1
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
2
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
3
|
Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors. Future Med Chem 2021; 13:143-155. [PMID: 33410707 DOI: 10.4155/fmc-2020-0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.
Collapse
|
4
|
Ha KP, Clarke RS, Kim GL, Brittan JL, Rowley JE, Mavridou DAI, Parker D, Clarke TB, Nobbs AH, Edwards AM. Staphylococcal DNA Repair Is Required for Infection. mBio 2020; 11:e02288-20. [PMID: 33203752 PMCID: PMC7683395 DOI: 10.1128/mbio.02288-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
To cause infection, Staphylococcus aureus must withstand damage caused by host immune defenses. However, the mechanisms by which staphylococcal DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as being important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double-strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double-strand breaks through reactive oxygen species (ROS) generated by the respiratory burst, which are repaired by RexAB, leading to the induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted the survival of these pathogens in human blood, suggesting that DNA double-strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that the repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.IMPORTANCE To cause infection, bacteria must survive attack by the host immune system. For many bacteria, including the major human pathogen Staphylococcus aureus, the greatest threat is posed by neutrophils. These immune cells ingest the invading organisms and try to kill them with a cocktail of chemicals that includes reactive oxygen species (ROS). The ability of S. aureus to survive this attack is crucial for the progression of infection. However, it was not clear how the ROS damaged S. aureus and how the bacterium repaired this damage. In this work, we show that ROS cause breaks in the staphylococcal DNA, which must be repaired by a two-protein complex known as RexAB; otherwise, the bacterium is killed, and it cannot sustain infection. This provides information on the type of damage that neutrophils cause S. aureus and the mechanism by which this damage is repaired, enabling infection.
Collapse
Affiliation(s)
- Kam Pou Ha
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rebecca S Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jane L Brittan
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jessica E Rowley
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Lim CSQ, Ha KP, Clarke RS, Gavin LA, Cook DT, Hutton JA, Sutherell CL, Edwards AM, Evans LE, Tate EW, Lanyon-Hogg T. Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus. Bioorg Med Chem 2019; 27:114962. [PMID: 31307763 PMCID: PMC6892255 DOI: 10.1016/j.bmc.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/03/2022]
Abstract
The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Carine S Q Lim
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Kam Pou Ha
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Rebecca S Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Leigh-Anne Gavin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Declan T Cook
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Jennie A Hutton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Charlotte L Sutherell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Lindsay E Evans
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Thomas Lanyon-Hogg
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
6
|
Dziegielewska B, Beerman TA, Bianco PR. Inhibition of RecBCD enzyme by antineoplastic DNA alkylating agents. J Mol Biol 2006; 361:898-919. [PMID: 16887143 DOI: 10.1016/j.jmb.2006.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 01/09/2023]
Abstract
To understand how bulky adducts might perturb DNA helicase function, three distinct DNA-binding agents were used to determine the effects of DNA alkylation on a DNA helicase. Adozelesin, ecteinascidin 743 (Et743) and hedamycin each possess unique structures and sequence selectivity. They bind to double-stranded DNA and alkylate one strand of the duplex in cis, adding adducts that alter the structure of DNA significantly. The results show that Et743 was the most potent inhibitor of DNA unwinding, followed by adozelesin and hedamycin. Et743 significantly inhibited unwinding, enhanced degradation of DNA, and completely eliminated the ability of the translocating RecBCD enzyme to recognize and respond to the recombination hotspot chi. Unwinding of adozelesin-modified DNA was accompanied by the appearance of unwinding intermediates, consistent with enzyme entrapment or stalling. Further, adozelesin also induced "apparent" chi fragment formation. The combination of enzyme sequestering and pseudo-chi modification of RecBCD, results in biphasic time-courses of DNA unwinding. Hedamycin also reduced RecBCD activity, albeit at increased concentrations of drug relative to either adozelesin or Et743. Remarkably, the hedamycin modification resulted in constitutive activation of the bottom-strand nuclease activity of the enzyme, while leaving the ability of the translocating enzyme to recognize and respond to chi largely intact. Finally, the results show that DNA alkylation does not significantly perturb the allosteric interaction that activates the enzyme for ATP hydrolysis, as the efficiency of ATP utilization for DNA unwinding is affected only marginally. These results taken together present a unique response of RecBCD enzyme to bulky DNA adducts. We correlate these effects with the recently determined crystal structure of the RecBCD holoenzyme bound to DNA.
Collapse
Affiliation(s)
- Barbara Dziegielewska
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
7
|
Liu JS, Kuo SR, McHugh MM, Beerman TA, Melendy T. Adozelesin triggers DNA damage response pathways and arrests SV40 DNA replication through replication protein A inactivation. J Biol Chem 2000; 275:1391-7. [PMID: 10625690 DOI: 10.1074/jbc.275.2.1391] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclopropylpyrroloindole anti-cancer drug, adozelesin, binds to and alkylates DNA. Treatment of human cells with low levels of adozelesin results in potent inhibition of both cellular and simian virus 40 (SV40) DNA replication. Extracts were prepared from adozelesin-treated cells and shown to be deficient in their ability to support SV40 DNA replication in vitro. This effect on in vitro DNA replication was dependent on both the concentration of adozelesin used and the time of treatment but was not due to the presence of adozelesin in the in vitro assay. Adozelesin treatment of cells was shown to result in the following: induction of p53 protein levels, hyperphosphorylation of replication protein A (RPA), and disruption of the p53-RPA complex (but not disruption of the RPA-cdc2 complex), indicating that adozelesin treatment triggers cellular DNA damage response pathways. Interestingly, in vitro DNA replication could be rescued in extracts from adozelesin-treated cells by the addition of exogenous RPA. Therefore, whereas adozelesin and other anti-cancer therapeutics trigger common DNA damage response markers, adozelesin causes DNA replication arrest through a unique mechanism. The S phase checkpoint response triggered by adozelesin acts by inactivating RPA in some function essential for SV40 DNA replication.
Collapse
Affiliation(s)
- J S Liu
- Department of Microbiology and the Center for Microbial Pathogenesis, State University of New York School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
8
|
Grabley S, Thiericke R. Bioactive agents from natural sources: trends in discovery and application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 64:101-54. [PMID: 9933977 DOI: 10.1007/3-540-49811-7_4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About 30% of the worldwide sales of drugs are based on natural products. Though recombinant proteins and peptides account for increasing sales rates, the superiority of low-molecular mass compounds in human diseases therapy remains undisputed mainly due to more favorable compliance and bioavailability properties. In the past, new therapeutic approaches often derived from natural products. Numerous examples from medicine impressively demonstrate the innovative potential of natural compounds and their impact on progress in drug discovery and development. However, natural products are currently undergoing a phase of reduced attention in drug discovery because of the enormous effort which is necessary to isolate the active principles and to elucidate their structures. To meet the demand of several hundred thousands of test samples that have to be submitted to high-throughput screening (HTS) new strategies in natural product chemistry are necessary in order to compete successfully with combinatorial chemistry. Today, pharmaceutical companies have to spend approximately US $350 million to develop a new drug. Currently, approaches to improve and accelerate the joint drug discovery and development process are expected to arise mainly from innovation in drug target elucidation and lead finding. Breakthroughs in molecular biology, cell biology, and genetic engineering in the 1980 s gave access to understanding diseases on the molecular or on the gene level. Subsequently, constructing novel target directed screening assay systems of promising therapeutic significance, automation, and miniaturization resulted in HTS approaches changing the industrial drug discovery process drastically. Furthermore, elucidation of the human genome will provide access to a dramatically increased number of new potential drug targets that have to be evaluated for drug discovery. HTS enables the testing of an increasing number of samples. Therefore, new concepts to generate large compound collections with improved structural diversity are desirable.
Collapse
Affiliation(s)
- S Grabley
- Hans-Knöll-Institut für Naturstoff-Forschung e.V., Jena, Germany.
| | | |
Collapse
|
9
|
Bachur NR, Lun L, Sun PM, Trubey CM, Elliott EE, Egorin MJ, Malkas L, Hickey R. Anthracycline antibiotic blockade of SV40 T antigen helicase action. Biochem Pharmacol 1998; 55:1025-34. [PMID: 9605426 DOI: 10.1016/s0006-2952(97)00617-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously showed that anthracycline antibiotics potently block SV40 large T antigen helicase; in the present study, we describe the kinetics and the structure-activity characteristics of this process. The concentration vs effect data for helicase blockade were fitted by the Hill equation to yield nearly parallel log-concentration effect curves for a series of active anthracycline antibiotics. The effective concentration for 50% helicase blockade (EC50) values ranged from 0.34 microM for daunorubicin to 40.8 microM for 3'-deaminodaunorubicin. Clinically inactive 3'-N-acyl anthracyclines produced no blockade. The Hill constants for the blockade ranged from 1.1 to 1.6 for the entire series of active anthracyclines, indicating no positive cooperativity and suggesting that a single molecule of bound drug is sufficient to block helicase action. The EC50 values for several clinically effective anthracyclines showed a relationship to the average DNA binding constants for these drugs, and Lineweaver-Burk analysis of the blockade kinetics indicated non-competitive inhibition. The kinetics of the blockade indicated that the anthracycline, DNA, and helicase form a ternary complex that is irreversible under the reaction conditions. This mechanism may be central to the cytotoxic and anti-cancer activities of anthracycline antibiotics and may be useful in understanding the enzymatic mechanism of DNA helicase action.
Collapse
Affiliation(s)
- N R Bachur
- University of Maryland Cancer Center, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Stocksdale MG, Ramurthy S, Miller MJ. Asymmetric Total Synthesis of an Important 3-(Hydroxymethyl)carbacephalosporin. J Org Chem 1998. [DOI: 10.1021/jo971772p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark G. Stocksdale
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Savithri Ramurthy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
11
|
Gunz D, Hess MT, Naegeli H. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism. J Biol Chem 1996; 271:25089-98. [PMID: 8810263 DOI: 10.1074/jbc.271.41.25089] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanism by which mammalian nucleotide excision repair (NER) detects a wide range of base lesions is poorly understood. Here, we tested the ability of human NER to recognize bulky modifications that either destabilize the DNA double helix (acetylaminofluorene (AAF) and benzo[a]pyrene diol-epoxide (BPDE) adducts, UV radiation products) or induce opposite effects by stabilizing the double helix (8-methoxypsoralen (8-MOP), anthramycin, and CC-1065 adducts). We constructed plasmid DNA carrying a defined number of each of these adducts and determined their potential to sequester NER factors contained in a human cell-free extract. For that purpose, we measured the capacity of damaged plasmids to compete with excision repair of a site-directed NER substrate. This novel approach showed differences of more than 3 orders of magnitude in the efficiency by which helix-destabilizing and helix-stabilizing adducts sequester NER factors. For example, AAF modifications were able to compete with the NER substrate approximately 1740 times more effectively than 8-MOP adducts. The sequestration potency decreased with the following order of adducts, AAF > UV >/= BPDE > 8-MOP > anthramycin, CC-1065. A strong preference for helix-destabilizing lesions was confirmed by monitoring the formation of NER patches at site-specific adducts with either AAF or CC-1065. This comparison based on factor sequestration and repair synthesis indicates that human NER is primarily targeted to sites at which the secondary structure of DNA is destabilized. Thus, an early step of DNA damage recognition involves thermodynamic probing of the duplex.
Collapse
Affiliation(s)
- D Gunz
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
12
|
Cobuzzi RJ, Burhans WC, Beerman TA. Inhibition of initiation of simian virus 40 DNA replication in infected BSC-1 cells by the DNA alkylating drug adozelesin. J Biol Chem 1996; 271:19852-9. [PMID: 8702695 DOI: 10.1074/jbc.271.33.19852] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adozelesin is a member of a family of extraordinarily cytotoxic DNA damaging agents that bind to the DNA minor groove in a sequence-specific manner and form covalent adducts with adenines. Previous studies employing purified enzymes and adozelesin-modified template DNAs suggested that adozelesin-DNA adducts inhibit DNA replication at the level of nascent DNA chain elongation. In this study, neutral/neutral two-dimensional agarose gel electrophoresis was employed to analyze simian virus 40 (SV40) DNA replication intermediates recovered from adozelesin-treated SV40 virus-infected cells. SV40 replication intermediates rapidly disappeared from infected cells when they were treated with adozelesin, but not when the cells were also treated with aphidicolin to block maturation of replicating SV40 DNA. We conclude that the disappearance of SV40 replication intermediates induced by adozelesin treatment was a consequence of maturation of these intermediates in the absence of new initiation events. Adozelesin inhibition of nascent chain elongation is first observed at concentrations above those needed to block initiation. Adozelesin treatment inhibits SV40 DNA replication at concentrations that produce adducts on just a small fraction of the intracellular population of SV40 DNA molecules.
Collapse
Affiliation(s)
- R J Cobuzzi
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
13
|
Gunz D, Naegeli H. A noncovalent binding-translocation mechanism for site-specific CC-1065-DNA recognition. Biochem Pharmacol 1996; 52:447-53. [PMID: 8687499 DOI: 10.1016/0006-2952(96)00247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular strategy by which small organic compounds recognise specific DNA sequences is of primary importance for rational drug design. CC-1065 is a potent alkylating agent that binds covalently to N3 of adenine and lies in the minor groove of double-stranded DNA. Its reaction with DNA occurs in a site-specific manner, with a preference for A. T-rich nucleotide sequences. In the present study, we developed a drug translocation assay to investigate the mechanism underlying this sequence selectivity. After exposure of plasmid DNA to saturating amounts of CC-1065, we observed that nearly 70% of plasmid-bound CC-1065 molecules formed stable, but noncovalent, complexes with DNA. These noncovalently bound drug molecules resisted purification by ethanol precipitation, dialysis, and sucrose gradient centrifugation, but retained the ability to translocate to DNA fragments containing a single high-affinity site for alkylation. This combination of non-covalent binding interactions and drug translocation provides a mechanism by which CC-1065 may locate specific alkylation sites in DNA.
Collapse
Affiliation(s)
- D Gunz
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Switzerland
| | | |
Collapse
|
14
|
Boger DL, Johnson DS. CC-1065 und die Duocarmycine: mechanistische Studien zum Verständnis ihrer biologischen Funktion. Angew Chem Int Ed Engl 1996. [DOI: 10.1002/ange.19961081306] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Eggleston AK, Rahim NA, Kowalczykowski SC. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res 1996; 24:1179-86. [PMID: 8614617 PMCID: PMC145774 DOI: 10.1093/nar/24.7.1179] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids.
Collapse
Affiliation(s)
- A K Eggleston
- Division of Biological Sciences, University of California, Davis 95616-8665, USA
| | | | | |
Collapse
|
16
|
Okamoto A, Asai A, Saito H, Okabe M, Gomi K. Differential effect of duocarmycin A and its novel derivative DU-86 on DNA strand breaks in HeLa S3 cells. Jpn J Cancer Res 1994; 85:1304-11. [PMID: 7852193 PMCID: PMC5919396 DOI: 10.1111/j.1349-7006.1994.tb02944.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Duocarmycin A (DUMA) and DU-86, a semisynthetic derivative of duocarmycins (DUMs) and a possible active form of KW-2189, both showed potent cell growth-inhibitory and cell-killing activities against human uterine cervix carcinoma HeLa S3 cells. Both drugs showed similar profiles of inhibition of macromolecular synthesis and influence on cell-cycle distribution. Namely, they inhibited [3H]thymidine uptake at lower concentrations than [3H]uridine or [3H]leucine uptake, suggesting that the inhibition of DNA synthesis is the primary site of their actions. Furthermore, they induced the accumulation of cells in early S phase. However, a significant difference was observed between these drugs in terms of DNA-fragmentation activity against HeLa S3 cells by using two independent methods, pulse-field gel electrophoresis and alkaline elution. DNA fragmentation was insignificant in the cells treated with DU-86, in contrast to the cells treated with DUMA. The analysis of DNA adducts in the cells revealed that DU-86 alkylated adenine quite selectively, while DUMA alkylated both adenine and guanine. These results suggest that the pyrrolidone ring of DUMA is responsible for its adduct formation with guanine and the subsequent DNA-fragmentation and inhibition of DNA synthesis, while DU-86 alkylated adenine and inhibited DNA synthesis through mechanisms other than DNA-fragmentation.
Collapse
Affiliation(s)
- A Okamoto
- Pharmaceutical Research Laboratory, Kyowa Hakko Kogyo Co., Ltd., Shizuoka-ken
| | | | | | | | | |
Collapse
|
17
|
Sun D, Hurley LH. Binding of Sp1 to the 21-bp repeat region of SV40 DNA: effect of intrinsic and drug-induced DNA bending between GC boxes. Gene X 1994; 149:165-72. [PMID: 7958981 DOI: 10.1016/0378-1119(94)90425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The effect of the antitumor antibiotic (+)-CC-1065 on the binding of Sp1 to the 21-bp repeats of SV40 DNA has been investigated. (+)-CC-1065 alkylates N3 of adenine in DNA and resides in the minor groove. As a consequence of alkylation of the two 5'-AGTTA* sequences (* indicates covalent modification site), which reside between GC boxes III and IV, and boxes V and VI, protein binding to the 3' sites is completely abolished and there is a significant decrease in Sp1 binding to the other regions. The effect of substituting A5 tracts for the (+)-CC-1065-bonding sequence was intermediate between the unmodified 5'-AGTTA* and the drug-modified sequences. It is proposed that a structural distortion of DNA associated with stiffening of the helix induced by the drug-adduct formation is primarily responsible for the inhibition of binding of Sp1 molecules to 21-bp repeats, rather than steric hindrance due to the occupancy by drug molecules of the minor groove within that region.
Collapse
Affiliation(s)
- D Sun
- Drug Dynamics Institute, College of Pharmacy, University of Texas at Austin, 78712-1074
| | | |
Collapse
|
18
|
Effect of the major DNA adduct of the antitumor drug cis-diamminedichloroplatinum (II) on the activity of a helicase essential for DNA replication, the herpes simplex virus type-1 origin-binding protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31859-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Villani G, Cazaux C, Pillaire MJ, Boehmer P. Effects of a single intrastrand d(GpG) platinum adduct on the strand separating activity of the Escherichia coli proteins RecB and RecA. FEBS Lett 1993; 333:89-95. [PMID: 8224177 DOI: 10.1016/0014-5793(93)80380-d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RecB and RecA proteins play key roles in the process of DNA recombination in Escherichia coli and both possess DNA unwinding activities which can displace short regions of duplex DNA in an ATP-dependent manner in vitro. We have examined the effect of the most abundant DNA adduct caused by the chemotherapeutic agent cis-diamminedichloroplatinum(II) on those activities. For this purpose, we have constructed a partially duplex synthetic oligonucleotide containing the intrastrand d(GpG) crosslink positioned at a specific site. We report here that both the DNA strand separating and DNA-dependent ATPase activities of the RecB protein are inhibited by the d(GpG) cis-DDP adduct. In contrast, neither the unwinding nor the ATPase activities of RecA protein appear to be perturbed by this lesion.
Collapse
Affiliation(s)
- G Villani
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales, CNRS, Toulouse, France
| | | | | | | |
Collapse
|
20
|
Naegeli H, Bardwell L, Friedberg EC. Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. Biochemistry 1993; 32:613-21. [PMID: 8380702 DOI: 10.1021/bi00053a029] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The yeast nucleotide excision repair gene RAD3 is absolutely required for damage-specific incision of DNA. Rad3 protein is a DNA helicase, and previous studies have shown that its catalytic activity is inhibited by ultraviolet (UV) radiation damage. This inhibition is observed when base damage is confined to the DNA strand on which Rad3 protein binds and translocates, and not when damage is present exclusively on the complementary strand. In the present study, we show that Rad3 DNA helicase activity is inhibited in an identical strand-specific fashion by bulky base adducts formed by treating DNA with the antineoplastic agent cisplatin or the antibiotic compound CC-1065, which alter the secondary structure of DNA in different ways. In addition, Rad3 helicase activity is inhibited by small adducts generated by treatment of DNA with diethyl sulfate and by the presence of sites at which pyrimidines have been lost (abasic sites). No inhibition of Rad3 helicase activity was detected when DNA was methylated at various base positions. Cisplatin-modified single-stranded DNA and poly(deoxyuridylic acid) containing abasic sites are more effective competitors for Rad3 helicase activity than their undamaged counterparts, suggesting that Rad3 protein is sequestered at such lesions, resulting in the formation of stable Rad3 protein-DNA complexes. The observations of strand-specific inhibition of Rad3 helicase activity and the formation of stable complexes with the covalently modified strand suggest a general mechanism by which the RAD3 gene product may be involved in nucleotide excision repair in yeast.
Collapse
Affiliation(s)
- H Naegeli
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | |
Collapse
|