1
|
Heidari N, Tarahhomi A, van der Lee A. Structural and Molecular Packing study of Three New Amidophosphoric Acid Esters and Assessment of Their Inhibiting Activity Against SARS-CoV-2 by Molecular Docking. ChemistrySelect 2022; 7:e202201504. [PMID: 36247410 PMCID: PMC9538075 DOI: 10.1002/slct.202201504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022]
Abstract
Three new compounds of amidophosphoric acid esters with a [OCH2C(CH3)2CH2O]P(O)[X] segment (where X=cyclopentylamido (1), 2-aminopyridinyl (2) and pyrrolidinyl (3)) were synthesized and studied using FT-IR and 31P/13C/1H NMR spectroscopies and single-crystal X-ray diffraction analysis. The compounds crystallize in the triclinic space groups P 1 ‾ for 1 and 3 and in the orthorhombic space group Pca21 for 2, where the asymmetric unit consists of three symmetrically-independent molecules for 1 and one molecule for 2 and 3. The intermolecular interactions and supramolecular assemblies are assessed by Hirshfeld surface analysis and enrichment ratios. The results reveal that the substituent effect plays an important role in directing the supramolecular structures. The presence of the aromatic substituent aminopyridine in 2 providing the C-H…π interactions leads to a larger variety in interactions including H…H, H…O/O…H, H…C/C…H and H…N/N…H contacts, whereas the packings of the compounds 1 and 3 bearing aliphatic substituents only include H…H and H…O/O…H contacts. The enrichment ratios affirm the importance of O…H/H…O contacts reflecting the hydrogen bond N-H…O interactions to be the enriched contacts. Compounds 1-3 were also investigated along with five similar reported structures with a [OCH2C(CH3)2CH2O]P(O) segment for their inhibitory behavior against SARS-CoV-2. The molecular docking results illustrate that the presence of the aromatic amido substituent versus the aliphatic type provides a more favorable condition for their biological activities.
Collapse
Affiliation(s)
- Nafiseh Heidari
- Department of ChemistrySemnan UniversitySemnan35131-19111Iran
| | | | | |
Collapse
|
2
|
Yoshida Y, Ti Z, Tanabe W, Tomoike F, Hashiya F, Suzuki T, Hirota S, Saiki Y, Horii A, Hirayama A, Soga T, Kimura Y, Abe H. Development of Fluorophosphoramidate as a New Biocompatible Transformable Functional Group and its Application as a Phosphate Prodrug for Nucleoside Analogs. ChemMedChem 2022; 17:e202200188. [PMID: 35393747 DOI: 10.1002/cmdc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/12/2022]
Abstract
Synthetic phosphate-derived functional groups are important for controlling the function of bioactive molecules in vivo . Herein we describe the development of a new type of biocompatible phosphate analog, a fluorophosphoramidate (FPA) functional group that has characteristic P-F and P-N bonds. We found that FPA with a primary amino group was relatively unstable in aqueous solution and was converted to a monophosphate, while FPA with a secondary amino group was stable. Furthermore, by improving the molecular design of FPA, we developed a reaction in which a secondary amino group is converted to a primary amino group in the intracellular environment, and clarified that the FPA group functions as a phosphate prodrug of nucleoside. Various FPA-gemcitabine derivatives were synthesized and their anticancer activities were evaluated. One of the FPA-gemcitabine derivatives showed superior anticancer activity compared with gemcitabine and its ProTide prodrug, which methodology is widely used in various nucleoside analogs, including anti-cancer and anti-virus drugs.
Collapse
Affiliation(s)
- Yuki Yoshida
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Zheng Ti
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Wataru Tanabe
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Fumiaki Tomoike
- Gakushuin University: Gakushuin Daigaku, Graduate School of Science, JAPAN
| | - Fumitaka Hashiya
- Nagoya University: Nagoya Daigaku, Research Center for Material Science, JAPAN
| | | | - Shuto Hirota
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Yuriko Saiki
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Akira Horii
- Tohoku University: Tohoku Daigaku, School of Medicine, JAPAN
| | - Akiyoshi Hirayama
- Keio University: Keio Gijuku Daigaku, Institute for Biosciences, JAPAN
| | - Tomoyoshi Soga
- Keio University: Keio Gijuku Daigaku, Institute for Advance Biosciences, JAPAN
| | - Yasuaki Kimura
- Nagoya University: Nagoya Daigaku, Graduate School of Science, JAPAN
| | - Hiroshi Abe
- Nagoya University, Department of Chemistry, Graduate School of Science, Furo, Chikusa, 464-8602, Nagoya, JAPAN
| |
Collapse
|
3
|
Zhu YY, Niu Y, Niu YN, Yang SD. Recent advances in the synthesis and applications of phosphoramides. Org Biomol Chem 2021; 19:10296-10313. [PMID: 34812834 DOI: 10.1039/d1ob01566d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphoramide, as an important framework of many biologically active molecules, has attracted widespread attention in recent decades. It is not only widely used in pharmaceuticals because of its excellent biological activities, but it also shows good performance in organic dyes, flame retardants and extractors. Thus, it is of great significance to develop effective and convenient methods for the synthesis of phosphoramides. In this review, the recent advancements made in the synthesis routes and applications of phosphoramides are discussed. The synthetic strategies of phosphoramides can be separated into five categories: phosphorus halides as the substrate, phosphates as the substrate, phosphorus hydrogen as the substrate, azides as the substrate and other methods. The latest examples of these methods are provided and some representative mechanisms are also described.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian 223003, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Chemistry of Fluorinated Pyrimidines in the Era of Personalized Medicine. Molecules 2020; 25:molecules25153438. [PMID: 32751071 PMCID: PMC7435603 DOI: 10.3390/molecules25153438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
We review developments in fluorine chemistry contributing to the more precise use of fluorinated pyrimidines (FPs) to treat cancer. 5-Fluorouracil (5-FU) is the most widely used FP and is used to treat > 2 million cancer patients each year. We review methods for 5-FU synthesis, including the incorporation of radioactive and stable isotopes to study 5-FU metabolism and biodistribution. We also review methods for preparing RNA and DNA substituted with FPs for biophysical and mechanistic studies. New insights into how FPs perturb nucleic acid structure and dynamics has resulted from both computational and experimental studies, and we summarize recent results. Beyond the well-established role for inhibiting thymidylate synthase (TS) by the 5-FU metabolite 5-fluoro-2′-deoxyuridine-5′-O-monophosphate (FdUMP), recent studies have implicated new roles for RNA modifying enzymes that are inhibited by 5-FU substitution including tRNA methyltransferase 2 homolog A (TRMT2A) and pseudouridylate synthase in 5-FU cytotoxicity. Furthermore, enzymes not previously implicated in FP activity, including DNA topoisomerase 1 (Top1), were established as mediating FP anti-tumor activity. We review recent literature summarizing the mechanisms by which 5-FU inhibits RNA- and DNA-modifying enzymes and describe the use of polymeric FPs that may enable the more precise use of FPs for cancer treatment in the era of personalized medicine.
Collapse
|
5
|
Wang T, Jiang Y, Wang Y, Yan R. Fe-Catalyzed tandem cyclization for the synthesis of 3-nitrofurans from homopropargylic alcohols and Al(NO 3) 3·9H 2O. Org Biomol Chem 2018; 16:5232-5235. [PMID: 29989633 DOI: 10.1039/c8ob01184b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Al(NO3)3·9H2O as a nitro source for the synthesis of 3-nitrofurans from homopropargylic alcohols through Fe-catalyzed tandem cyclization is described. In this transformation, the substituted nitrofurans are obtained through nitration and cyclization. The substrate homopropargylic alcohols with different groups participate smoothly in this process and the desired substituted nitrofurans were obtained in moderate yields.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China.
| | | | | | | |
Collapse
|
6
|
Szymanska-Michalak A, Wawrzyniak D, Framski G, Stawinski J, Barciszewski J, Kraszewski A. New antiglioma zwitterionic pronucleotides with an FdUMP framework. Eur J Med Chem 2017; 144:682-691. [PMID: 29289891 DOI: 10.1016/j.ejmech.2017.12.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Abstract
We have designed and synthesized new 5-fluoro-2'-deoxyuridine 5'-phosphate pronucleotides which can function as potential agents against the glioblastoma multiforme tumor. Their anti-malignant potency has been tested against T98G, U-118 MG, U-87 MG gliomas, HeLa, and Caco-2 cancer cell lines, using MRC-5 healthy cells as a reference. Five of the sixteen compounds (4c, 4f-i) exhibited significant anticancer potency and high selectivity indices (SI 12-66). It is likely that these zwitterionic pronucleotides may function in a similar manner to zwitterionic phospholipids, by inducing cell membrane charge disorder, making the cell permeable to bioactive agents. The most promising therapeutic pronucleotides 4c, 4f-h, have high intestinal-blood uptake potency (Caco-2 cell line), and may be considered as potential, orally administrated, anticancer drugs.
Collapse
Affiliation(s)
| | - Dariusz Wawrzyniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Grzegorz Framski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Adam Kraszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
7
|
Lewandowska M, Ruszkowski P, Chojnacka K, Kleczewska N, Hoffmann M, Kacprzak K, Celewicz L. Synthesis and anticancer activity of some 5-fluoro-2'-deoxyuridine phosphoramidates. Bioorg Med Chem 2016; 24:2330-41. [PMID: 27073055 DOI: 10.1016/j.bmc.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
Abstract
Two series of novel 4-chlorophenyl N-alkyl phosphoramidates of 3'-O-(t-butoxycarbonyl)-5-fluoro-2'-deoxyuridine (3'-BOC-FdU) (9a-9j) and 5-fluoro-2'-deoxyuridine (FdU) (10a-10j) were synthesized by means of phosphorylation of 3'-BOC-FdU (4) with 4-chlorophenyl phosphoroditriazolide (7), followed by a reaction with the appropriate amine. Phosphoramidates 9a-9j were converted to the corresponding 10a-10j by removal of the 3'-t-butoxycarbonyl protecting group (BOC) under acidic conditions. The synthesized phosphoramidates 9a-9j and 10a-10j were evaluated for their cytotoxic activity in five human cancer cell lines: cervical (HeLa), nasopharyngeal (KB), breast (MCF-7), liver (HepG2), osteosarcoma (143B) and normal human dermal fibroblast cell line (HDF) using the sulforhodamine B (SRB) assay. Two phosphoramidates 9b and 9j with the N-ethyl and N-(methoxy-(S)-alaninyl) substituents, respectively, displayed remarkable activity in all the investigated cancer cells, and the activity was considerably higher than that of the parent nucleoside 4 and FdU. Among phosphoramidates 10a-10j compound 10c with the N-(2,2,2-trifluoroethyl) substituent showed the highest activity. Phosphoramidate 10c was more active than the FdU in all the cancer cell lines tested.
Collapse
Affiliation(s)
- Marta Lewandowska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska St 89 b, 61-614 Poznań, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka St 5 a, 60-806 Poznań, Poland
| | - Kinga Chojnacka
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska St 89 b, 61-614 Poznań, Poland
| | - Natalia Kleczewska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska St 89 b, 61-614 Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska St 89 b, 61-614 Poznań, Poland
| | - Karol Kacprzak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska St 89 b, 61-614 Poznań, Poland
| | - Lech Celewicz
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska St 89 b, 61-614 Poznań, Poland.
| |
Collapse
|
8
|
Kubota K, Inaba SI, Nakano R, Watanabe M, Sakurai H, Fukushima Y, Ichikawa K, Takahashi T, Izumi T, Shinagawa A. Identification of activating enzymes of a novel FBPase inhibitor prodrug, CS-917. Pharmacol Res Perspect 2015; 3:e00138. [PMID: 26171222 PMCID: PMC4492754 DOI: 10.1002/prp2.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022] Open
Abstract
CS-917 (MB06322) is a selective small compound inhibitor of fructose 1,6-bisphosphatase (FBPase), which is expected to be a novel drug for the treatment of type 2 diabetes by inhibiting gluconeogenesis. CS-917 is a bisamidate prodrug and activation of CS-917 requires a two-step enzyme catalyzed reaction. The first-step enzyme, esterase, catalyzes the conversion of CS-917 into the intermediate form (R-134450) and the second-step enzyme, phosphoramidase, catalyzes the conversion of R-134450 into the active form (R-125338). In this study, we biochemically purified the CS-917 esterase activity in monkey small intestine and liver. We identified cathepsin A (CTSA) and elastase 3B (ELA3B) as CS-917 esterases in the small intestine by mass spectrometry, whereas we found CTSA and carboxylesterase 1 (CES1) in monkey liver. We also purified R-134450 phosphoramidase activity in monkey liver and identified sphingomyelin phosphodiesterase, acid-like 3A (SMPADL3A), as an R-134450 phosphoramidase, which has not been reported to have any enzyme activity. Recombinant human CTSA, ELA3B, and CES1 showed CS-917 esterase activity and recombinant human SMPDL3A showed R-134450 phosphoramidase activity, which confirmed the identification of those enzymes. Identification of metabolic enzymes responsible for the activation process is the requisite first step to understanding the activation process, pharmacodynamics and pharmacokinetics of CS-917 at the molecular level. This is the first identification of a phosphoramidase other than histidine triad nucleotide-binding protein (HINT) family enzymes and SMPDL3A might generally contribute to activation of the other bisamidate prodrugs.
Collapse
Affiliation(s)
- Kazuishi Kubota
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd. Tokyo, Japan
| | - Shin-Ichi Inaba
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Rika Nakano
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd. Tokyo, Japan
| | - Mihoko Watanabe
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd. Tokyo, Japan
| | - Hidetaka Sakurai
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd. Tokyo, Japan
| | - Yumiko Fukushima
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd. Tokyo, Japan
| | - Kimihisa Ichikawa
- Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Tohru Takahashi
- New Modality Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Takashi Izumi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo, Japan
| | - Akira Shinagawa
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd. Tokyo, Japan
| |
Collapse
|
9
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Meier SM, Novak MS, Kandioller W, Jakupec MA, Roller A, Keppler BK, Hartinger CG. Aqueous chemistry and antiproliferative activity of a pyrone-based phosphoramidate Ru(arene) anticancer agent. Dalton Trans 2014; 43:9851-9855. [PMID: 24872129 DOI: 10.1039/c4dt00569d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A water-stable phosphoramidate Ru(arene) metallodrug shows antiproliferative activity comparable to KP1019 in human cancer cell lines. This novel compound can cross-link the peptide backbone of cytochrome c, but features low apoptosis inducing properties.
Collapse
Affiliation(s)
- Samuel M Meier
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
11
|
Synthesis of a phosphoserine mimetic prodrug with potent 14-3-3 protein inhibitory activity. ACTA ACUST UNITED AC 2014; 19:764-71. [PMID: 22726690 DOI: 10.1016/j.chembiol.2012.05.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 11/23/2022]
Abstract
Many protein-protein interactions in cells are mediated by functional domains that recognize and bind to motifs containing phosphorylated serine and threonine residues. To create small molecules that inhibit such interactions, we developed methodology for the synthesis of a prodrug that generates a phosphoserine peptidomimetic in cells. For this study, we synthesized a small molecule inhibitor of 14-3-3 proteins that incorporates a nonhydrolyzable difluoromethylenephosphoserine prodrug moiety. The prodrug is cytotoxic at low micromolar concentrations when applied to cancer cells and induces caspase activation resulting in apoptosis. The prodrug reverses the 14-3-3-mediated inhibition of FOXO3a resulting from its phosphorylation by Akt1 in a concentration-dependent manner that correlates well with its ability to inhibit cell growth. This methodology can be applied to target a variety of proteins containing phosphoserine and other phosphoamino acid binding domains.
Collapse
|
12
|
Lewandowska M, Ruszkowski P, Baraniak D, Czarnecka A, Kleczewska N, Celewicz L. Synthesis of 3′-azido-2′,3′-dideoxy-5-fluorouridine phosphoramidates and evaluation of their anticancer activity. Eur J Med Chem 2013; 67:188-95. [DOI: 10.1016/j.ejmech.2013.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/24/2023]
|
13
|
Lithium bromide–DBU mediated synthesis of chlorophosphoramidate-activated morpholino nucleoside subunits. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.09.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
CHEN WZ, XU PX, YI RZ, ZHAO YF. Separation of d4T-P-N-PheOMe Diastereoisomers by Supercritical Fluid Chromatography. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60562-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Romanowska J, Sobkowski M, Szymańska-Michalak A, Kołodziej K, Dąbrowska A, Lipniacki A, Piasek A, Pietrusiewicz ZM, Figlerowicz M, Guranowski A, Boryski J, Stawiński J, Kraszewski A. Aryl H-Phosphonates 17: (N-Aryl)phosphoramidates of Pyrimidine Nucleoside Analogues and Their Synthesis, Selected Properties, and Anti-HIV Activity. J Med Chem 2011; 54:6482-91. [DOI: 10.1021/jm2001103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joanna Romanowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Michał Sobkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Krystian Kołodziej
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Andrzej Lipniacki
- National Institute of Medicines, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Andrzej Piasek
- National Institute of Medicines, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Zofia M. Pietrusiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Andrzej Guranowski
- Faculty of Biochemistry and Biotechnology, Life Science University, Wołyńska 35, 60-637 Poznań, Poland
| | - Jerzy Boryski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawiński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Adam Kraszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
16
|
Ahmadibeni Y, Tiwari RK, Sun G, Parang K. Synthesis of nucleoside mono-, di-, and triphosphoramidates from solid-phase cyclosaligenyl phosphitylating reagents. Org Lett 2009; 11:2157-60. [PMID: 19364114 DOI: 10.1021/ol900320r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloromethyl polystyrene resin was reacted with 5-hydroxysalicylaldehyde in the presence of potassium carbonate to afford polymer-bound 2-hydroxybenzaldehyde. Subsequent reduction with borane solution produced polymer-bound 2-hydroxybenzyl alcohol. The reaction of immobilized 2-hydroxybenzyl alcohol with appropriate phosphitylating reagents yielded solid-phase cycloSaligenyl mono-, di-, and triphosphitylating reagents, which were reacted with unprotected nucleosides, followed by iodine oxidation, deprotection of cyanoethoxy groups, and the basic cleavage, respectively, to afford 5'-O-nucleoside mono-, di-, and triphosphoramidates in 52-73% overall yield.
Collapse
Affiliation(s)
- Yousef Ahmadibeni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
17
|
Wu W, Sigmond J, Peters GJ, Borch RF. Synthesis and biological activity of a gemcitabine phosphoramidate prodrug. J Med Chem 2007; 50:3743-6. [PMID: 17602464 PMCID: PMC2518329 DOI: 10.1021/jm070269u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A gemcitabine (2',2'-difluorodeoxycytidine, dFdC) phosphoramidate prodrug designed for the intracellular delivery of gemcitabine 5'-monophosphate was synthesized. The prodrug was about an order of magnitude less active than gemcitabine against wild-type cells, and the nucleoside transport inhibitor dipyridamole reduced prodrug activity. The prodrug was more active than gemcitabine against two deoxycytidine kinase-deficient cell lines. The results suggest that the prodrug is a potent growth inhibitor that can bypass dCK deficiency at higher drug concentrations.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Medicinal Chemistry and Molecular Pharmacology and Cancer Center, Purdue University, West Lafayette, Indiana 47907
| | - Jennifer Sigmond
- Department of Medical Oncology, VU University Medical Center, PO Box 7057,1007 MB Amsterdam, the Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, PO Box 7057,1007 MB Amsterdam, the Netherlands
| | - Richard F. Borch
- Department of Medicinal Chemistry and Molecular Pharmacology and Cancer Center, Purdue University, West Lafayette, Indiana 47907
- To whom correspondence should be addressed. Phone: 765-494-1403. Fax: 765-494-1414, E-mail:
| |
Collapse
|
18
|
Garrido-Hernandez H, Moon KD, Geahlen RL, Borch RF. Design and synthesis of phosphotyrosine peptidomimetic prodrugs. J Med Chem 2006; 49:3368-76. [PMID: 16722656 PMCID: PMC2505179 DOI: 10.1021/jm060142p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach to the intracellular delivery of aryl phosphates has been developed that utilizes a phosphoramidate-based prodrug approach. The prodrugs contain an ester group that undergoes reductive activation intracellularly with concomitant expulsion of a phosphoramidate anion. This anion undergoes intramolecular cyclization and hydrolysis to generate aryl phosphate exclusively with a t(1/2) = approximately 20 min. Phosphoramidate prodrugs (8-10) of phosphate-containing peptidomimetics that target the SH2 domain were synthesized. Evaluation of these peptidomimetic prodrugs in a growth inhibition assay and in a cell-based transcriptional assay demonstrated that the prodrugs had IC50 values in the low micromolar range. Synthesis of phosphorodiamidate analogues containing a P-NH-Ar linker (16-18) was also carried out in the hope that the phosphoramidates released might be phosphatase-resistant. Comparable activation rates and cell-based activities were observed for these prodrugs, but the intermediate phosphoramidate dianion underwent spontaneous hydrolysis with a t(1/2) = approximately 30 min.
Collapse
Affiliation(s)
| | | | | | - Richard F. Borch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907; tel (765)494-1403; fax (765)494-1414;
| |
Collapse
|
19
|
Wu W, Freel Meyers CL, Borch RF. A novel method for the preparation of nucleoside triphosphates from activated nucleoside phosphoramidates. Org Lett 2005; 6:2257-60. [PMID: 15200334 DOI: 10.1021/ol049267j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
[reaction: see text] A novel method for the preparation of nucleoside triphosphates has been developed. The strategy employs a highly reactive pyrrolidinium phosphoramidate zwitterion intermediate that undergoes efficient coupling with tris(tetra-n-butylammonium) hydrogen pyrophosphate to generate nucleoside triphosphate.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Medicinal Chemistry and Molecular Pharmacology and Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
20
|
Abstract
Bioactivatable protecting groups represent an enormously powerful tool to increase bioavailability or to generally help deliver drugs to cells. This approach is particularly valuable in the case of biologically active phosphates because of the high intrinsic hydrophilicity and the multitude of biological functions phosphate esters exhibit inside cells. Here, the most prominent masking groups used so far are introduced. The stability and toxicology of the resulting prodrugs is discussed. Finally, this review tries to cover briefly some of the work that describes the usefulness and efficiency of the approach in various application areas.
Collapse
Affiliation(s)
- Carsten Schultz
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
21
|
Abstract
[reaction--see text] Sugar nucleoside diphosphates have been prepared using an efficient phosphate coupling reaction that employs a highly reactive zwitterionic phosphoramidate intermediate as the phosphorylating species.
Collapse
Affiliation(s)
- C L Meyers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
22
|
Jin Y, Chen X, Côté M, Roland A, Korba B, Mounir S, Iyer RP. Parallel solid-phase synthesis of nucleoside phosphoramidate libraries. Bioorg Med Chem Lett 2001; 11:2057-60. [PMID: 11514138 DOI: 10.1016/s0960-894x(01)00380-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combinatorial chemistry is playing an increasingly prominent role in the process of drug discovery. A nucleic acid-based (NAB) scaffold can be engineered to create functional group and topological diversity in a library. Described herein is the parallel solid-phase synthesis of combinatorial libraries of nucleoside phosphoramidates, and the first evaluation of antiviral activity against hepatitis B virus (HBV).
Collapse
Affiliation(s)
- Y Jin
- Origenix Technologies Inc., 230 Bernard-Belleau, Suite 210, Laval, H7V 4A9, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|