sweet pepper (Capsicum annuum L.) fruit during cold storage were investigated. Red sweet pepper fruits were treated with hot water at 55 °C for 1 (HWT-1 min), 3 (HWT-3 min), and 5 min (HWT-5 min) and stored at 10 °C for 4 weeks. The results indicated that HWT-1 min fruit showed less development of chilling injury (CI), electrolyte leakage, and weight loss. Excessive hot water treatment (3 and 5 min) caused cellular damage. Moreover, HWT-1 min slowed the production of hydrogen peroxide and malondialdehyde and promoted the ascorbate and glutathione contents for the duration of cold storage as compared to HWT-3 min, HWT-5 min, and control. HWT-1 min enhanced the ascorbate-glutathione cycle associated with ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, but it was less effective in simulating catalase activity. Thus, HWT-1 min could induce CI tolerance in red sweet pepper fruit by activating the ascorbate-glutathione cycle via the increased activity of related enzymes and the enhanced antioxidant level.
Collapse
|
41
|
Schulz M, Hövelmann Y, Hübner F, Humpf HU. Identification of Potential Urinary Biomarkers for Bell Pepper Intake by HPLC-HRMS-Based Metabolomics and Structure Elucidation by NMR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13644-13656. [PMID: 34735138 DOI: 10.1021/acs.jafc.1c04210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary biomarkers show great promise for objectively assessing the food intake in humans. In this study, potential urinary biomarkers for red bell pepper intake were identified based on a dietary intervention study and a comprehensive metabolomics approach. Spot urine samples from 14 volunteers were collected in the two phases of the study (control phase: abstaining from any bell pepper/paprika products; case phase: consumption of a defined amount of fresh red bell pepper and abstaining from any further bell pepper/paprika products) and analyzed by high-performance liquid chromatography high-resolution mass spectrometry (HPLC-HRMS). Comparison of the obtained metabolomics data using statistical analysis revealed that the respective urine metabolomes differ significantly, which was attributable to the bell pepper intake. Some of the most discriminating metabolites were selected and isolated from human urine for unequivocal structure elucidation by nuclear magnetic resonance (NMR) spectroscopy. Herein, seven novel glucuronidated metabolites most likely derived from capsanthin and capsianosides were identified, implying their potential application as dietary biomarkers for the entire Capsicum genus.
Collapse
Affiliation(s)
- Mareike Schulz
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Yannick Hövelmann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
42
|
Effect of the Soil and Ripening Stage in Capsicum chinense var. Jaguar on the Content of Carotenoids and Vitamins. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this work was to investigate the effect of the ripening stage and type of soil on the concentration of carotenoids and vitamins in Habanero pepper (Capsicum chinense Jacq.). Pepper plants were grown in two soils named according to the Mayan classification as: K’ankab lu’um (red soil) and Box lu’um (black soil). The results of two harvests at 320 and 334 PTD (post-transplant day) showed that the ripening stage exhibited a significant effect (p < 0.05) on the concentration of carotenoids and vitamins, while the effect of the soil type was negligible. The concentration of carotenoids decreases as the ripening process of the fruit takes place, with the highest concentration of lutein (49.47 ± 0.34 mg/100 g of dry mass), β-carotene (99.92 ± 0.69 mg/100 g of dry mass) and β-cryptoxanthin (20.93 ± 0.04 mg/100 g of dry mass) in the unripe peppers. The concentration of vitamins increases as the ripening process develops, with the highest concentration of Vitamin E (9.69 ± 0.02 mg/100 g of dry mass) and Vitamin C (119.44 ± 4.72 mg/100 g of dry mass) in the ripe peppers. This knowledge could be used to select the best ripening stage to harvest Habanero peppers according to the use of the pepper and to the needs of producers/company.
Collapse
|
43
|
Abou-Sreea AIB, Azzam CR, Al-Taweel SK, Abdel-Aziz RM, Belal HEE, Rady MM, Abdel-Kader AAS, Majrashi A, Khaled KAM. Natural Biostimulant Attenuates Salinity Stress Effects in Chili Pepper by Remodeling Antioxidant, Ion, and Phytohormone Balances, and Augments Gene Expression. PLANTS (BASEL, SWITZERLAND) 2021; 10:2316. [PMID: 34834678 PMCID: PMC8617650 DOI: 10.3390/plants10112316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 05/21/2023]
Abstract
A biostimulant is any microorganism or substance used to enhance the efficiency of nutrition, tolerance to abiotic stress and/or quality traits of crops, depending on its contents from nutrients. Plant biostimulants like honey bee (HB) and silymarin (Sm) are a strategic trend for managing stressed crops by promoting nutritional and hormonal balance, regulating osmotic protectors, antioxidants, and genetic potential, reflecting plant growth and productivity. We applied diluted honey bee (HB) and silymarin-enriched honey bee (HB- Sm) as foliar nourishment to investigate their improving influences on growth, yield, nutritional and hormonal balance, various osmoprotectant levels, different components of antioxidant system, and genetic potential of chili pepper plants grown under NaCl-salinity stress (10 dS m‒1). HB significantly promoted the examined attributes and HB-Sm conferred optimal values, including growth, productivity, K+/Na+ ratio, capsaicin, and Sm contents. The antioxidative defense components were significantly better than those obtained with HB alone. Conversely, levels of oxidative stress markers (superoxide ions and hydrogen peroxide) and parameters related to membrane damage (malondialdehyde level, stability index, ionic leakage, Na+, and Cl- contents) were significantly reduced. HB-Sm significantly affects inactive gene expression, as a natural biostimulator silencing active gene expression. SCoT primers were used as proof in salt-treated or untreated chili pepper plants. There were 41 cDNA amplicons selected by SCoT-primers. Twenty of them were EcDNA amplicons (cDNA-amplicons that enhanced their genes by one or more treatments) representing 49% of all cDNA amplicons, whereas 7 amplicons for ScDNA (whose genes were silenced in one or more treatments) represented 17%, and 14 McDNA (monomorphic cDNA-amplicons with control) amplicons were represented by 34% from all cDNA amplicons. This indicates the high effect of BH-Sm treatments in expression enhancement of some inactive genes and their silenced effect for expression of some active genes, also confirming that cDNA-SCoT markers succeeded in detection of variable gene expression patterns between the untreated and treated plants. In conclusion, HB-Sm as a natural multi-biostimulator can attenuate salt stress effects in chili pepper plants by remodeling the antioxidant defense system and ameliorating plant productivity.
Collapse
Affiliation(s)
- Alaa I. B. Abou-Sreea
- Department of Horticulture, Faculty of Agriculture, Fayoum University, Fayoum 63513, Egypt;
| | - Clara R. Azzam
- Cell Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Sudad K. Al-Taweel
- Department of Field Crops, College of Agriculture Engineering Sciences, University of Baghdad, Al-Jadiriya, Baghdad 10070, Iraq;
| | - Ranya M. Abdel-Aziz
- Tissue Culture Lab., Sugar Crops Research Institute, Agriculture Research Center, Giza 12619, Egypt;
| | - Hussein E. E. Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.M.R.)
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.M.R.)
| | - Atef A. S. Abdel-Kader
- Department of Medicinal and Aromatic Plants, Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Ali Majrashi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khaled A. M. Khaled
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni Suef 62513, Egypt;
| |
Collapse
|
44
|
Anaya-Esparza LM, la Mora ZVD, Vázquez-Paulino O, Ascencio F, Villarruel-López A. Bell Peppers ( Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules 2021; 26:molecules26175341. [PMID: 34500773 PMCID: PMC8434037 DOI: 10.3390/molecules26175341] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023] Open
Abstract
Currently, the high added-value compounds contained in plant by-products and wastes offer a wide spectrum of opportunities for their reuse and valorization, contributing to the circular economy. The bell pepper (Capsicum annum L.) is an exotic vegetable with high nutritional value that, after processing, leaves wastes (peel, seeds, and leaves) that represent desirable raw material for obtaining phytochemical compounds. This review summarizes and discusses the relevant information on the phytochemical profile of bell peppers and their related biological properties as an alternative to revalorize losses and wastes from bell peppers for their application in the food and pharmaceutical industries. Bell pepper fruits, seeds, and leaves contain bioactive compounds (phenols, flavonoids, carotenoids, tocopherol, and pectic polysaccharides) that exhibit antioxidant, antibacterial, antifungal, immunosuppressive and immunostimulant properties, and antidiabetic, antitumoral and neuroprotective activities, and have a potential use as functional food additives. In this context, the revalorization of food waste is positioned as a technological and innovative research area with beneficial effects for the population, the economy, and the environment. Further studies are required to guarantee the safety use of these compounds and to understand their mechanisms of action.
Collapse
Affiliation(s)
- Luis Miguel Anaya-Esparza
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guada-lajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico;
| | - Zuamí Villagrán-de la Mora
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico;
| | - Olga Vázquez-Paulino
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico;
| | - Felipe Ascencio
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
- Correspondence: (F.A.); (A.V.-L.)
| | - Angélica Villarruel-López
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico;
- Correspondence: (F.A.); (A.V.-L.)
| |
Collapse
|
45
|
Poljak I, Vahčić N, Liber Z, Tumpa K, Pintar V, Zegnal I, Vidaković A, Valković B, Kajba D, Idžojtić M. Morphological and Chemical Diversity and Antioxidant Capacity of the Service Tree ( Sorbus domestica L.) Fruits from Two Eco-Geographical Regions. PLANTS 2021; 10:plants10081691. [PMID: 34451736 PMCID: PMC8399663 DOI: 10.3390/plants10081691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/24/2022]
Abstract
Service tree, Sorbus domestica L., is a rare and neglected wild fruit tree species of southern and central Europe. Being distributed in different eco-geographical regions, with fragmented and low-density populations, S. domestica represents an interesting model case for investigating patterns of within- and between-population diversity at geographical and environmental scales. This study aimed to analyze the proximate composition, antioxidant activity, and morphometric fruit characteristics. We examined the diversity and population divergences of 49 S. domestica individuals originating from seven populations across continental and Mediterranean eco-geographical regions. In addition, tests of isolation by distance and environment were performed to detect the magnitude of divergence explained by geographic and environmental variables. Significant differences between the studied populations were found in almost all of the studied morphometric and chemical fruit characteristics. The studied service tree populations were characterized by high phenotypic variation despite the low number of trees per population. Model-based population structure analysis using morphometric and chemical fruit characteristics revealed three groups of service tree populations. We concluded that non-effective pollen and seed dispersal along with genetic drift and specific environmental factors resulted in a distinct phenotype with a specific chemical composition in the isolated island population. In addition, a pattern of isolation by the environment was revealed. We infer that morphological and chemical differences between the studied populations in the true service tree from different eco-geographical regions were mediated by adaptation to the specific environmental conditions.
Collapse
Affiliation(s)
- Igor Poljak
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, 10000 Zagreb, Croatia; (K.T.); (A.V.); (D.K.); (M.I.)
- Correspondence: ; Tel.: +385-1-235-2547
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.V.); (B.V.)
| | - Zlatko Liber
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Katarina Tumpa
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, 10000 Zagreb, Croatia; (K.T.); (A.V.); (D.K.); (M.I.)
| | - Valentino Pintar
- Ministry of Economy and Sustainable Development, Institute for Environment and Nature, Nature Sector, Radnička Cesta 80, 10000 Zagreb, Croatia;
| | - Ivana Zegnal
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia;
| | - Antonio Vidaković
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, 10000 Zagreb, Croatia; (K.T.); (A.V.); (D.K.); (M.I.)
| | - Bernarda Valković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.V.); (B.V.)
| | - Davorin Kajba
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, 10000 Zagreb, Croatia; (K.T.); (A.V.); (D.K.); (M.I.)
| | - Marilena Idžojtić
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, 10000 Zagreb, Croatia; (K.T.); (A.V.); (D.K.); (M.I.)
| |
Collapse
|
46
|
The Bioaccessibility of Phenolics, Flavonoids, Carotenoids, and Capsaicinoid Compounds: A Comparative Study of Cooked Potato Cultivars Mixed with Roasted Pepper Varieties. Foods 2021; 10:foods10081849. [PMID: 34441626 PMCID: PMC8391173 DOI: 10.3390/foods10081849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
An in vitro method was used to assess the bioaccessibility of phenolics, flavonoids, carotenoids, and capsaicinoid compounds in different cooked potatoes mixed with roasted peppers (Capsicum annuum), Joe Parker (JP, hot), and Sweet Delilah (SD, sweet). The present study identified differences in the bioaccessibility of bioactive compounds among the potato cultivars (Solanum tuberosum) Purple Majesty (PM; purple flesh), Yukon Gold (YG; yellow flesh), Rio Grande Russet (RG; white flesh) and a numbered selection (CO 97226-2R/R (R/R; red flesh)). The bioactive compounds and capsaicinoid compounds in potatoes and peppers were estimated before and after in vitro digestion. Before digestion, the total phenolic content of potato cultivars mixed with JP was in the following order: R/R > PM > YG > RG. The highest levels of carotenoids were 194.34 µg/g in YG and 42.92 µg/g in the RG cultivar when mixed with roasted JP. The results indicate that the amount of bioaccessible phenolics ranged from 485 to 252 µg/g in potato cultivars mixed with roasted JP. The bioaccessibility of flavonoids ranged from 185.1 to 59.25 µg/g. The results indicate that the YG cultivar mixed with JP and SD showed the highest phenolic and carotenoid bioaccessibility. In contrast, the PM mixed with JP and SD contained the lowest phenolic and carotenoid bioaccessibility. Our results indicate that the highest flavonoid bioaccessibility occurred in R/R mixed with roasted JP and SD. The lowest flavonoids bioaccessibility occurred in PM and the RG. The maximum bioaccessible amount of capsaicin was observed in YG mixed with JP, while the minimum bioaccessibility was observed with PM.
Collapse
|
47
|
ICP-MS based analysis of mineral elements composition during fruit development in Capsicum germplasm. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Sudhakar Rao DV, Hebbar SS, Narayana CK. CFB box wrapping: a new shrink wrapping technology for extension of storage life of colour capsicum (cv. Bachata). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3039-3048. [PMID: 34294966 PMCID: PMC8249503 DOI: 10.1007/s13197-020-04807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
Capsicums lose water very rapidly after harvest and the moisture loss causes severe shriveling making them unmarketable within 2-3 days. The moisture loss occurs even under low temperature conditions, though at lesser rates. Bell peppers packed in corrugated fiber board boxes (CFB) tend to lose moisture continuously as these boxes are permeable to both water vapour and respiratory gases even if they are non-ventilated. To reduce the moisture loss and maintain freshness, yellow colour capsicum (cv. Bachata) were packed in CFB boxes and over wrapped with different semi-permeable films using shrink wrapping technology. This box shrink wrapping significantly lowered the weight loss and maintained firmness of capsicum at ambient (25.7-33.2 °C and 25-63% RH) and low temperature (8 °C ± 0.5 and 80 ± 5% RH) conditions. Yellow colour capsicums packed in this way could be stored for 11 days at ambient temperature with a weight loss of < 6% as compared to about 20% weight loss in non-wrapped fruits. The storage life could be extended to 5 weeks by storing these shrink wrapped boxes at 8 °C without any shriveling and with a weight loss of < 5%. In addition to maintaining high humidity, the lower O2 and higher CO2 levels maintained surrounding the produce in the wrapped boxes helped to avoid shriveling and to retain the quality in terms of surface colour, firmness and other quality traits. The absorption of excessive relative humidity by CFB itself in the over wrapped boxes helped in avoiding condensation of water droplets. This in turn avoided the development of fungal growth and thus the risk of fruit decay.
Collapse
Affiliation(s)
- D. V. Sudhakar Rao
- Division of Post Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore, 560 089 India
| | - S. S. Hebbar
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake, Bangalore, 560 089 India
| | - C. K. Narayana
- Division of Post Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake, Bangalore, 560 089 India
| |
Collapse
|
49
|
Ayob O, Hussain PR, Suradkar P, Naqash F, Rather SA, Joshi S, Ahmad Azad ZA. Evaluation of chemical composition and antioxidant activity of Himalayan Red chilli varieties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Özcan MM, Uslu N, Efe NS, Erdem AN, Değerli Z, Kulluk DA, Can Sağlık N. Effect of thermal processing on the bioactive compounds and color parameters of types of three sweet pepper. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Nurhan Uslu
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Nazife Sultan Efe
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Ayşe Nur Erdem
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Zeliha Değerli
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Duygu Akçay Kulluk
- Department of Soil Science Faculty of Agriculture Selcuk University Konya Turkey
| | - Nazlı Can Sağlık
- Department of Soil Science Faculty of Agriculture Selcuk University Konya Turkey
| |
Collapse
|