1
|
Singh G, Gupta N, Sethi N, Gupta V, Raj T, Ishar MPS. Facile Synthesis of Some New Peptidomimetic β 3 -and β 2,3 -Amino Alcohols Possessing Pyridyl Moiety via Reductive Ring Opening of Pyridyl-isoxazolidines. Chem Biodivers 2024; 21:e202301323. [PMID: 38116925 DOI: 10.1002/cbdv.202301323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Regio- and stereoselective 1,3-dipolar cycloadditions of C-(3-pyridyl)-N-phenylnitrone (2) with variedly substituted dipolarophiles (3, 4) were carried out to obtain substituted pyridyl-isoxazolidines (5-8). Reductive cleavage of pyridyl-isoxazolidines (5-8) with ammonium formate, methanol-THF solvents, at ambient temperature, in the presence of Pd/C provided a facile route for the synthesis of β3 -and β2,3 -amino alcohols (9-12), with a substitution pattern having pronounced influence on torsional angles. The obtained compounds (9-12) are valuable scaffolds which can be utilized for peptidomimetics. Thus, the present methodology for reductive opening of isoxazolidine ring avoids the disadvantages of using expensive apparatus and hazards involved in the use of hydrogen gas. The preferential formation of amino-alcohols in case of bicyclic isoxazolidines (8a-c), which precludes any recyclization is rationalized by DFT calculations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Naman Gupta
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Nidhi Sethi
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Vivek Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu Tawi, 180 006, India
| | - Tilak Raj
- Toxicology Division, Forensic Science Laboratory, Mohali, 160 059, Punjab, India
| | - Mohan Paul Singh Ishar
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| |
Collapse
|
2
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Ion R, Necula MG, Mazare A, Mitran V, Neacsu P, Schmuki P, Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr Med Chem 2020; 27:854-902. [PMID: 31362646 DOI: 10.2174/0929867326666190726123229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.
Collapse
Affiliation(s)
- Raluca Ion
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patricia Neacsu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patrik Schmuki
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
4
|
Leong C, Neumann C, Ramasamy S, Rout B, Yi Wee L, Bigliardi-Qi M, Bigliardi PL. Investigating endogenous µ-opioid receptors in human keratinocytes as pharmacological targets using novel fluorescent ligand. PLoS One 2017; 12:e0188607. [PMID: 29211767 PMCID: PMC5718609 DOI: 10.1371/journal.pone.0188607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Opioids in skin function during stress response, regeneration, ageing and, particularly in regulating sensation. In chronic pruritus, topical treatment with Naltrexone changes μ-opioid receptor (μ-OR) localization to relieve itch. The molecular mechanisms behind the effects of Naltrexone on μ-OR function in reduction of itching behavior has not been studied. There is an immediate need to understand the endogenous complexity of μ-OR dynamics in normal and pathological skin conditions. Here we evaluate real-time behavior of μ-OR-Endomorphine complexes in the presence of agonist and antagonists. The μ-OR ligand Endomorphine-1 (EM) was conjugated to the fluorescent dye Tetramethylrhodamine (TAMRA) to investigate the effects of agonist and antagonists in N/TERT-1 keratinocytes. The cellular localization of the EM-TAMRA was followed through time resolved confocal microscopy and population analysis was performed by flow cytometry. The in vitro analyses demonstrate fast internalization and trafficking of the endogenous EM-TAMRA-μ-OR interactions in a qualitative manner. Competition with Endomorphine-1, Naltrexone and CTOP show both canonical and non-canonical effects in basal and differentiated keratinocytes. Acute and chronic treatment with Naltrexone and Endomorphine-1 increases EM-TAMRA binding to skin cells. Although Naltrexone is clinically effective in relieving itch, the mechanisms behind re-distribution of μ-ORs during clinical treatments are not known. Our study has given insight into cellular mechanisms of μ-OR ligand-receptor interactions after opioid agonist and antagonist treatments in vitro. These findings potentially offer opportunities in using novel treatment strategies for skin and peripheral sensory disorders.
Collapse
Affiliation(s)
- Cheryl Leong
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, Singapore
| | - Christine Neumann
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, Singapore
| | - Srinivas Ramasamy
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, Singapore
| | - Bhimsen Rout
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, Singapore
| | - Lim Yi Wee
- Institute of Chemical and Engineering Sciences, Agency for Science Technology & Research (A*STAR), Singapore, Singapore
| | - Mei Bigliardi-Qi
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, Singapore
- * E-mail: , (PB); , (MB)
| | - Paul L. Bigliardi
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, Singapore
- National University Hospital, Division of Rheumatology, University Medicine Cluster, Singapore, Singapore
- * E-mail: , (PB); , (MB)
| |
Collapse
|
5
|
Conformational properties of ascydiacyclamide analogues with cyclic α-amino acids instead of oxazoline residues. Bioorg Med Chem 2017; 25:6554-6562. [DOI: 10.1016/j.bmc.2017.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022]
|
6
|
Adamska-Bartłomiejczyk A, Borics A, Tömböly C, Dvorácskó S, Lisowski M, Kluczyk A, Wołczański G, Piekielna-Ciesielska J, Janecka A. Synthesis, receptor binding studies, optical spectroscopic and in silico structural characterization of morphiceptin analogs with cis-4-amino-L-proline residues. J Pept Sci 2017; 23:864-870. [PMID: 29110363 DOI: 10.1002/psc.3050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023]
Abstract
Three novel morphiceptin analogs, in which Pro in position 2 and/or 4 was replaced by cis-4-aminoproline connected with the preceding amino acid through the primary amino group, were synthesized. The opioid receptor affinities, functional assay results, enzymatic degradation studies and experimental and in silico structural analysis of such analogs are presented. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Marek Lisowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Grzegorz Wołczański
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
7
|
Stefanucci A, Carotenuto A, Macedonio G, Novellino E, Pieretti S, Marzoli F, Szűcs E, Erdei AI, Zádor F, Benyhe S, Mollica A. Cyclic Biphalin Analogues Incorporating a Xylene Bridge: Synthesis, Characterization, and Biological Profile. ACS Med Chem Lett 2017; 8:858-863. [PMID: 28835802 DOI: 10.1021/acsmedchemlett.7b00210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022] Open
Abstract
In this work we enhanced the ring lipophilicity of biphalin introducing a xylene moiety, thus obtaining three cyclic regioisomers. Novel compounds have similar in vitro activity as the parent compound, but one of these (6a) shows a remarkable increase of in vivo antinociceptive effect. Nociception tests have disclosed its significant high potency and the more prolonged effect in eliciting analgesia, higher than that of biphalin and of the disulfide-bridge-containing analogue (7).
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alfonso Carotenuto
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Giorgia Macedonio
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale per la Ricerca e la Valutazione Preclinica dei Farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesca Marzoli
- Istituto Superiore di Sanità, Centro Nazionale per la Ricerca e la Valutazione Preclinica dei Farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Edina Szűcs
- Institute
of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Anna I. Erdei
- Institute
of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Ferenc Zádor
- Institute
of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute
of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
8
|
Synthesis, biological evaluation and structural analysis of novel peripherally active morphiceptin analogs. Bioorg Med Chem 2016; 24:1582-8. [DOI: 10.1016/j.bmc.2016.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/20/2022]
|
9
|
Perlikowska R, Piekielna J, Gentilucci L, De Marco R, Cerlesi MC, Calo G, Artali R, Tömböly C, Kluczyk A, Janecka A. Synthesis of mixed MOR/KOR efficacy cyclic opioid peptide analogs with antinociceptive activity after systemic administration. Eur J Med Chem 2016; 109:276-86. [DOI: 10.1016/j.ejmech.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
|
10
|
Policastro GM, Becker ML. Osteogenic growth peptide and its use as a bio-conjugate in regenerative medicine applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:449-64. [DOI: 10.1002/wnan.1376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/18/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - Matthew L. Becker
- Departments of Polymer Science and Biomedical Engineering; University of Akron; Akron OH USA
| |
Collapse
|
11
|
Mollica A, Carotenuto A, Novellino E, Limatola A, Costante R, Pinnen F, Stefanucci A, Pieretti S, Borsodi A, Samavati R, Zador F, Benyhe S, Davis P, Porreca F, Hruby VJ. Novel cyclic biphalin analogue with improved antinociceptive properties. ACS Med Chem Lett 2014; 5:1032-6. [PMID: 25221662 DOI: 10.1021/ml500241n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022] Open
Abstract
Two novel opioid analogues have been designed by substituting the native d-Ala residues in position 2,2' of biphalin with two residues of d-penicillamine or l-penicillamine and by forming a disulfide bond between the thiol groups. The so-obtained compound 9 containing d-penicillamines showed excellent μ/δ mixed receptor affinities (K i (δ) = 5.2 nM; K i (μ) = 1.9 nM), together with an efficacious capacity to trigger the second messenger and a very good in vivo antinociceptive activity, whereas product 10 was scarcely active. An explanation of the two different pharmacological behaviors of products 9 and 10 was found by studying their conformational properties.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Alfonso Carotenuto
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Antonio Limatola
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Roberto Costante
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesco Pinnen
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento
di Chimica, Sapienza, Università di Roma, P.le A. Moro,
5, 00187 Rome, Italy
| | - Stefano Pieretti
- Department
of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Anna Borsodi
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Reza Samavati
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ferenc Zador
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | | | | |
Collapse
|
12
|
Mollica A, Costante R, Stefanucci A, Pinnen F, Luisi G, Pieretti S, Borsodi A, Bojnik E, Benyhe S. Hybrid peptides endomorphin-2/DAMGO: Design, synthesis and biological evaluation. Eur J Med Chem 2013; 68:167-77. [DOI: 10.1016/j.ejmech.2013.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023]
|
13
|
Lesma G, Salvadori S, Airaghi F, Murray TF, Recca T, Sacchetti A, Balboni G, Silvani A. Structural and biological exploration of phe(3)-phe(4)-modified endomorphin-2 peptidomimetics. ACS Med Chem Lett 2013; 4:795-9. [PMID: 24900748 DOI: 10.1021/ml400189r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022] Open
Abstract
This study reports on our ongoing investigation on hybrid EM-2 analogues, in which the great potential of β-amino acids was exploited to generate multiple conformational modifications at the key positions 3 and 4 of the parent peptide. The effect on the opioid binding affinity was evaluated, by means of ligand stimulated binding assays, which indicated a high nanomolar affinity toward the μ-receptor, with appreciable μ/δ selectivity, for some of the new compounds. The three-dimensional properties of the high affinity μ opioid receptor (MOR) ligands were investigated by proton nuclear magnetic resonance, molecular dynamics, and docking studies. In solution, the structures showed extended conformations, which are in agreement with the commonly accepted pharmacophore model for EM-2. From docking studies on an active form of the MOR model, different ligand-receptor interactions have been identified, thus confirming the ability of active compounds to assume a biologically active conformation.
Collapse
Affiliation(s)
- Giordano Lesma
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| | - Severo Salvadori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Ferrara, via Fossato
di Mortara 17-19, 44100 Ferrara, Italy
| | - Francesco Airaghi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| | - Thomas F. Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68102,
United States
| | - Teresa Recca
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| | - Alessandro Sacchetti
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, p.zza Leonardo
da Vinci 32, 20133 Milano, Italy
| | - Gianfranco Balboni
- Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Via Ospedale
72, 09124 Cagliari, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| |
Collapse
|
14
|
Jakas A. The Maillard reaction induced modifications of endogenous opioid peptide enkephalin. Methods Mol Biol 2013; 1081:137-149. [PMID: 24014438 DOI: 10.1007/978-1-62703-652-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nonenzymatic glycation (Maillard reaction) is a posttranslational modification of peptides and proteins by sugars, which, after a cascade of reactions, leads to the formation of a complex family of irreversibly changed advanced glycation end products (AGE) implicated in the pathogenesis of human diseases. Last reversible intermediates of this reaction are Amadori/Heyns compounds formed in glucose/fructose induced modification of peptides. The stability of these compounds determines the further course of the reaction.To provide information concerning the preparation of model systems as well as the fate of glycated opioid peptides introduced in the human circulation, the enzymatic (80 % human serum) and chemical (PBS) stability of Amadori and Heyns compounds related to the endogenous opioid pentapeptides leucine- and methionine-enkephalin (Tyr-Gly-Gly-Phe-Leu/Met) were investigated.
Collapse
Affiliation(s)
- Andreja Jakas
- Laboratory for Carbohydrate, Peptide and Glycopeptide Research, Division of Organic Chemistry and Biochemistry, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
15
|
Borics A, Mallareddy JR, Timári I, Kövér KE, Keresztes A, Tóth G. The Effect of Pro2 Modifications on the Structural and Pharmacological Properties of Endomorphin-2. J Med Chem 2012; 55:8418-28. [DOI: 10.1021/jm300836n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Attila Borics
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Jayapal R. Mallareddy
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - István Timári
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Katalin E. Kövér
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Attila Keresztes
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| |
Collapse
|
16
|
Kim DH, Hong NJ. Activity Profiles of Linear, Cyclic Monomer and Cyclic Dimer of Enkephalin. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.1.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Mallareddy JR, Borics A, Keresztes A, Kövér KE, Tourwé D, Tóth G. Design, synthesis, pharmacological evaluation, and structure-activity study of novel endomorphin analogues with multiple structural modifications. J Med Chem 2011; 54:1462-72. [PMID: 21287991 DOI: 10.1021/jm101515v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports on new proteolytically stable, pharmacologically active endomorphin analogues, incorporating Dmt(1), Achc(2), pFPhe(4), or βMePhe(4) unnatural amino acids. Consistent with earlier results, it was found that the analogues carrying Dmt(1) and Achc(2) residues displayed the highest μ-opioid receptor affinities, depending upon the configuration of the incorporated Achc(2). Combination of such derivatives with pFPhe(4) or βMePhe(4) yielded further compounds with variable binding potencies. Combined application of Dmt(1), cis-(1S,2R)Achc(2), and pFPhe(4) (compound 16) resulted in the most potent analogue. Ligand stimulated [(35)S]GTPγS binding assays indicated that the analogues retained their agonist activities and opioid receptor specificities. NMR and molecular modeling studies of the analogues containing βMePhe(4) or pFPhe(4) confirmed the predominance of bent structures, however, it is apparent that bent structures are energetically more favored than random/extended structures for all studied compounds.
Collapse
Affiliation(s)
- Jayapal Reddy Mallareddy
- Institute of Biochemistry , Biological Research Center, Hungarian Academy of Sciences, PO Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
18
|
A molecular dynamics study on opioid activities of biphalin molecule. J Mol Model 2010; 17:2455-64. [DOI: 10.1007/s00894-010-0931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/07/2010] [Indexed: 11/26/2022]
|
19
|
Giordano C, Sansone A, Masi A, Lucente G, Punzi P, Mollica A, Pinnen F, Feliciani F, Cacciatore I, Davis P, Lai J, Ma SW, Porreca F, Hruby V. Synthesis and activity of endomorphin-2 and morphiceptin analogues with proline surrogates in position 2. Eur J Med Chem 2010; 45:4594-600. [PMID: 20692738 PMCID: PMC5689459 DOI: 10.1016/j.ejmech.2010.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 11/15/2022]
Abstract
The opioid agonists endomorphins (Tyr-Pro-Trp-Phe-NH(2); EM1 and Tyr-Pro-Phe-Phe-NH(2); EM2) and morphiceptin (Tyr-Pro-Phe-Pro-NH(2)) exhibit an extremely high selectivity for mu-opioid receptor. Here a series of novel EM2 and morphiceptin analogues containing in place of the proline at position 2 the S and R residues of beta-homologues of proline (HPro), of 2-pyrrolidinemethanesulphonic acid (HPrs) and of 3-pyrrolidinesulphonic acid (betaPrs) have been synthesized and their binding affinity and functional activity have been investigated. The highest micro-receptor affinity is shown by [(S)betaPrs(2)]EM2 analogue (6e) which represents the first example of a beta-sulphonamido analogue in the field of opioid peptides.
Collapse
Affiliation(s)
- Cesare Giordano
- Istituto di Chimica Biomolecolare del CNR, c/o Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tourwé D, van Betsbrugge J, Verheyden P, Hootelé C. Synthesis of Trans-5-Methylproline and its Influence on CIS-Trans Isomerism in β-Casomorphin-5. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bscb.19941030506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Davis MP. Opioid receptor targeting ligands for pain management: a review and update. Expert Opin Drug Discov 2010; 5:1007-22. [DOI: 10.1517/17460441.2010.511473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Gach K, do-Rego JC, Fichna J, Storr M, Delbro D, Toth G, Janecka A. Synthesis and biological evaluation of novel peripherally active morphiceptin analogs. Peptides 2010; 31:1617-24. [PMID: 20434497 DOI: 10.1016/j.peptides.2010.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 12/27/2022]
Abstract
Morphiceptin (Tyr-Pro-Phe-Pro-NH(2)), a tetrapeptide present in the enzymatic digest of bovine beta-casein, is a selective ligand of the mu-opioid receptor. In the present study, we describe the synthesis of a series of novel morphiceptin analogs modified in positions 1-3. Two of the obtained analogs, [Dmt(1), D-Ala(2), D-1-Nal(3)]morphiceptin and [Dmt(1), D-NMeAla(2), D-1-Nal(3)]morphiceptin (Dmt-2',6'-dimethyltyrosine and d-1-Nal-3-(1-naphthyl)-D-alanine)) displayed very high mu-receptor affinity, resistance to enzymatic degradation, and remarkable supraspinally mediated analgesia, as shown in the hot-plate test after intracerebroventricular but not intravenous administration, which indicated that they could not cross the blood-brain barrier. Therefore, these two analogs were further tested in vitro and in vivo towards their possible peripheral analgesic activity and inhibitory effect on gastrointestinal (GI) motility. We report that both peptides showed strong antinociceptive effect in the writhing test after intraperitoneal administration, inhibited smooth muscle contractility in vitro and GI motility in vivo. Taken together, these findings indicate that the novel morphiceptin analogs which induce peripheral, but not central antinociception, inhibit GI transit, and possess exceptional metabolic stability, may provide an interesting approach to the development of peripherally restricted agents for the treatment of GI motility disorders, such as diarrhea or diarrhea-predominant irritable bowel syndrome.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Antidiarrheals/chemical synthesis
- Antidiarrheals/chemistry
- Antidiarrheals/metabolism
- Antidiarrheals/pharmacology
- Colon/drug effects
- Colon/metabolism
- Drug Design
- Drug Stability
- Endorphins/administration & dosage
- Endorphins/chemical synthesis
- Endorphins/chemistry
- Endorphins/metabolism
- Endorphins/pharmacology
- Female
- Gastrointestinal Motility/drug effects
- In Vitro Techniques
- Injections, Intraperitoneal
- Injections, Intraventricular
- Ligands
- Male
- Mice
- Mice, Inbred C57BL
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Neurotransmitter Agents/chemical synthesis
- Neurotransmitter Agents/chemistry
- Neurotransmitter Agents/metabolism
- Neurotransmitter Agents/pharmacology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Pain Measurement
- Peripheral Nerves/drug effects
- Peripheral Nervous System Agents/chemical synthesis
- Peripheral Nervous System Agents/chemistry
- Peripheral Nervous System Agents/metabolism
- Peripheral Nervous System Agents/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Katarzyna Gach
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Structural comparison of μ-opioid receptor selective peptides confirmed four parameters of bioactivity. J Mol Graph Model 2010; 28:495-505. [DOI: 10.1016/j.jmgm.2009.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/24/2009] [Accepted: 11/27/2009] [Indexed: 11/18/2022]
|
25
|
Perlikowska R, Fichna J, WyrÄbska A, Poels J, Vanden Broeck J, Toth G, Storr M, do Rego JC, Janecka A. Design, Synthesis and Pharmacological Characterization of Endomorphin Analogues with Non-Cyclic Amino Acid Residues in Position 2. Basic Clin Pharmacol Toxicol 2010; 106:106-13. [DOI: 10.1111/j.1742-7843.2009.00476.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Perlikowska R, Gach K, Fichna J, Toth G, Walkowiak B, do-Rego JC, Janecka A. Biological activity of endomorphin and [Dmt1]endomorphin analogs with six-membered proline surrogates in position 2. Bioorg Med Chem 2009; 17:3789-94. [DOI: 10.1016/j.bmc.2009.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
27
|
Huang Y, Cong Z, Yang L, Dong S. A photoswitchable thioxopeptide bond facilitates the conformation-activity correlation study of insect kinin. J Pept Sci 2008; 14:1062-8. [PMID: 18523967 DOI: 10.1002/psc.1042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thioxopeptide bond psi[CS-N], a nearly isosteric modification of the native peptide bond, was introduced into insect kinin active core pentapeptide to evaluate the impact of backbone cis/trans photoswitching on bioactivity. The thioxo analog Phe(1)-Tyr(2)-psi[CS-N]-Pro(3)-Trp(4)-Gly(5)-NH(2) (psi[CS-N](2)-kinin), was synthesized by Fmoc solid-phase peptide strategy. The reversible photoswitching property was characterized via spectroscopic methods and HPLC, which showed that the cis conformer increased from 15.7 to 47.7% after 254 nm UV irradiation. A slow thermal reisomerization (t(1/2) = 40 min) permitted us to determine the cockroach hindgut myotropic activity of the thioxopeptide in the photostationary state. The results indicated that the activity increased significantly after UV irradiation and recovered to the ground level after thermal re-equilibration. In the present study, by utilizing the phototriggered isomerization in a specific position of peptide backbone, we revealed that the cis psi[CS-N](2)-kinin conformer is the active conformation when interacting with kinin receptor on cockroach hindgut.
Collapse
Affiliation(s)
- Yun Huang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | | | | | | |
Collapse
|
28
|
Wang Y, Wu Y, Chen J, Huang LS, Tsai F, Hwang C. Structure–activity relationships of modified C-terminal endomorphin-2 analogues by molecular dynamics simulations. J Mol Graph Model 2008; 27:489-96. [DOI: 10.1016/j.jmgm.2008.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 02/07/2023]
|
29
|
Staniszewska R, Fichna J, Gach K, Toth G, Poels J, Vanden Broeck J, Janecka A. Synthesis and Biological Activity of Endomorphin-2 Analogs Incorporating Piperidine-2-, 3- or 4-Carboxylic Acids Instead of Proline in Position 2. Chem Biol Drug Des 2008; 72:91-4. [DOI: 10.1111/j.1747-0285.2008.00678.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Keresztes A, Szűcs M, Borics A, Kövér KE, Forró E, Fülöp F, Tömböly C, Péter A, Páhi A, Fábián G, Murányi M, Tóth G. New Endomorphin Analogues Containing Alicyclic β-Amino Acids: Influence on Bioactive Conformation and Pharmacological Profile. J Med Chem 2008; 51:4270-9. [DOI: 10.1021/jm800223t] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Attila Keresztes
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Katalin E. Kövér
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Antal Péter
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Annamária Páhi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Gabriella Fábián
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Mariann Murányi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary, Department of Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary, Department of Inorganic and Analytical Chemistry, Dóm tér 7, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
31
|
Leitgeb B. Structural Investigation of Endomorphins by Experimental and Theoretical Methods: Hunting for the Bioactive Conformation. Chem Biodivers 2007; 4:2703-24. [DOI: 10.1002/cbdv.200790221] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Wu YC, Lin JS, Hwang CC. Structure−Activity Relationships of αS1-Casomorphin Using AM1 Calculations and Molecular Dynamics Simulations. J Phys Chem B 2007; 111:7377-83. [PMID: 17530883 DOI: 10.1021/jp070477y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper investigates the structure-activity relationships of alphaS1-casomorphin (alphaS1-CM) using AM1 calculations and molecular dynamics (MD) simulations. Previous studies have shown that this peptide has remarkable opioid actions, and not only has a high affinity toward all three subtypes (kappa1-kappa3) of the kappa-opioid sites, but also inhibits the proliferation of the T47D human breast cancer cell line. The systematic conformer search performed by the AM1 calculations is based on the torsional angles of the Val2-Pro3 (omega2) and Phe4-Pro5 (omega4) amide bonds. The AM1 results reveal that the alphaS1-CM conformers strongly favor the cis/cis pair of the omega2/omega4 amide bonds in the minimized energy state. Furthermore, the picture of these stable conformers is found to be a strong interaction of the coulomb's force between two terminuses. MD simulations are performed to investigate the features of both the structural stability and pharmacological activity of alphaS1-CM in aqueous solution. The simulation results reveal that the omega2/omega4 amide bonds favor the cis/cis status in the stable state. Furthermore, the pharmacophoric distance between two aromatic rings is found to be 5.0 approximately 5.4A. The chi1 rotamers of the Tyr and Phe residues show a preference for gauche (-) and trans, respectively. The side chain rotamers of alphaS1-CM are competed to those of other opioid ligands with a known potency and selectivity for delta- and mu-opioid receptors. Finally, we address a likely kappa pharmacophore model compared to the delta pharmacophore model.
Collapse
Affiliation(s)
- Yng-Ching Wu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
33
|
Fichna J, do-Rego JC, Kosson P, Schiller PW, Costentin J, Janecka A. [(35)S]GTPgammaS binding stimulated by endomorphin-2 and morphiceptin analogs. Biochem Biophys Res Commun 2006; 345:162-8. [PMID: 16677613 DOI: 10.1016/j.bbrc.2006.04.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 11/29/2022]
Abstract
The ability of several mu-selective opioid peptides to activate G-proteins was measured in rat thalamus membrane preparations. The mu-selective ligands used in this study were three structurally related peptides, endomorphin-1, endomorphin-2 and morphiceptin, and their analogs modified in position 3 or 4 by introducing 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal). The results obtained for these peptides in [(35)S]GTPgammaS binding assay were compared with those obtained for a standard mu-opioid agonist DAMGO. [d-1-Nal(3)]Morphiceptin was more potent in G-protein activation (EC(50) value of 82.5+/-4.5 nM) than DAMGO (EC(50)=105+/-9 nM). [d-2-Nal(3)]Morphiceptin, as well as endomorphin-2 analogs substituted in position 4 by either d-1-Nal or d-2-Nal failed to stimulate [(35)S]GTPgammaS binding and were shown to be potent antagonists against DAMGO. It seems that the topographical location of the aromatic ring of position 3 and 4 amino acid residues can result in a completely different mode of action, producing either agonists or antagonists.
Collapse
Affiliation(s)
- Jakub Fichna
- Laboratory of Biomolecular Chemistry, Institute of Biomedicinal Chemistry, Medical University, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
34
|
Janecka A, Kruszynski R, Fichna J, Kosson P, Janecki T. Enzymatic degradation studies of endomorphin-2 and its analogs containing N-methylated amino acids. Peptides 2006; 27:131-5. [PMID: 16087275 DOI: 10.1016/j.peptides.2005.06.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 06/17/2005] [Accepted: 06/21/2005] [Indexed: 11/25/2022]
Abstract
In this paper, we describe the synthesis of novel endomorphin-2 analogs, containing N-methylated amino acids, consecutively in each position. The receptor-binding profile of the new analogs and their stability against enzymatic cleavage by commercially available peptidases, carboxypeptidase Y and aminopeptidase M, and a rat brain homogenate are reported. The best analog of this series, [Sar2]endomorphin-2, was almost equipotent with the parent peptide in the mu-receptor-binding assay and was also highly resistant to enzymatic degradation. This analog may be a suitable candidate for the in vivo antinociceptive studies.
Collapse
Affiliation(s)
- Anna Janecka
- Department of Medicinal Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | | | | | | |
Collapse
|
35
|
Grieco P, Giusti L, Carotenuto A, Campiglia P, Calderone V, Lama T, Gomez-Monterrey I, Tartaro G, Mazzoni MR, Novellino E. Morphiceptin Analogues Containing a Dipeptide Mimetic Structure: An Investigation on the Bioactive Topology at the μ-Receptor. J Med Chem 2005; 48:3153-63. [PMID: 15857121 DOI: 10.1021/jm040867y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the design, the conformational behavior, and the biological activity at the mu-opioid receptor of new morphiceptin analogues. In these analogues a recently described dipeptide mimetic structure replaces both the N- and the C-terminal Xaa-Pro dipeptide of morphiceptin. Conformational investigation on the most active analogue, compared to the parent peptide, indicates a high degree of structural tolerance within the mu-opioid receptor binding site. In fact, our results indicate that only the location and the relative orientation of the side chains of the aromatic pharmacophoric residues represent the indispensable structural features for mu-receptor binding. To reach such topological arrangement, opioid peptides can adopt different conformations and configurations. In particular, opioid peptides bearing a proline residue as spacer between the two aromatic residues can adopt, in the active state, both cis and trans configurations at the Tyr(1)-Pro(2) amide bond, each of them with the appropriate backbone and side chains orientations.
Collapse
Affiliation(s)
- Paolo Grieco
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli "Federico II", I-80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP. Over One Hundred Peptide-Activated G Protein-Coupled Receptors Recognize Ligands with Turn Structure. Chem Rev 2005; 105:793-826. [PMID: 15755077 DOI: 10.1021/cr040689g] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joel D A Tyndall
- Center for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
37
|
Janecka A, Fichna J, Kosson P, Zalewska-Kaszubska J, Krajewska U, Mirowski M, Rozalski M. Binding of the new morphiceptin analogs to human MCF-7 breast cancer cells and their effect on growth. ACTA ACUST UNITED AC 2005; 120:237-41. [PMID: 15177942 DOI: 10.1016/j.regpep.2004.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 03/15/2004] [Accepted: 03/26/2004] [Indexed: 11/28/2022]
Abstract
In the present study, we reported on the synthesis of two new mu-opioid peptide analogs, [D-1-Nal3]morphiceptin and [D-1-Nal4]-morphiceptin [1-Nal=3-(1-naphthyl)-alanine] which expressed receptor binding affinities at least at the level of the primary opioid ligands. The new analogs also labeled mu-opioid receptors on the cells of human breast cancer MCF-7 cell line with affinity much higher than that of endomorphins and morphiceptin, the well-known mu-selective opioid peptides. However, none of the tested peptides significantly decreased cell proliferation of MCF-7 cells.
Collapse
Affiliation(s)
- Anna Janecka
- Department of Medicinal Chemistry, Medical University, Lodz, Mazowiecka 6/8, 92-215, Poland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Fichna J, do-Rego JC, Kosson P, Costentin J, Janecka A. Characterization of antinociceptive activity of novel endomorphin-2 and morphiceptin analogs modified in the third position. Biochem Pharmacol 2005; 69:179-85. [PMID: 15588726 DOI: 10.1016/j.bcp.2004.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
In the present study we investigated and compared the in vivo analgesia of centrally administered endomorphin-2 and morphiceptin, and their analogs modified in position 3. Two series of analogs were synthesized by introducing unnatural aromatic amino acids in the D configuration: 3-(1-naphthyl)-D-alanine (D-1-Nal), 3-(2-naphthyl)-D-alanine (D-2-Nal), 3-(4-chlorophenyl)-D-alanine (D-ClPhe), 3-(3,4-dichlorophenyl)-D-alanine (D-Cl2Phe). Antinociceptive activity of endomorphin-2, morphiceptin, and their analogs was compared in the mouse hot-plate test, performed after i.c.v. administration of the peptides at a dose of 10 microg/animal. The best results were obtained for two morphiceptin analogs, [D-Phe3]morphiceptin and [D-1-Nal3]morphiceptin, which showed greatly improved analgesic activity, as compared to morphiceptin. In the endomorphin-2 series none of the modifications produced analogs more potent than the parent compound, but [D-1-Nal3]endomorphin-2 was the best analog. Antinociception induced by endomorphin-2 was reversed by concomitant i.c.v. administration of [D-Phe3]endomorphin-2, [D-2-Nal3]endomorphin-2, and [D-2-Nal3]morphiceptin, indicating that these analogs were weak mu-opioid antagonists.
Collapse
Affiliation(s)
- Jakub Fichna
- Department of Medicinal Chemistry, Medical University of Lodz, Mazowiecka 6/8, Lodz 92215, Poland
| | | | | | | | | |
Collapse
|
39
|
Fichna J, do-Rego JC, Costentin J, Chung NN, Schiller PW, Kosson P, Janecka A. Opioid receptor binding and in vivo antinociceptive activity of position 3-substituted morphiceptin analogs. Biochem Biophys Res Commun 2004; 320:531-6. [PMID: 15219861 DOI: 10.1016/j.bbrc.2004.05.202] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Indexed: 11/26/2022]
Abstract
Analogs of morphiceptin (Tyr-Pro-Phe-Pro-NH2), a mu-selective opioid receptor ligand, with position 3-modifications, including altered size, lipophilicity, and electronic character, while maintaining aromaticity were synthesized. The activity of the new analogs in in vitro assays and in in vivo hot-plate test of analgesia was compared and the results were consistent. [D-1-Nal3]Morphiceptin was the most potent analog of this series with a 26-fold increase in mu-opioid receptor affinity, a 15-fold potency increase in the GPI assay, and a significant potency increase in the hot-plate analgesic test, as compared with morphiceptin. [d-Qal3]Morphiceptin was found to be a weak antagonist in the GPI assay.
Collapse
Affiliation(s)
- Jakub Fichna
- Department of Medicinal Chemistry, Medical University, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
40
|
Pil J, Van der Veken P, Bal G, Augustyns K, Haemers A, Tytgat J. Synthesis and electrophysiological characterization of cyclic morphiceptin analogues. Biochem Pharmacol 2004; 67:1887-95. [PMID: 15130765 DOI: 10.1016/j.bcp.2004.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 02/03/2004] [Indexed: 11/20/2022]
Abstract
A challenge in opioid peptide chemistry and pharmacology is the possibility to develop novel peptides with peripheral selectivity. An enzymatically stable opioid peptide could involve an antidiarrheal effect. For this reason, we constrained the highly selective and potent tetrapeptide morphiceptin with a 6-atom bridge, resulting in a cyclic amide and an ester analogue, 2 and 3, respectively. Taking advantage of the functional coupling of the opioid receptor with the heteromultimeric G-protein-coupled inwardly rectifying K+ (GIRK1/GIRK2) channel, either the wild-type mu-, kappa-, delta- or a mutated mu-opioid receptor (hMORS329A) was functionally co-expressed with GIRK1/GIRK2 channels and a regulator of G-protein signaling (RGS4) in Xenopus laevis oocytes. The two-microelectrode voltage clamp technique was used to measure the opioid receptor activated GIRK1/GIRK2 channel responses. Both cyclic analogues were equally potent via the wild-type mu-opioid receptor hMORwt (EC(50) value 976.5 +/- 41.7 for 2 and 1017.7 +/- 60.7 for 3), while the EC(50) value for Tyr-Pro-Phe-D-Pro-NH(2) measured 59.3 +/- 4.8 nM. These three agonists displayed a four to five times decreased potency via hMORS329A as compared to the wild type. Interestingly, no effect on kappa- and delta-opioid receptors was observed. The intramolecular bridge created by cyclization of morphiceptin prevents dipeptidyl peptidase IV from interacting with these analogues. We conclude that constraining morphiceptin with a 6-atom bridge resulted in enzymatically stable peptidomimetics that are exclusively active on mu-opioid receptors. These analogues provide an interesting template in the promising approach for the design of potential antidiarrheal agents.
Collapse
Affiliation(s)
- Joost Pil
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Leuven, Van Evenstraat 4, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Marcotte I, Separovic F, Auger M, Gagné SM. A multidimensional 1H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling bicelles. Biophys J 2004; 86:1587-600. [PMID: 14990485 PMCID: PMC1303993 DOI: 10.1016/s0006-3495(04)74226-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/07/2003] [Indexed: 11/22/2022] Open
Abstract
Enkephalins are pentapeptides found in the central nervous system. It is believed that these neuropeptides interact with the nerve cell membrane to adopt a conformation suitable for their binding to an opiate receptor. In this work, we have determined the three-dimensional structure of methionine-enkephalin (Menk) in fast-tumbling bicelles using multidimensional (1)H NMR. Bicelles were selected as model membranes because both their bilayer organization and composition resemble those of natural biomembranes. The effect of the membrane composition on the peptide conformation was explored using both zwitterionic (PC bicelles) and negatively charged bicelles (Bic/PG). Pulsed field gradient experiments allowed the determination of the proportion of Menk bound to the model membranes. Approximately 60% of the water-soluble enkephalin was found to associate to the bicellar systems. Structure calculations from torsion angle and NOE-based distance constraints suggest the presence of both micro - and delta-selective conformers of Menk in each system and slightly different conformers in PC bicelles and Bic/PG. As opposed to previous studies of enkephalins in membrane mimetic systems, our results show that these opiate peptides could adopt several conformations in a membrane environment, which is consistent with the flexibility and poor selectivity of enkephalins.
Collapse
Affiliation(s)
- Isabelle Marcotte
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
42
|
Tömböly C, Kövér KE, Péter A, Tourwé D, Biyashev D, Benyhe S, Borsodi A, Al-Khrasani M, Rónai AZ, Tóth G. Structure−Activity Study on the Phe Side Chain Arrangement of Endomorphins Using Conformationally Constrained Analogues. J Med Chem 2003; 47:735-43. [PMID: 14736254 DOI: 10.1021/jm0310028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins-1 and -2 were substituted with all the beta-MePhe stereoisomers in their Phe residues to generate a conformationally constrained peptide set. This series of molecules was subjected to biological assays, and for beta-MePhe(4)-endomorphins-2, a conformational analysis was performed. Incorporation of (2S,3S)-beta-MePhe(4) resulted in the most potent analogues of both endomorphins with enhanced enzymatic stability. Their micro opioid affinities were 4-times higher than the parent peptides, they stimulated [(35)S]GTPgammaS binding, and they were found to be full agonists. NMR experiments revealed that C-terminal (2S,3S)-beta-MePhe in endomorphin-2 strongly favored the gauche (-) spatial orientation which implies the presence of the chi(1) = -60 degrees rotamer of Phe(4) in the binding conformer of endomorphins. Our results emphasize that the appropriate orientation of the C-terminal aromatic side chain of endomorphins is substantial for binding to the micro opioid receptor.
Collapse
Affiliation(s)
- Csaba Tömböly
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6701 Szeged, P.O. Box 521, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Janecka A, Fichna J, Wiercioch R, Mirowski M. Synthesis of novel morphiceptin analogues modified in position 3 and their binding to mu-opioid receptors in experimental mammary adenocarcinoma. Bioorg Med Chem 2003; 11:3855-60. [PMID: 12927845 DOI: 10.1016/s0968-0896(03)00448-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Binding of the (125)I-labeled mu-opioid receptor selective ligands, morphiceptin (Tyr-Pro-Phe-Pro-NH(2)) and [D-Phe(3)]morphiceptin, to membranes isolated from experimental mouse mammary adenocarcinoma was examined in vitro using a cross-linking assay followed by a Western blot technique. The radioactive complex had a molecular weight of about 65 kDa and was detectable by anti-mu-opioid receptor antibody, indicating the presence of mu-opioid receptors in tumor membranes. A series of new morphiceptin analogues, modified at the pharmacophoric position 3, was synthesized in order to find the correlation between the lipophilicity, electronic and steric properties of the amino acid in this position and the in vitro affinity of new analogues for mu-opioid receptors on mouse brain and tumor membranes. In in vivo studies the uptake of (131)I-labeled analogues by experimental mammary adenocarcinoma was estimated. The highest affinity for mu-opioid receptors in both, in vitro and in vivo experiments was observed for [D-Phe(3)]morphiceptin and [D-ClPhe(3)]-morphiceptin.
Collapse
Affiliation(s)
- A Janecka
- Department of Medicinal Chemistry, Medical University of Lodz, Mazowiecka 6/8, Lodz, Poland.
| | | | | | | |
Collapse
|
44
|
Del Valle JR, Goodman M. Asymmetric hydrogenations for the synthesis of Boc-protected 4-alkylprolinols and prolines. J Org Chem 2003; 68:3923-31. [PMID: 12737573 DOI: 10.1021/jo034214l] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The utility of 4-substituted prolinols and their corresponding prolines in peptides, peptidomimetics, and natural products has motivated researchers to find new and efficient routes for their preparation. Herein, we report a general approach to the synthesis of Boc-protected 4-alkylprolinols and prolines via a divergent asymmetric hydrogenation strategy. Intermediate exocyclic olefins were prepared by Wittig-type reactions with ketone 6 and subjected to hydroxyl and sterically directed reductions. The Crabtree catalyst (Ir[COD]PyPCy(3)PF(6)) proved to be highly effective in diastereoselective hydrogenations to give trans-substituted pyrrolidines (9). Good facial selectivities were also observed in heterogeneous hydrogenations with Raney-nickel to obtain cis-substituted pyrrolidines (11). Employing this strategy, we describe the synthesis of novel prolinol and proline-based building blocks for incorporation into biologically relevant peptidomimetics.
Collapse
Affiliation(s)
- Juan R Del Valle
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla 92093-0343, USA
| | | |
Collapse
|
45
|
Palian MM, Boguslavsky VI, O'Brien DF, Polt R. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media. J Am Chem Soc 2003; 125:5823-31. [PMID: 12733923 DOI: 10.1021/ja0268635] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four enkephalin analogues (Tyr-D-Thr-Gly-Phe-Leu-Ser-CONH(2), 1, and the related O-linked glycopeptides bearing the monosaccharide beta-glucose, 2, the disaccharide beta-maltose, 3, and the trisaccharide beta-maltotriose, 4) were synthesized, purified by HPLC, and biophysical studies were conducted to examine their interactions with membrane model systems. Glycopeptide 2 has been previously reported to penetrate the blood-brain barrier (BBB), and produce potent analgesia superior to morphine in mice (J. Med. Chem.2000, 43, 2586-90 and J. Pharm. Exp. Ther. 2001, 299, 967-972). The parent peptide and its three glycopeptide derivatives were studied in aqueous solution and in the presence of micelles using 2-D NMR, CD, and molecular mechanics (Monte Carlo studies). Consistent with previous conformational studies on cyclic opioid agonist glycopeptides, it was seen that glycosylation did not significantly perturb the peptide backbone in aqueous solution, but all four compounds strongly associated with 5-30 mM SDS or DPC micelles, and underwent profound membrane-induced conformational changes. Interaction was also observed with POPC:POPE:cholesterol lipid vesicles (LUV) in equilibrium dialysis experiments. Although the peptide backbones of 1-4 possessed random coil structures in water, in the presence of the lipid phase they each formed a nearly identical pair of structures, all with a stable beta-turn motif at the C-terminus. Use of spin labels (Mn(2+) and 5-DOXYL-stearic acid) allowed for the determination of the position and orientation of the compounds relative to the surface of the micelle.
Collapse
Affiliation(s)
- Michael M Palian
- Carl S. Marvel Laboratories, Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
46
|
Rinnová M, Nefzi A, Houghten RA. Opioid activity of 4-imidazolidinone positional analogues of Leu-Enkephalin. Bioorg Med Chem Lett 2002; 12:3175-8. [PMID: 12372527 DOI: 10.1016/s0960-894x(02)00678-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Modulation of opioid activity was accomplished for analogues of Leu-enkephalin through incorporation of a 4-imidazolidinone moiety. The peptide backbone was constrained via a methylene bridge between two neighboring amides within its regular peptide sequence, which was expected to disrupt the secondary structure of the original molecule. Five positional analogues of Leu-enkephalin based on the same sequence and different location of the imidazolidinone-constrict were designed, synthesized, and examined for their affinity to micro-, delta- and kappa-opioid receptors.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/pharmacology
- Chromatography, High Pressure Liquid
- Drug Design
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/chemical synthesis
- Enkephalin, Leucine/pharmacology
- Imidazoles/chemical synthesis
- Imidazoles/pharmacology
- Indicators and Reagents
- Magnetic Resonance Spectroscopy
- Methylation
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Markéta Rinnová
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | | | | |
Collapse
|
47
|
Otaka A, Katagiri F, Kinoshita T, Odagaki Y, Oishi S, Tamamura H, Hamanaka N, Fujii N. Regio- and stereoselective synthesis of (E)-alkene trans-Xaa-Pro dipeptide mimetics utilizing organocopper-mediated anti-S(N)2' reactions. J Org Chem 2002; 67:6152-61. [PMID: 12182656 DOI: 10.1021/jo025922u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proline dipeptides (Xaa-Pro) exist as an equilibrium mixture of cis- and trans-rotamers, which depends on the energy barriers for imide isomerization. This conformation mixture contributes to both structure and function of proline-containing peptides and proteins. Structural motifs resembling these cis- or trans-conformers have served as useful tools for elucidating contributions of proline residues in the physicochemical and biological profiles of structures which contain them. Among such motifs are alkene dipeptide isosteres which mimic cis- or trans-imide using (Z)- or (E)-alkene, respectively. In this report, the first regio- and stereoselective syntheses of (E)-alkene dipeptide isosteres (20, 31, and 35) corresponding to trans-proline dipeptides are described. Key to the synthesis of these mimetics is the anti-S(N)2' reaction of vinyl aziridines such as 15 or vinyl oxazolidinones such as 28 and 32 with organocopper reagents "RCu" (R = CH(2)SiMe(2)(Oi-Pr)). Reaction of cis-vinylaziridine 15 derived from L-serine with organocopper reagent gave a precursor of the trans-L-Ser-D-Pro type alkene isosteres 20, accompanied by an S(N)2 side product. One limitation with the use of such aziridine-mediated methodology is formation of the corresponding trans-aziridine 22, which leads to L-L type isosteres, that is unstable and obtainable only in low yield. On the other hand, both isomers of oxazolidinone derivatives can be easily obtained from N-Boc-protected amino alcohols. The reaction of trans- 28 or cis-oxazolidinone derivative 32 with organocopper reagents proceeds quantitatively with high regio- and diastereoselectivities in anti-S(N)2' fashion. Subsequent oxidative treatment of the newly introduced isopropoxydimethylsilylmethyl group yields trans-L-Ser-L-Pro 31 or trans-L-Ser-D-Pro type isosteres 35, respectively. Of note, synthesized isostere 31 can also be converted to trans-phosphoSer-Pro 42 and trans-Cys-Pro mimetics 44. The present synthetic methodology affords trans-Xaa-Pro alkene-type dipeptide isosteres in high yield with relatively simple manipulation.
Collapse
Affiliation(s)
- Akira Otaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
|
50
|
Gabarin N, Gavish H, Muhlrad A, Chen YC, Namdar-Attar M, Nissenson RA, Chorev M, Bab I. Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)] and attenuation of activation by cAMP. J Cell Biochem 2001; 81:594-603. [PMID: 11329614 DOI: 10.1002/jcb.1083] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In osteogenic and other cells the mitogen-activated protein (MAP) kinases have a key role in regulating proliferation and differentiated functions. The osteogenic growth peptide (OGP) is a 14 mer mitogen of osteogenic and fibroblastic cells that regulates bone turnover, fracture healing, and hematopoiesis, including the engraftment of bone marrow transplants. It is present in the serum and extracellular fluid either free or complexed to OGP-binding proteins (OGPBPs). The free immunoreactive OGP consists of the full length peptide and its C-terminal pentapeptide OGP(10-14). In the present study, designed to probe the signaling pathways triggered by OGP, we demonstrate in osteogenic MC3T3 E1 cells that mitogenic doses of OGP(10-14), but not OGP, enhance MAP kinase activity in a time-dependent manner. The OGP(10-14)-induced stimulation of both MAP kinase activity and DNA synthesis were abrogated by pertusis toxin, a G(i) protein inhibitor. These data offer direct evidence for the occurrence in osteogenic cells of a peptide-activated, mitogenic Gi protein-MAP kinase-signaling cascade. Forskolin and dBu(2)-cAMP abrogated the OGP(10-14)-stimulated proliferation, but induced only 50% inhibition of the OGP(10-14)-mediated MAP kinase activation, suggesting additional MAP kinase-dependent, OGP(10-14)-regulated, cellular functions. Finally, it is demonstrated that OGP(10-14) is the active form of OGP, apparently generated proteolytically in the extracellular milieu upon dissociation of OGP-OGPBP complexes.
Collapse
Affiliation(s)
- N Gabarin
- Bone Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|