1
|
Kume D, Nishiwaki M, Ito M. Effect of Powdered Morus australis Leaves on Arterial Stiffness Response after Sucrose Ingestion in Healthy Young Men: A Pilot Study. J Nutr Sci Vitaminol (Tokyo) 2025; 71:63-69. [PMID: 40024750 DOI: 10.3177/jnsv.71.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Acute arterial stiffening occurs during postprandial hyperglycemia. Such vascular responses are suggested to be averted by suppressing the postprandial glycemic response. We previously developed an α-glucosidase-inhibiting tea powder from the leaves of Morus australis (M. australis), a mulberry species distributed in the Ryukyu Islands, and demonstrated that this powder has an inhibitory effect on blood glucose elevation after sucrose ingestion. This study aimed to investigate the effect of powdered M. australis leaf intake on the arterial stiffness response after sucrose ingestion. In a randomized crossover design, 12 healthy young men completed two trials: with (mulberry [M] trial) and without (control [C] trial) intake of powdered M. australis leaves before ingestion of 75 g of sucrose. Blood glucose levels and brachial-ankle pulse wave velocity (baPWV), an index of systemic arterial stiffness, were measured at baseline and 30, 60, and 120 min after ingestion. Both trials caused a significant increase in blood glucose levels at 30 and 60 min after ingestion, with significantly lower values at 30 min after ingestion in the M trial than in the C trial. baPWV significantly increased at 60 min after ingestion in the C trial, but not in the M trial. These findings demonstrate that prior ingestion of powdered M. australis leaves can prevent the transient arterial stiffening after sucrose ingestion in healthy young men.
Collapse
Affiliation(s)
- Daisuke Kume
- Faculty of Information Science and Technology, Osaka Institute of Technology
| | | | - Masaaki Ito
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College
| |
Collapse
|
2
|
Liotta LJ, Antoine J, Brammer Basta LA, Campbell AS, Cole GY, Demick Brazile KA, Dogal Gardner NM, Fitzgerald ME, Francois JEK, French BM, Garafola SL, Giannetti CA, Granatosky EA, Harney AM, Hummel JT, Joyce AP, Keylor MH, Khubchandani JA, Korzeniecki C, Lieberman DC, Litterio JM, Maiorano MO, Marshall JF, McCarthy KA, Mendes Vieira A, Miller RM, Morrison ER, Moura SP, Neumann DF, Oliveira AF, Pace NJ, Plouffe JX, Pomfret MN, Reardon KN, Sheller-Miller SM, Smith MJ, Sullivan JL, Sweeney SW, Tougas KL. Efficient synthesis for each of the eight stereoisomers of the iminosugars lentiginosine and 1,4-dideoxy-1,4-imino-D-arabinitol (DAB). Carbohydr Res 2024; 545:109280. [PMID: 39326205 DOI: 10.1016/j.carres.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Herein, we describe the efficient, diastereoselective syntheses of the iminosugars 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) 1b, lentiginosine 3a, and the seven stereoisomers of each of these iminosugars starting from 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 with yields ranging from 38 % to 68 % for the DAB and isomers 1a-1h and from 44 % to 89 % for the lentiginosine and isomers 3a-3h. We also report the syntheses of the eight stereoisomers of the 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 from commercially available sugars. Key to the iminosugar syntheses is a single multistep reaction that converts the 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 to a vinyl pyrrolidine through a one-pot zinc mediated reductive elimination, followed by a reductive amination and finally an intramolecular nucleophilic substitution. Strategic selection of the amine utilized in the reductive amination and the functionalization of the intermediate carbon-carbon double bond provides access to a vast array of iminosugars.
Collapse
Affiliation(s)
- Louis J Liotta
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA.
| | - Jessica Antoine
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | - Andrew S Campbell
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Gabrielle Y Cole
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | | | - Megan E Fitzgerald
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jean E K Francois
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Brian M French
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Sara L Garafola
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Catherine A Giannetti
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Eve A Granatosky
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Alycen M Harney
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - James T Hummel
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Andrew P Joyce
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Mitchell H Keylor
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jasmine A Khubchandani
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Claudia Korzeniecki
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Diana C Lieberman
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Joshua M Litterio
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Madison O Maiorano
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jessica F Marshall
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Kelly A McCarthy
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Andreia Mendes Vieira
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Ruby M Miller
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Emily R Morrison
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Steven P Moura
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Dillon F Neumann
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Aliza F Oliveira
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Nicholas J Pace
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jodie X Plouffe
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Meredith N Pomfret
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Katelyn N Reardon
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | - Michael J Smith
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jessica L Sullivan
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Samantha W Sweeney
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Kerstin L Tougas
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| |
Collapse
|
3
|
Thondre PS, Lightowler H, Ahlstrom L, Gallagher A. Mulberry leaf extract improves glycaemic response and insulaemic response to sucrose in healthy subjects: results of a randomized, double blind, placebo-controlled study. Nutr Metab (Lond) 2021; 18:41. [PMID: 33858439 PMCID: PMC8047566 DOI: 10.1186/s12986-021-00571-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background There are many benefits of maintaining healthy blood glucose levels, and studies have shown that lifestyle changes such as changes to diet can successfully restore normoglycaemia in participants with dysglycaemia. Significant health-related lifestyle changes are often difficult to implement and functional ingredients that can reduce glycaemic and insulaemic responses may help at risk populations. The aim of this study was to investigate whether a mulberry leaf extract could lower the glycaemic and insulinaemic responses to 75 g sucrose in healthy individuals. Methods A double-blind, randomised, placebo-controlled, crossover design trial was conducted by the Oxford Brookes Centre for Nutrition and Health. Thirty-eight participants were recruited into the trial and, after an overnight fast, were given 75 g sucrose + white mulberry leaf extract, or 75 g sucrose alone. Capillary blood samples were collected at 15-min intervals in the first hour and at 30-min intervals over the second hour to determine glucose and plasma insulin levels. Data analysis was conducted using a paired samples T test or a Wilcoxon signed rank test. Results The addition of mulberry leaf extract to sucrose resulted in a significantly lower glycaemic response and insulinaemic response compared to a matched placebo (sucrose alone). The change in blood glucose measurements were significantly lower at 15 min (p < 0.001), 30 min (p < 0.001), 45 min (p = 0.008), and 120 min (p < 0.001) and plasma insulin measurements were significantly lower at 15 min (p < 0.001), 30 min (p < 0.001), 45 min (p < 0.001), 60 min (p = 0.001) and 120 min (p < 0.001). The glucose iAUC (− 42%, p = 0.001), insulin iAUC (− 40%, p < 0.001), peak glucose (− 40.0%, p < 0.001) and peak insulin (− 41%, p < 0.001) from baseline were significantly lower for white mulberry leaf extract compared with the placebo. White mulberry leaf extract was well tolerated and there were no reported adverse events. Conclusions Mulberry leaf extract can be used as part of lifestyle changes that may lead to healthy blood glucose levels. Trial registration: ISRCTN99601810 (23 October 2020, retrospectively registered)
Collapse
Affiliation(s)
- Pariyarath Sangeetha Thondre
- Oxford Brookes Centre for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Helen Lightowler
- Oxford Brookes Centre for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Lis Ahlstrom
- Oxford Brookes Centre for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Andrew Gallagher
- Phynova Group Ltd, 16 Fenlock Court, Blenheim Office Park, Long Hanborough, OX29 8LN, UK.
| |
Collapse
|
4
|
De Fenza M, Esposito A, D’Alonzo D, Guaragna A. Synthesis of Piperidine Nucleosides as Conformationally Restricted Immucillin Mimics. Molecules 2021; 26:1652. [PMID: 33809603 PMCID: PMC8001838 DOI: 10.3390/molecules26061652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The de novo synthesis of piperidine nucleosides from our homologating agent 5,6-dihydro-1,4-dithiin is herein reported. The structure and conformation of nucleosides were conceived to faithfully resemble the well-known nucleoside drugs Immucillins H and A in their bioactive conformation. NMR analysis of the synthesized compounds confirmed that they adopt an iminosugar conformation bearing the nucleobases and the hydroxyl groups in the appropriate orientation.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Annalisa Guaragna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
5
|
Matassini C, Parmeggiani C, Cardona F. New Frontiers on Human Safe Insecticides and Fungicides: An Opinion on Trehalase Inhibitors. Molecules 2020; 25:E3013. [PMID: 32630325 PMCID: PMC7411730 DOI: 10.3390/molecules25133013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
In the era of green economy, trehalase inhibitors represent a valuable chance to develop non-toxic pesticides, being hydrophilic compounds that do not persist in the environment. The lesson on this topic that we learned from the past can be of great help in the research on new specific green pesticides. This review aims to describe the efforts made in the last 50 years in the evaluation of natural compounds and their analogues as trehalase inhibitors, in view of their potential use as insecticides and fungicides. Specifically, we analyzed trehalase inhibitors based on sugars and sugar mimics, focusing on those showing good inhibition properties towards insect trehalases. Despite their attractiveness as a target, up to now there are no trehalase inhibitors that have been developed as commercial insecticides. Although natural complex pseudo di- and trisaccharides were firstly studied to this aim, iminosugars look to be more promising, showing an excellent specificity profile towards insect trehalases. The results reported here represent an overview and a discussion of the best candidates which may lead to the development of an effective insecticide in the future.
Collapse
Affiliation(s)
- Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
| | - Camilla Parmeggiani
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-linear Spectroscopy via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
6
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
7
|
Wang L, Liang T, Fang Z. Chemical synthesis and preliminary biological evaluation of C-6-O-methyl-1-deoxynojirimycin as a potent α-glucosidase inhibitor. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1700995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| | - Tingting Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Zhijie Fang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| |
Collapse
|
8
|
Zamoner LOB, Aragão-Leoneti V, Carvalho I. Iminosugars: Effects of Stereochemistry, Ring Size, and N-Substituents on Glucosidase Activities. Pharmaceuticals (Basel) 2019; 12:E108. [PMID: 31336868 PMCID: PMC6789487 DOI: 10.3390/ph12030108] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
N-substituted iminosugar analogues are potent inhibitors of glucosidases and glycosyltransferases with broad therapeutic applications, such as treatment of diabetes and Gaucher disease, immunosuppressive activities, and antibacterial and antiviral effects against HIV, HPV, hepatitis C, bovine diarrhea (BVDV), Ebola (EBOV) and Marburg viruses (MARV), influenza, Zika, and dengue virus. Based on our previous work on functionalized isomeric 1,5-dideoxy-1,5-imino-D-gulitol (L-gulo-piperidines, with inverted configuration at C-2 and C-5 in respect to glucose or deoxynojirimycin (DNJ)) and 1,6-dideoxy-1,6-imino-D-mannitol (D-manno-azepane derivatives) cores N-linked to different sites of glucopyranose units, we continue our studies on these alternative iminosugars bearing simple N-alkyl chains instead of glucose to understand if these easily accessed scaffolds could preserve the inhibition profile of the corresponding glucose-based N-alkyl derivatives as DNJ cores found in miglustat and miglitol drugs. Thus, a small library of iminosugars (14 compounds) displaying different stereochemistry, ring size, and N-substitutions was successfully synthesized from a common precursor, D-mannitol, by utilizing an SN2 aminocyclization reaction via two isomeric bis-epoxides. The evaluation of the prospective inhibitors on glucosidases revealed that merely D-gluco-piperidine (miglitol, 41a) and L-ido-azepane (41b) DNJ-derivatives bearing the N-hydroxylethyl group showed inhibition towards α-glucosidase with IC50 41 µM and 138 µM, respectively, using DNJ as reference (IC50 134 µM). On the other hand, β-glucosidase inhibition was achieved for glucose-inverted configuration (C-2 and C-5) derivatives, as novel L-gulo-piperidine (27a) and D-manno-azepane (27b), preserving the N-butyl chain, with IC50 109 and 184 µM, respectively, comparable to miglustat with the same N-butyl substituent (40a, IC50 172 µM). Interestingly, the seven-membered ring L-ido-azepane (40b) displayed near twice the activity (IC50 80 µM) of the corresponding D-gluco-piperidine miglustat drug (40a). Furthermore, besides α-glucosidase inhibition, both miglitol (41a) and L-ido-azepane (41b) proved to be the strongest β-glucosidase inhibitors of the series with IC50 of 4 µM.
Collapse
Affiliation(s)
- Luís O B Zamoner
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, CEP14040-903 Ribeirão Preto, Brazil
| | - Valquiria Aragão-Leoneti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, CEP14040-903 Ribeirão Preto, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, CEP14040-903 Ribeirão Preto, Brazil.
| |
Collapse
|
9
|
O’Keefe S, Roebuck QP, Nakagome I, Hirono S, Kato A, Nash R, High S. Characterizing the selectivity of ER α-glucosidase inhibitors. Glycobiology 2019; 29:530-542. [PMID: 30976784 PMCID: PMC6583763 DOI: 10.1093/glycob/cwz029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) contains both α-glucosidases and α-mannosidases which process the N-linked oligosaccharides of newly synthesized glycoproteins and thereby facilitate polypeptide folding and glycoprotein quality control. By acting as structural mimetics, iminosugars can selectively inhibit these ER localized α-glycosidases, preventing N-glycan trimming and providing a molecular basis for their therapeutic applications. In this study, we investigate the effects of a panel of nine iminosugars on the actions of ER luminal α-glucosidase I and α-glucosidase II. Using ER microsomes to recapitulate authentic protein N-glycosylation and oligosaccharide processing, we identify five iminosugars that selectively inhibit N-glycan trimming. Comparison of their inhibitory activities in ER microsomes against their effects on purified ER α-glucosidase II, suggests that 3,7a-diepi-alexine acts as a selective inhibitor of ER α-glucosidase I. The other active iminosugars all inhibit α-glucosidase II and, having identified 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) as the most effective of these compounds, we use in silico modeling to understand the molecular basis for this enhanced activity. Taken together, our work identifies the C-3 substituted pyrrolizidines casuarine and 3,7a-diepi-alexine as promising "second-generation" iminosugar inhibitors.
Collapse
Affiliation(s)
- Sarah O’Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Quentin P Roebuck
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Izumi Nakagome
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Shuichi Hirono
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Robert Nash
- PhytoQuest Ltd, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Kato E. Bioactive compounds in plant materials for the prevention of diabetesand obesity. Biosci Biotechnol Biochem 2019; 83:975-985. [DOI: 10.1080/09168451.2019.1580560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT
Plant materials have been widely studied for their preventive and therapeutic effects for type 2 diabetes mellitus (T2DM) and obesity. The effect of a plant material arises from its constituents, and the study of these bioactive compounds is important to achieve a deeper understanding of its effect at the molecular level. In particular, the study of the effects of such bioactive compounds on various biological processes, from digestion to cellular responses, is required to fully understand the overall effects of plant materials in these health contexts. In this review, I summarize the bioactive compounds we have recently studied in our research group that target digestive enzymes, dipeptidyl peptidase-4, myocyte glucose uptake, and lipid accumulation in adipocytes.
Abbreviations: AC: adenylyl cyclase; AMPK: AMP-activated protein kinase; βAR: β-adrenergic receptor; CA: catecholamine; cAMP: cyclic adenosine monophosphate; cGMP: cyclic guanosine monophosphate; DPP-4: dipeptidyl peptidase-4; ERK: extracellular signal-regulated kinase; GC: guanylyl cyclase; GH: growth hormone; GLP-1: glucagon-like peptide-1; GLUT: glucose transporter; HSL: hormone-sensitive lipase; IR: insulin receptor; IRS: insulin receptor substrate; MAPK: mitogen-activated protein kinase; MEK: MAPK/ERK kinase; MG: maltase-glucoamylase; NP: natriuretic peptide; NPR: natriuretic peptide receptor; mTORC2: mechanistic target of rapamycin complex-2; PC: proanthocyanidin; PI3K: phosphoinositide 3-kinase; PKA: cAMP-dependent protein kinase; PKB (AKT): protein kinase B; PKG: cGMP-dependent protein kinase; PPARγ: peroxisome proliferator-activated receptor-γ; SGLT1: sodium-dependent glucose transporter 1; SI: sucrase-isomaltase; T2DM: type 2 diabetes mellitus; TNFα: tumor necrosis factor-α.
Collapse
Affiliation(s)
- Eisuke Kato
- Division of Fundamental AgriScience and Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Kume D, Fukami A, Kuraya E, Shimajiri Y, Ito M. Inhibitory Effect of Powdered Morus australis Leaves on Postprandial Elevation of Blood Glucose. J JPN SOC FOOD SCI 2019. [DOI: 10.3136/nskkk.66.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daisuke Kume
- Department of Integrated Arts and Science, National Institute of Technology, Okinawa College
- Department of Health, Sports and Welfare, Faculty of Humanities, Okinawa University
| | - Arisa Fukami
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College
| | - Eisuke Kuraya
- Science and Technology Division, National Institute of Technology, Okinawa College
| | | | - Masaaki Ito
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College
| |
Collapse
|
12
|
Davies SG, Fletcher AM, Kennedy MS, Roberts PM, Thomson JE. Asymmetric synthesis of d-fagomine and its diastereoisomers. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Mohamed NE, Ashour SE. Role of ethanolic extract of Morus alba leaves on some biochemical and hematological alterations in irradiated male rats. Int J Radiat Biol 2018; 94:374-384. [PMID: 29393711 DOI: 10.1080/09553002.2018.1433888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The present study aimed to evaluate the protective role of "Morus alba Linn (Family: Moraceae) commonly known as mulberry" leaves extract against hazardous effects of gamma rays in male rats. MATERIALS AND METHODS Thirty six male albino rats were divided into six groups (six rats/group); (1) control group received 1 ml distilled water, (2) low dose of extract (100 mg/kg) group treated daily with low oral dose of ethanolic extract of mulberry leaves (100 mg/kg body weight (b.wt.)) for 21 consecutive days, (3) high dose of extract (200 mg/kg) group treated daily with high oral dose of ethanolic extract of mulberry leaves (200 mg/kg b.wt.) for the same period, (4) irradiated group rats were subjected to whole body gamma irradiation at a shot dose of 7 Gy, (5) low dose of extract + irradiated group treated daily with low oral dose of ethanolic extract of mulberry leaves (100 mg/kg b.wt.) for 21 consecutive days then rats were exposed to gamma irradiation at a single dose of 7 Gy, (6) high dose of extract + irradiation group treated daily with high oral dose of ethanolic extract of mulberry leaves (200 mg/kg b.wt.) for 21 consecutive days then rats were exposed to gamma irradiation at a single dose of 7 Gy. Rats were sacrificed 1, 7, 15 days post gamma irradiation in all groups. Blood samples were taken at three intervals time in the six groups. RESULTS The results showed that whole body irradiation of rats induced significant decrease (p < 0.05) in red blood cells (RBCs), hemoglobin (Hb), hematocrit percentage (HCT%), platelet, white blood cells (WBCs), lymphocytes, neutrophils, serum glucose-6-phosphate dehydrogenase (G-6-PD) and insulin. The data also showed significant increase (p < 0.05) in serum total lipids, phospholipids, cholesterol, triglycerides, lactate dehydrogenase (LDH), creatine kinase (CK), and plasma glucose. Administration of mulberry leaves extract, either low or high concentrations to rats prior to irradiation caused significant improvement in the studied parameters. CONCLUSIONS Mulberry leaves extract prior to exposure to gamma irradiation has radio protector against hazardous effect of irradiation in male rats.
Collapse
Affiliation(s)
- Naglaa Elshahat Mohamed
- a Department of Biological Applications , Nuclear Research Center , Abou Zaabel , Qalyubia , Egypt
| | - Saleh E Ashour
- b Hot Labs Centre , Atomic Energy Authority , Abou Zaabel , Qalyubia , Egypt
| |
Collapse
|
14
|
α-Geminal disubstituted pyrrolidine iminosugars and their C-4-fluoro analogues: Synthesis, glycosidase inhibition and molecular docking studies. Bioorg Med Chem 2017; 25:5148-5159. [DOI: 10.1016/j.bmc.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/24/2022]
|
15
|
Mirabella S, D'Adamio G, Matassini C, Goti A, Delgado S, Gimeno A, Robina I, Moreno-Vargas AJ, Šesták S, Jiménez-Barbero J, Cardona F. Mechanistic Insight into the Binding of Multivalent Pyrrolidines to α-Mannosidases. Chemistry 2017; 23:14585-14596. [DOI: 10.1002/chem.201703011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Stefania Mirabella
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Giampiero D'Adamio
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Sandra Delgado
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Ana Gimeno
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Inmaculada Robina
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Antonio J. Moreno-Vargas
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Sergej Šesták
- Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Dúbravska cesta 9 84538 Bratislava Slovakia
| | - Jesús Jiménez-Barbero
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 5 48005 Bilbao Spain
- Departament Organic Chemistry II; EHU-UPV; 48040 Leioa Spain
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| |
Collapse
|
16
|
Ketenimine mediated synthesis of lactam iminosugars: development of one-pot process via tandem hydrative amidation of amino-alkynes and intramolecular transamidation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Li YX, Kinami K, Hirokami Y, Kato A, Su JK, Jia YM, Fleet GWJ, Yu CY. Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars: synthesis and glycosidase inhibition. Org Biomol Chem 2016; 14:2249-63. [DOI: 10.1039/c5ob02474a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars have been synthesized from cyclic nitrones and assayed against various glycosidases.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kyoko Kinami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Yuki Hirokami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Jia-Kun Su
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
18
|
Harit VK, Ramesh NG. Amino-functionalized iminocyclitols: synthetic glycomimetics of medicinal interest. RSC Adv 2016. [DOI: 10.1039/c6ra23513a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A review on the syntheses and biological activities of unnatural glycomimetics highlighting the effect of replacement of hydroxyl groups of natural iminosugars by amino functionalities is presented.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| | - Namakkal G. Ramesh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| |
Collapse
|
19
|
D'Adamio G, Matassini C, Parmeggiani C, Catarzi S, Morrone A, Goti A, Paoli P, Cardona F. Evidence for a multivalent effect in inhibition of sulfatases involved in lysosomal storage disorders (LSDs). RSC Adv 2016. [DOI: 10.1039/c6ra15806d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New targets sensitive to multivalency: synthesis of nonavalent pyrrolidine iminosugars.
Collapse
Affiliation(s)
- G. D'Adamio
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - C. Matassini
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - C. Parmeggiani
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
- CNR – INO and LENS
| | - S. Catarzi
- Paediatric Neurology Unit and Laboratories
- Neuroscience Department
- Meyer Children's Hospital
- Department of Neurosciences
- Pharmacology and Child Health
| | - A. Morrone
- Paediatric Neurology Unit and Laboratories
- Neuroscience Department
- Meyer Children's Hospital
- Department of Neurosciences
- Pharmacology and Child Health
| | - A. Goti
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - P. Paoli
- Department of Experimental and Clinical Biomedical Sciences
- University of Florence
- 50134 Florence
- Italy
| | - F. Cardona
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
20
|
Arora I, Sharma SK, Shaw AK. Aglycone mimics for tuning of glycosidase inhibition: design, synthesis and biological evaluation of bicyclic pyrrolidotriazole iminosugars. RSC Adv 2016. [DOI: 10.1039/c5ra26005a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Various fuco-configured bicyclic pyrrolidotriazole aglycone mimics were synthesised using copper-catalysed coupling of allyl bromides with terminal alkynes and Sonogashira–Hagihara reaction followed by intramolecular azide-alkyne ‘click’ reaction.
Collapse
Affiliation(s)
- Inderpreet Arora
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sandeep K. Sharma
- Microbiology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Arun K. Shaw
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
21
|
Boisson J, Thomasset A, Racine E, Cividino P, Banchelin Sainte-Luce T, Poisson JF, Behr JB, Py S. Hydroxymethyl-Branched Polyhydroxylated Indolizidines: Novel Selective α-Glucosidase Inhibitors. Org Lett 2015; 17:3662-5. [DOI: 10.1021/acs.orglett.5b01505] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julien Boisson
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Amélia Thomasset
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Emilie Racine
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Pascale Cividino
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | | | - Jean-François Poisson
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne, Institut de
Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR Sciences
Exactes et Naturelles, BP
1039, 51687 Reims Cedex 2, France
| | - Sandrine Py
- Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France
- CNRS, DCM, F-38000 Grenoble, France
| |
Collapse
|
22
|
Li YX, Shimada Y, Adachi I, Kato A, Jia YM, Fleet GWJ, Xiao M, Yu CY. Fluorinated and Conformationally Fixed Derivatives of l-HomoDMDP: Synthesis and Glycosidase Inhibition. J Org Chem 2015; 80:5151-8. [DOI: 10.1021/acs.joc.5b00571] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi-Xian Li
- Beijing
National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yousuke Shimada
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yue-Mei Jia
- Beijing
National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Min Xiao
- State
Key Laboratory of Microbial Technology and National Glycoengineering
Research Center, Shandong University, Jinan 250100, China
| | - Chu-Yi Yu
- Beijing
National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
23
|
Yang S, Wang B, Xia X, Li X, Wang R, Sheng L, Li D, Liu Y, Li Y. Simultaneous quantification of three active alkaloids from a traditional Chinese medicine Ramulus Mori (Sangzhi) in rat plasma using liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2015; 109:177-83. [DOI: 10.1016/j.jpba.2015.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/22/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
|
24
|
Synthesis and the Intestinal Glucosidase Inhibitory Activity of 2-Aminoresorcinol Derivatives toward an Investigation of Its Binding Site. Biosci Biotechnol Biochem 2014; 76:1044-6. [DOI: 10.1271/bbb.120009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Jiang FX, Liu QZ, Zhao D, Luo CT, Guo CP, Ye WC, Luo C, Chen H. A concise synthesis of N-substituted fagomine derivatives and the systematic exploration of their α-glycosidase inhibition. Eur J Med Chem 2014; 77:211-22. [DOI: 10.1016/j.ejmech.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 11/30/2022]
|
26
|
Robina I, Steimer F, T. Carmona A, J. Moreno-Vargas A, Caffa I, Montecucco F, Nencioni A, Vogel P. Synthesis of Pyrrolidine 3,4-Diol Derivatives with Anticancer Activity on Pancreatic Tumor Cells. HETEROCYCLES 2014; 88:1445. [DOI: 10.3987/com-13-s(s)111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
|
27
|
Crabtree EV, Martínez RF, Nakagawa S, Adachi I, Butters TD, Kato A, Fleet GWJ, Glawar AFG. Synthesis of the enantiomers of XYLNAc and LYXNAc: comparison of β-N-acetylhexosaminidase inhibition by the 8 stereoisomers of 2-N-acetylamino-1,2,4-trideoxy-1,4-iminopentitols. Org Biomol Chem 2014; 12:3932-43. [DOI: 10.1039/c4ob00097h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Oba M, Koguchi S, Nishiyama K. Stereoselective Synthesis of 3,4-Dihydroxylated Prolines and Prolinols Starting fromL-Tartaric Acid. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M. Oba
- Department of Materials Chemistry; Tokai University; 317 Nishino Numazu Shizuoka 410-0395 Japan
| | - S. Koguchi
- Department of Chemistry; Tokai University; 4-1-1 Kitakaname Hiratsuka Kanagawa 259-1292 Japan
| | - K. Nishiyama
- Department of Materials Chemistry; Tokai University; 317 Nishino Numazu Shizuoka 410-0395 Japan
| |
Collapse
|
29
|
Corkran HM, Munneke S, Dangerfield EM, Stocker BL, Timmer MSM. Applications and Limitations of the I2-Mediated Carbamate Annulation for the Synthesis of Piperidines: Five- versus Six-Membered Ring Formation. J Org Chem 2013; 78:9791-802. [DOI: 10.1021/jo401512h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hilary M. Corkran
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Stefan Munneke
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Emma M. Dangerfield
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Bridget L. Stocker
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington, New Zealand
| | - Mattie S. M. Timmer
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| |
Collapse
|
30
|
Balieu S, Guilleret A, Reynaud R, Martinez A, Haudrechy A. Stereoselective synthesis of (2S,3S,4R,5S)-3,4-dihydroxy-2,5-dihydroxymethyl pyrrolidine from L-sorbose. Carbohydr Res 2013; 374:14-22. [PMID: 23603481 DOI: 10.1016/j.carres.2013.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/05/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
One of the most frequently synthesized iminosugar derivatives is DMDP. Starting from L-sorbose, a practical method for the synthesis of derivatives of this five-membered iminocyclitol has been developed, involving straightforward steps and a convenient selective reduction of a ketoxime intermediate.
Collapse
Affiliation(s)
- Sébastien Balieu
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims, Reims, France
| | | | | | | | | |
Collapse
|
31
|
Davies SG, Figuccia ALA, Fletcher AM, Roberts PM, Thomson JE. Asymmetric Syntheses of (−)-1-Deoxymannojirimycin and (+)-1-Deoxyallonojirimycin via a Ring-Expansion Approach. Org Lett 2013; 15:2042-5. [DOI: 10.1021/ol400735z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Stephen G. Davies
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Aude L. A. Figuccia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Ai M. Fletcher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Paul M. Roberts
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James E. Thomson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
32
|
Preparation of sugar-derived 1,2-diamines via indium-catalyzed aza-Henry-type reaction: application to the synthesis of 6-amino-1,6-dideoxynojirimycin. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Guerreiro LR, Carreiro EP, Fernandes L, Cardote TA, Moreira R, Caldeira AT, Guedes RC, Burke A. Five-membered iminocyclitol α-glucosidase inhibitors: Synthetic, biological screening and in silico studies. Bioorg Med Chem 2013; 21:1911-7. [DOI: 10.1016/j.bmc.2013.01.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 11/28/2022]
|
34
|
Barker MK, Rose DR. Specificity of Processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies. J Biol Chem 2013; 288:13563-74. [PMID: 23536181 DOI: 10.1074/jbc.m113.460436] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The enzyme “GluI” is key to the synthesis of critical glycoproteins in the cell. RESULTS We have determined the structure of GluI, and modeled binding with its unique sugar substrate. CONCLUSION The specificity of this interaction derives from a unique conformation of the substrate. SIGNIFICANCE Understanding the mechanism of the enzyme is of basic importance and relevant to potential development of antiviral inhibitors. Processing α-glucosidase I (GluI) is a key member of the eukaryotic N-glycosylation processing pathway, selectively catalyzing the first glycoprotein trimming step in the endoplasmic reticulum. Inhibition of GluI activity impacts the infectivity of enveloped viruses; however, despite interest in this protein from a structural, enzymatic, and therapeutic standpoint, little is known about its structure and enzymatic mechanism in catalysis of the unique glycan substrate Glc3Man9GlcNAc2. The first structural model of eukaryotic GluI is here presented at 2-Å resolution. Two catalytic residues are proposed, mutations of which result in catalytically inactive, properly folded protein. Using Autodocking methods with the known substrate and inhibitors as ligands, including a novel inhibitor characterized in this work, the active site of GluI was mapped. From these results, a model of substrate binding has been formulated, which is most likely conserved in mammalian GluI.
Collapse
Affiliation(s)
- Megan K Barker
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada.
| | | |
Collapse
|
35
|
Guo LD, Liang P, Zheng JF, Huang PQ. A Concise and Divergent Approach to Hydroxylated Piperidine Alkaloids and Azasugar Lactams. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Concia AL, Gómez L, Bujons J, Parella T, Vilaplana C, Cardona PJ, Joglar J, Clapés P. Chemo-enzymatic synthesis and glycosidase inhibitory properties of DAB and LAB derivatives. Org Biomol Chem 2013; 11:2005-21. [PMID: 23381224 DOI: 10.1039/c3ob27343a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chemo-enzymatic strategy for the preparation of 2-aminomethyl derivatives of (2R,3R,4R)-2-(hydroxymethyl)pyrrolidine-3,4-diol (also called 1,4-dideoxy-1,4-imino-D-arabinitol, DAB) and its enantiomer LAB is presented. The synthesis is based on the enzymatic preparation of DAB and LAB followed by the chemical modification of their hydroxymethyl functionality to afford diverse 2-aminomethyl derivatives. This strategy leads to novel aromatic, aminoalcohol and 2-oxopiperazine DAB and LAB derivatives. The compounds were preliminarily explored as inhibitors of a panel of commercial glycosidases, rat intestinal disaccharidases and against Mycobacterium tuberculosis, the causative agent of tuberculosis. It was found that the inhibitory profile of the new products differed considerably from the parent DAB and LAB. Furthermore, some of them were active inhibiting the growth of M. tuberculosis.
Collapse
Affiliation(s)
- Alda Lisa Concia
- Dept Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sadhu PS, Santhoshi A, Rao VJ. Total Synthesis of Azasugar 1,4-Dideoxy-1,4-imino-D-galacitol. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.11.3554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Kato A, Hayashi E, Miyauchi S, Adachi I, Imahori T, Natori Y, Yoshimura Y, Nash RJ, Shimaoka H, Nakagome I, Koseki J, Hirono S, Takahata H. α-1-C-Butyl-1,4-dideoxy-1,4-imino-l-arabinitol as a Second-Generation Iminosugar-Based Oral α-Glucosidase Inhibitor for Improving Postprandial Hyperglycemia. J Med Chem 2012; 55:10347-62. [PMID: 23106358 DOI: 10.1021/jm301304e] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Erina Hayashi
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Saori Miyauchi
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Tatsushi Imahori
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | - Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | - Yuichi Yoshimura
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | - Robert J. Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan,
Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - Hideyuki Shimaoka
- S-BIO Business Division, Simitomo Bakelite Company Limited, Tokyo 140-0002, Japan
| | - Izumi Nakagome
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Jun Koseki
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroki Takahata
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
39
|
Pawar NJ, Parihar VS, Chavan ST, Joshi R, Joshi PV, Sabharwal SG, Puranik VG, Dhavale DD. α-Geminal Dihydroxymethyl Piperidine and Pyrrolidine Iminosugars: Synthesis, Conformational Analysis, Glycosidase Inhibitory Activity, and Molecular Docking Studies. J Org Chem 2012; 77:7873-82. [DOI: 10.1021/jo3009534] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nitin J. Pawar
- Department of Chemistry, Garware
Research Centre, University of Pune, Pune,
411 007, India
| | - Vijay Singh Parihar
- Department of Chemistry, Garware
Research Centre, University of Pune, Pune,
411 007, India
| | - Sanjay T. Chavan
- Division
of Biochemistry, Department
of Chemistry, University of Pune, Pune,
411 007, India
| | - Rakesh Joshi
- Biochemical
Sciences Division, National Chemical Laboratory, Pune, 411 008, India
| | - Pranaya V. Joshi
- Centre for Material Characterization, National Chemical Laboratory, Pune, 411 008, India
| | - Sushma G. Sabharwal
- Division
of Biochemistry, Department
of Chemistry, University of Pune, Pune,
411 007, India
| | - Vedavati G. Puranik
- Centre for Material Characterization, National Chemical Laboratory, Pune, 411 008, India
| | - Dilip D. Dhavale
- Department of Chemistry, Garware
Research Centre, University of Pune, Pune,
411 007, India
| |
Collapse
|
40
|
Soengas RG, Simone MI, Hunter S, Nash RJ, Evinson EL, Fleet GWJ. Hydroxymethyl-Branched Piperidines from Hydroxymethyl-Branched Lactones: Synthesis and Biological Evaluation of 1,5-Dideoxy-2-C-hydroxymethyl-1,5-imino-D-mannitol, 1,5-Dideoxy-2-C-hydroxymethyl-1,5-imino-L-gulitol and 1,5-Dideoxy-2-C-hydroxymethyl-1,5-imi. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Aguilar-Moncayo M, Díaz-Pérez P, García Fernández JM, Ortiz Mellet C, García-Moreno MI. Synthesis and glycosidase inhibitory activity of isourea-type bicyclic sp2-iminosugars related to galactonojirimycin and allonojirimycin. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Chandrasekhar B, Prasada Rao J, Venkateswara Rao B, Naresh P. [2,3]-Wittig rearrangement approach to iminosugar C-glycosides: 5-epi-ethylfagomine, 2-epi-5-deoxyadenophorine and formal synthesis of indolizidine 167B and 209D. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.08.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Kato E, Iwano N, Yamada A, Kawabata J. Synthesis and α-amylase inhibitory activity of glucose–deoxynojirimycin conjugates. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Anti-cancer activity of 5-O-alkyl 1,4-imino-1,4-dideoxyribitols. Bioorg Med Chem 2011; 19:7720-7. [PMID: 22079865 DOI: 10.1016/j.bmc.2011.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/21/2011] [Accepted: 07/23/2011] [Indexed: 11/24/2022]
Abstract
New derivatives of 1,4-dideoxy-1,4-imino-D-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-D-ribitol (13, IC(50) ∼2 μM) and its C(18)-analogues (IC(50) <10 μM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC(50) ∼8 μM) growth of JURKAT cells.
Collapse
|
45
|
Zhang ZX, Wu B, Wang B, Li TH, Zhang PF, Guo LN, Wang WJ, Zhao W, Wang PG. Facile and stereo-controlled synthesis of 2-deoxynojirimycin, Miglustat and Miglitol. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Enantiomeric 2-acetamido-1,4-dideoxy-1,4-iminoribitols as potential pyrrolidine hexosaminidase inhibitors. CR CHIM 2011. [DOI: 10.1016/j.crci.2010.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Stütz AE, Wrodnigg TM. Imino sugars and glycosyl hydrolases: historical context, current aspects, emerging trends. Adv Carbohydr Chem Biochem 2011; 66:187-298. [PMID: 22123190 DOI: 10.1016/b978-0-12-385518-3.00004-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forty years of discoveries and research on imino sugars, which are carbohydrate analogues having a basic nitrogen atom instead of oxygen in the sugar ring and, acting as potent glycosidase inhibitors, have made considerable impact on our contemporary understanding of glycosidases. Imino sugars have helped to elucidate the catalytic machinery of glycosidases and have refined our methods and concepts of utilizing them. A number of new aspects have emerged for employing imino sugars as pharmaceutical compounds, based on their profound effects on metabolic activities in which glycosidases are involved. From the digestion of starch to the fight against viral infections, from research into malignant diseases to potential improvements in hereditary storage disorders, glycosidase action and inhibition are essential issues. This account aims at combining general developments with a focus on some niches where imino sugars have become useful tools for glycochemistry and glycobiology.
Collapse
Affiliation(s)
- Arnold E Stütz
- Institut für Organische Chemie, Technische Universität Graz, Austria
| | | |
Collapse
|
48
|
Ganesan M, Ramesh NG. A new and short synthesis of naturally occurring 1-deoxy-l-gulonojirimycin from tri-O-benzyl-d-glucal. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Falentin-Daudre C, Beaupère D, Stasik-Boutbaiba I. Synthesis of new N-substituted 3,4,5-trihydroxypiperidin-2-ones from d-ribono-1,4-lactone. Carbohydr Res 2010; 345:1983-7. [PMID: 20692650 DOI: 10.1016/j.carres.2010.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/17/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 8a in quantitative yield. Using this reaction procedure, N-butyl, N-hexyl, N-dodecyl, N-benzyl, N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-d-ribonamides 8b-h were obtained in quantitative yield. Bromination of the amides 8a-e with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-ethyl, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonamides 9a-e in 40-54% yields. To obtain 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-9f-h, the bromination is necessary before the amidation reaction. Treatment of the bromoamides 9a-h with NaH in DMF followed by methanolysis affords N-alkyl-d-ribono-1,5-lactams 12a-h in quantitative yield.
Collapse
Affiliation(s)
- Céline Falentin-Daudre
- Laboratoire des Glucides, UMR 6219, Université de Picardie Jules Verne, 33 Rue Saint-Leu, F-80039 Amiens, France
| | | | | |
Collapse
|
50
|
Karjalainen OK, Passiniemi M, Koskinen AMP. Short and Straightforward Synthesis of (−)-1-Deoxygalactonojirimycin. Org Lett 2010; 12:1145-7. [DOI: 10.1021/ol100037c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oskari K. Karjalainen
- Aalto University School of Science and Technology, Faculty of Chemistry and Materials Sciences, Department of Chemistry, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Mikko Passiniemi
- Aalto University School of Science and Technology, Faculty of Chemistry and Materials Sciences, Department of Chemistry, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Ari M. P. Koskinen
- Aalto University School of Science and Technology, Faculty of Chemistry and Materials Sciences, Department of Chemistry, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|