1
|
Carrillo AK, Kadayat TM, Hwang JY, Chen Y, Zhu F, Holbrook G, Gillingwater K, Connelly MC, Yang L, Kaiser M, Guy RK. Antitrypanosomal Chloronitrobenzamides. J Med Chem 2024; 67:3437-3447. [PMID: 38363074 DOI: 10.1021/acs.jmedchem.3c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Human African trypanosomiasis (HAT), a neglected tropical disease caused by Trypanosoma brucei gambiense (Tbg) or Trypanosoma brucei rhodesiense (Tbr), remains a significant public health concern with over 55 million people at risk of infection. Current treatments for HAT face the challenges of poor efficacy, drug resistance, and toxicity. This study presents the synthesis and evaluation of chloronitrobenzamides (CNBs) against Trypanosoma species, identifying previously reported compound 52 as a potent and selective orally bioavailable antitrypanosomal agent. 52 was well tolerated in vivo and demonstrated favorable oral pharmacokinetics, maintaining plasma concentrations surpassing the cellular EC50 for over 24 h and achieving peak brain concentrations exceeding 7 μM in rodents after single oral administration (50 mg/kg). Treatment with 52 significantly extended the lifespan of mice infected with Trypanosoma congolense and T. brucei rhodesiense. These results demonstrate that 52 is a strong antitrypanosomal lead with potential for developing treatments for both human and animal African trypanosomiasis.
Collapse
Affiliation(s)
- Angela K Carrillo
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Tara Man Kadayat
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509, United States
| | - Jong Yeon Hwang
- Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon, KR 34114, United States
| | - Yizhe Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509, United States
| | - Fangyi Zhu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Gloria Holbrook
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kirsten Gillingwater
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil 4123, Switzerland
| | - Michele C Connelly
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcel Kaiser
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil 4123, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509, United States
| |
Collapse
|
2
|
Al-Sanea MM, Hamdi A, Mohamed AAB, El-Shafey HW, Moustafa M, Elgazar AA, Eldehna WM, Ur Rahman H, Parambi DGT, Elbargisy RM, Selim S, Bukhari SNA, Magdy Hendawy O, Tawfik SS. New benzothiazole hybrids as potential VEGFR-2 inhibitors: design, synthesis, anticancer evaluation, and in silico study. J Enzyme Inhib Med Chem 2023; 38:2166036. [PMID: 36691927 PMCID: PMC9879182 DOI: 10.1080/14756366.2023.2166036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A new series of 2-aminobenzothiazole hybrids linked to thiazolidine-2,4-dione 4a-e, 1,3,4-thiadiazole aryl urea 6a-d, and cyanothiouracil moieties 8a-d was synthesised. The in vitro antitumor effect of the new hybrids was assessed against three cancer cell lines, namely, HCT-116, HEPG-2, and MCF-7 using Sorafenib (SOR) as a standard drug. Among the tested compounds, 4a was the most potent showing IC50 of 5.61, 7.92, and 3.84 µM, respectively. Furthermore, compounds 4e and 8a proved to have strong impact on breast cancer cell line with IC50 of 6.11 and 10.86 µM, respectively. The three compounds showed a good safety profile towards normal WI-38 cells. Flow cytometric analysis of the three compounds in MCF-7 cells revealed that compounds 4a and 4c inhibited cell population in the S phase, whereas 8a inhibited the population in the G1/S phase. The most promising compounds were subjected to a VEGFR-2 inhibitory assay where 4a emerged as the best active inhibitor of VEGFR-2 with IC50 91 nM, compared to 53 nM for SOR. In silico analysis showed that the three new hybrids succeeded to link to the active site like the co-crystallized inhibitor SOR.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia,CONTACT Mohammad M. Al-Sanea Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf72341, Saudi Arabia
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,Ahmed A. B. Mohamed Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Hamed W. El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Della G. T. Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Rehab M. Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Omnia Magdy Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Samar S. Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Kim HS, Ortiz D, Kadayat TM, Fargo CM, Hammill JT, Chen Y, Rice AL, Begley KL, Shoeran G, Pistel W, Yates PA, Sanchez MA, Landfear SM, Guy RK. Optimization of Orally Bioavailable Antileishmanial 2,4,5-Trisubstituted Benzamides. J Med Chem 2023; 66:7374-7386. [PMID: 37216489 PMCID: PMC10259451 DOI: 10.1021/acs.jmedchem.3c00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 05/24/2023]
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania species parasites, annually affects over 1 million individuals worldwide. Treatment options for leishmaniasis are limited due to high cost, severe adverse effects, poor efficacy, difficulty of use, and emerging drug resistance to all approved therapies. We discovered 2,4,5-trisubstituted benzamides (4) that possess potent antileishmanial activity but poor aqueous solubility. Herein, we disclose our optimization of the physicochemical and metabolic properties of 2,4,5-trisubstituted benzamide that retains potency. Extensive structure-activity and structure-property relationship studies allowed selection of early leads with suitable potency, microsomal stability, and improved solubility for progression. Early lead 79 exhibited an 80% oral bioavailability and potently blocked proliferation of Leishmania in murine models. These benzamide early leads are suitable for development as orally available antileishmanial drugs.
Collapse
Affiliation(s)
- Ho Shin Kim
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - Diana Ortiz
- Department
of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, Oregon 97239 United States
| | - Tara Man Kadayat
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - Corinne M. Fargo
- Department
of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, Oregon 97239 United States
- Department
of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, Oregon 97239 United States
| | - Jared T. Hammill
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - Yizhe Chen
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - Amy L. Rice
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - Kristin L. Begley
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - Gaurav Shoeran
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - William Pistel
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| | - Phillip A. Yates
- Department
of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, Oregon 97239 United States
| | - Marco A. Sanchez
- Department
of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, Oregon 97239 United States
| | - Scott M. Landfear
- Department
of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, Oregon 97239 United States
- Department
of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, Oregon 97239 United States
| | - R. Kiplin Guy
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509 United States
| |
Collapse
|
4
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of cytochrome P450, a family of xenobiotic metabolizing enzymes, in cancer therapy. Antioxid Redox Signal 2022; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcome, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. RECENT ADVANCES Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYPs-based drugs with a better therapeutic index. CRITICAL ISSUES Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. FUTURE DIRECTIONS Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers.
Collapse
Affiliation(s)
- Ragini D Singh
- AIIMS Rajkot, 618032, Biochemistry, Rajkot, Gujarat, India;
| | - Avadhesh Avadhesh
- Institute of Science, Banaras Hindu University, Biochemistry, Varanasi, Uttar Pradesh, India;
| | - Gaurav Sharma
- AIIMS Rajkot, 618032, Physiology, Rajkot, Gujarat, India;
| | | | - Rima B Shah
- AIIMS Rajkot, 618032, Pharmacology, Rajkot, Gujarat, India;
| | - Bela Goyal
- AIIMS Rishikesh, 442339, Biochemistry, Rishikesh, Uttarakhand, India;
| | - Subash Chandra Gupta
- Institute of Science, Banaras Hindu University, Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India, 221005;
| |
Collapse
|
5
|
Bandaru CM, Poojith N, Jadav SS, Basaveswara Rao MV, Babu KS, Sreenivasulu R, Alluri R. Design, Synthesis, Anticancer Evaluation, and Molecular Docking Studies of Thiazole–Pyrimidine Linked Amide Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1939067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chandra Mohan Bandaru
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Nuthalapati Poojith
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| | | | - K. Surendra Babu
- Department of Chemistry, Shree Velagapudi Ramakrishna Memorial College, Nagaram, Andhra Pradesh, India
| | - Reddymasu Sreenivasulu
- Department of Chemistry, University College of Engineering (Autonomous), Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| | - Ramesh Alluri
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| |
Collapse
|
6
|
Xue D, Ge Q, Zhi X, Song S, Shao L. Metal-free radical cascade cyclization of 2-isocyanoaryl thioethers with alcohols: Synthesis of 2-hydroxyalkyl benzothiazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Karmakar R, Mukhopadhyay C. Synthesis of new horizons in benzothiazole scaffold and used in anticancer drug development. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Benzothiazole scaffolds exhibit exciting medicinal properties including anticancer. In recent time most complicated job for every researcher is to discover a novel drug that can treat cancer with minimal side effects. Some heterocyclic anticancer drugs including daunorubicin, 5-flourouracil, doxorubicin, methotrexate, etc. are markedly available. In addition, few natural products such as vincristine alongwith vinblastine are used as anticancer drugs. More than 90% of the novel drugs bearing heterocyclic moieties have always been main portions in the development of anticancer drugs. Heterocyclic compounds containing benzothiazole moiety show a superior pharmaceutical effect than non-nitrogen compounds. These N-/S-containing benzothiazole compounds, the heart of drug discovery, present a significant and valuable group of molecules that play a chief and vital role in our living cells. This chapter recites the weightage of benzothiazole nuclei in the progress of anticancer drugs.
Collapse
Affiliation(s)
- Rajiv Karmakar
- Department of Chemistry , University of Calcutta , 92 APC Road , Kolkata 700009 , India
- Department of Chemistry , Dum Dum Motijheel College, West Bengal State University , Kolkata 700074 , India
| | - Chhanda Mukhopadhyay
- Department of Chemistry , University of Calcutta , 92 APC Road , Kolkata 700009 , India
| |
Collapse
|
8
|
Lu Q, Zhao L, Wu L, Wang X, Shen G, Huang X, Du M, Ma D. CuCl
2
or I
2
/DMSO Catalyzed S‐S Bond Cleaving/Cyclization Reactions to Synthesize 2‐Arylbenzothiazoles via 2,2′‐Disulfanediyldianilines and Aromatic Aldehyde. ChemistrySelect 2022. [DOI: 10.1002/slct.202104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qichao Lu
- Chemistry and Chemical Engineering Liaocheng University 1 Hunan Avenue Liaocheng 252000 Shandong P. R. China
| | - Lingyu Zhao
- Chemistry and Chemical Engineering Liaocheng University 1 Hunan Avenue Liaocheng 252000 Shandong P. R. China
- Chemistry and Chemical Engineering Jinan University 106 Jiwei Road Jinan 250022 Shandong P. R. China
| | - Lingang Wu
- Chemistry and Chemical Engineering Liaocheng University 1 Hunan Avenue Liaocheng 252000 Shandong P. R. China
| | - Xiangqian Wang
- Chemistry and Chemical Engineering Liaocheng University 1 Hunan Avenue Liaocheng 252000 Shandong P. R. China
| | - Guodong Shen
- Chemistry and Chemical Engineering Liaocheng University 1 Hunan Avenue Liaocheng 252000 Shandong P. R. China
- Chemistry and Chemical Engineering Jinan University 106 Jiwei Road Jinan 250022 Shandong P. R. China
- National Rubber Additive Engineering Technology Center 399 Qinghe West Road, Yanggu County Liaocheng 252059 Shandong P. R. China
| | - Xianqiang Huang
- Chemistry and Chemical Engineering Liaocheng University 1 Hunan Avenue Liaocheng 252000 Shandong P. R. China
| | - Mengcheng Du
- National Rubber Additive Engineering Technology Center 399 Qinghe West Road, Yanggu County Liaocheng 252059 Shandong P. R. China
| | - Delong Ma
- National Rubber Additive Engineering Technology Center 399 Qinghe West Road, Yanggu County Liaocheng 252059 Shandong P. R. China
| |
Collapse
|
9
|
Cai M, Ye Q, Huang W, Hao W. Recyclable copper-catalyzed cyclization of o-haloanilides and metal sulfides: An efficient and practical access to substituted benzothiazoles. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Novel benzo[4,5]thiazolo[2,3-C][1,2,4]triazoles: Design, synthesis, anticancer evaluation, kinase profiling and molecular docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Benzothiazoles from Condensation of o-Aminothiophenoles with Carboxylic Acids and Their Derivatives: A Review. Molecules 2021; 26:molecules26216518. [PMID: 34770926 PMCID: PMC8587170 DOI: 10.3390/molecules26216518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/27/2023] Open
Abstract
Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.
Collapse
|
12
|
Mardani Y, Karimi-Jaberi Z, Soltanian Fard MJ. One-pot synthesis of 1-(benzothiazolylamino)aryl methyl-2-naphthols and 3-benzothiazolyl 2,3-dihydroquinazolinones using a magnetically recoverable core–shell nanocomposite as catalyst. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nano-magnetite-supported sulfated polyethylene glycol (Fe3O4@PEG-SO3H) was prepared, characterized and utilized as a magnetically recoverable heterogeneous catalyst for the one-pot, three-component reaction of 2-aminobenzothiazole, aldehydes and 2-naphthol/isatoic anhydride resulting in efficient formation of 1-(benzothiazolylamino)arylmethyl-2-naphthol or dihydroquinazolinones derivatives. The significant features of this method include green conditions, operational simplicity, minimizing production of chemical waste, shorter reaction times and good to high yields. In addition, the nanocatalyst can easily be separated from the reaction mixture by application of a magnetic field and reused without significant deterioration in its catalytic activity.
Collapse
Affiliation(s)
- Yousef Mardani
- Department of Chemistry, Firoozabad Branch , Islamic Azad University , Firoozabad , Iran
| | - Zahed Karimi-Jaberi
- Department of Chemistry, Firoozabad Branch , Islamic Azad University , Firoozabad , Iran
| | | |
Collapse
|
13
|
Ravinaik B, Rao MVB, Rao PTSRKP, Ramachandran D, Reddy DRS. Design, Synthesis, and Anticancer Evaluation of N-(4-{5-[4-(5-Methyl-1,3,4-oxadiazol-2-yl)phenyl]-4-(2,3,4-trimethoxyphenyl)-1,3-thiazol-2-yl}phenyl)benzamides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Catalytic and biological activities of homoleptic palladium(II) complexes bearing the 2-aminobenzothiazole moiety. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Dhawale KD, Ingale AP, Shinde SV, Thorat NM, Patil LR. ZnO-NPs catalyzed condensation of 2-aminothiophenol and aryl/alkyl nitriles: Efficient green synthesis of 2-substituted benzothiazoles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1894577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kiran D. Dhawale
- Department of Chemistry, Rao Bahadur Narayan Borawake College, Ahmednagar, India
| | - Ajit P. Ingale
- Department of Chemistry, Dada Patil College, Ahmednagar, India
| | | | - Nitin M. Thorat
- Department of Chemistry, Maharaja Jivajirao Shinde College, Ahmednagar, India
| | - Limbraj R. Patil
- Department of Chemistry, Maharaja Jivajirao Shinde College, Ahmednagar, India
| |
Collapse
|
16
|
Bolakatti G, Palkar M, Katagi M, Hampannavar G, Karpoormath RV, Ninganagouda S, Badiger A. Novel series of benzo[d]thiazolyl substituted-2-quinolone hybrids: Design, synthesis, biological evaluation and in-silico insights. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Kyhoiesh HAK, Al-Adilee KJ. Synthesis, spectral characterization, antimicrobial evaluation studies and cytotoxic activity of some transition metal complexes with tridentate (N,N,O) donor azo dye ligand. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
18
|
Studentsov EP, Golovina AA, Krasikova RN, Orlovskaja VV, Vaulina DD, Krutikov VI, Ramsh SM. 2-Arylbenzothiazoles: Advances in Anti-Cancer and Diagnostic
Pharmaceuticals Discovery. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Kosikowska U, Wujec M, Trotsko N, Płonka W, Paneth P, Paneth A. Antibacterial Activity of Fluorobenzoylthiosemicarbazides and Their Cyclic Analogues with 1,2,4-Triazole Scaffold. Molecules 2020; 26:E170. [PMID: 33396536 PMCID: PMC7796209 DOI: 10.3390/molecules26010170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The development of drug-resistant bacteria is currently one of the major challenges in medicine. Therefore, the discovery of novel lead structures for the design of antibacterial drugs is urgently needed. In this structure-activity relationship study, a library of ortho-, meta-, and para-fluorobenzoylthiosemicarbazides, and their cyclic analogues with 1,2,4-triazole scaffold, was created and tested for antibacterial activity against Gram-positive bacteria strains. While all tested 1,2,4-triazoles were devoid of potent activity, the antibacterial response of the thiosemicarbazides was highly dependent on substitution pattern at the N4 aryl position. The optimum activity for these compounds was found for trifluoromethyl derivatives such as 15a, 15b, and 16b, which were active against both the reference strains panel, and pathogenic methicillin-sensitive and methicillin-resistant Staphylococcus aureus clinical isolates at minimal inhibitory concentrations (MICs) ranging from 7.82 to 31.25 μg/mL. Based on the binding affinities obtained from docking, the conclusion can be reached that fluorobenzoylthiosemicarbazides can be considered as potential allosteric d-alanyl-d-alanine ligase inhibitors.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (N.T.)
| | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (N.T.)
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (N.T.)
| |
Collapse
|
20
|
Fu DJ, Liu SM, Li FH, Yang JJ, Li J. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel colchicine site tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2020; 35:1050-1059. [PMID: 32299262 PMCID: PMC7178834 DOI: 10.1080/14756366.2020.1753721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tubulin polymerisation inhibitors exhibited an important role in the treatment of patients with prostate cancer. Herein, we reported the medicinal chemistry efforts leading to a new series of benzothiazoles by a bioisosterism approach. Biological testing revealed that compound 12a could significantly inhibit in vitro tubulin polymerisation of a concentration dependent manner, with an IC50 value of 2.87 μM. Immunofluorescence and EBI competition assay investigated that compound 12a effectively inhibited tubulin polymerisation and directly bound to the colchicine-binding site of β-tubulin in PC3 cells. Docking analysis showed that 12a formed hydrogen bonds with residues Tyr357, Ala247 and Val353 of tubulin. Importantly, it displayed the promising antiproliferative ability against C42B, LNCAP, 22RV1 and PC3 cells with IC50 values of 2.81 μM, 4.31 μM, 2.13 μM and 2.04 μM, respectively. In summary, compound 12a was a novel colchicine site tubulin polymerisation inhibitor with potential to treat prostate cancer.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Si-Meng Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fu-Hao Li
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jia-Jia Yang
- Department of Pharmacy, People's Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
21
|
Sethiya A, Sahiba N, Teli P, Soni J, Agarwal S. Current advances in the synthetic strategies of 2-arylbenzothiazole. Mol Divers 2020; 26:513-553. [PMID: 33180241 DOI: 10.1007/s11030-020-10149-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Benzothiazole is a privileged scaffold in the field of synthetic and medicinal chemistry. Its derivatives and metal complexes possess a gamut of pharmacological properties and high degree of structural diversity that has proven it vital for the investigation for novel therapeutics. The 2nd position of benzothiazole is the most active site that makes 2-arylbenzothiazole as felicitous scaffolds in pharmaceutical chemistry. The extensive significance of benzo-fused heterocyclic moieties formation has led to broad and valuable different approaches for their synthesis. This review deals with the synthetic approaches developed so far for the synthesis of 2-arylbenzothiazoles. Moreover, this article abridges the publications devoted to the synthesis of this moiety over the last 6 years. This study gives a current precis of research on the fabrication of 2-arylbenzothiazoles through different synthetic pathways and shall be helpful for researchers and scientists who are working in this field to make more potent biologically active benzothiazole-based drugs.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Pankaj Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India.
| |
Collapse
|
22
|
Unsalan O, Arı H, Altunayar-Unsalan C, Bolelli K, Boyukata M, Yalcin I. FTIR, Raman and DFT studies on 2-[4-(4-ethylbenzamido)phenyl]benzothiazole and 2-[4-(4-nitrobenzamido)phenyl]benzothiazole supported by differential scanning calorimetry. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Singh K, bala I, Kataria R. Crystal structure, Hirshfeld surface and DFT based NBO, NLO, ECT and MEP of benzothiazole based hydrazone. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Hwang HS, Lee S, Han SS, Moon YK, You Y, Cho EJ. Benzothiazole Synthesis: Mechanistic Investigation of an In Situ-Generated Photosensitizing Disulfide. J Org Chem 2020; 85:11835-11843. [PMID: 32822174 DOI: 10.1021/acs.joc.0c01598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of a visible light absorbing intermediate as a photosensitizer makes a chemical process simple and sustainable, obviating the need for the use of chemical additives. Herein, the formation of a photosensitizing disulfide in benzothiazole synthesis from 2-aminothiophenol and aldehydes was proposed and confirmed through in-depth mechanistic studies. A series of photophysical and electrochemical investigations revealed that an in situ-generated disulfide photosensitizes molecular oxygen to generate the key oxidants, singlet oxygen and superoxide anion, for the dehydrogenation step.
Collapse
Affiliation(s)
- Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sumin Lee
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung Su Han
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yu Kyung Moon
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
25
|
Ammazzalorso A, Carradori S, Amoroso R, Fernández IF. 2-substituted benzothiazoles as antiproliferative agents: Novel insights on structure-activity relationships. Eur J Med Chem 2020; 207:112762. [PMID: 32898763 DOI: 10.1016/j.ejmech.2020.112762] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
Given the wide spectrum of biological activities, benzothiazoles represent privileged scaffolds in medicinal chemistry, useful in drug discovery programs to modulate biological activities of lead compounds. A large body of knowledge about benzothiazoles has been reported in scientific literature, describing their antimicrobial, anticonvulsant, neuroprotective, anti-inflammatory, and antiproliferative effects. This review summarizes the results obtained in the structure-activity relationship studies on antiproliferative benzothiazoles, focusing on 2-substituted derivatives and on mechanism of action responsible for the antitumor effects of this class of compounds.
Collapse
Affiliation(s)
- Alessandra Ammazzalorso
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Inmaculada Fernández Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| |
Collapse
|
26
|
Yu Y, Gong QT, Lu WF, Liu YH, Yang ZJ, Wang N, Yu XQ. Aggregation-Induced Emission Probes for Specific Turn-On Quantification of Bovine Serum Albumin. ACS APPLIED BIO MATERIALS 2020; 3:5193-5201. [PMID: 35021694 DOI: 10.1021/acsabm.0c00589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of aggregation-induced emission (AIE) fluorescence probes, coined 4H-pyrimido[2,1-b]benzothiazole derivatives, has been synthesized by Biginelli reactions. Utilizing spectroscopic techniques, their photophysical properties have been comprehensively investigated in working environment both in vitro and in vivo. Density functional theory (DFT) calculations were performed to better understand the mechanism of these probes. The interactions between 4H-pyrimido[2,1-b]benzothiazoles with different substituents and bovine serum albumin (BSA) were analyzed using UV-vis and fluorescence spectroscopy, synchronous fluorescence, and docking analysis. Studies found that 4H-pyrimido[2,1-b]benzothiazole could bind to bovine serum albumin (BSA) through a hydrogen bond and hydrophobic interactions, resulting in enhancement of fluorescence emission of probes 1a-6f and fluorescence quenching of BSA. Combined with cell imaging experiments, these provide information on potential effects of benzothiazoles on disease treatment.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qing-Tian Gong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Wei-Fan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
27
|
Devi Priya D, Nandhakumar M, Mohana Roopan S. Pyrazolo[1,5-a]pyridine: Recent synthetic view on crucial heterocycles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1805468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Duraipandi Devi Priya
- Department of Chemistry, Chemistry of Heterocycles & Natural Product Research Laboratory, School of Advanced Science, Vellore, Tamilnadu, India
| | | | - Selvaraj Mohana Roopan
- Department of Chemistry, Chemistry of Heterocycles & Natural Product Research Laboratory, School of Advanced Science, Vellore, Tamilnadu, India
| |
Collapse
|
28
|
Facile synthesis of benzazoles through biocatalytic cyclization and dehydrogenation employing catalase in water. Enzyme Microb Technol 2020; 138:109562. [PMID: 32527531 DOI: 10.1016/j.enzmictec.2020.109562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
The benzazoles are very important entities having immense biological activities, hence; the synthesis of benzazoles is one of the prime areas for synthetic chemists. In pursuit of sustainable protocol, herein an oxidative enzyme i.e. catalase mediated sustainable synthesis is presented. Catalase is a metalloenzyme which is essential for the breakdown of toxic hydrogen peroxide into water and oxygen inside the cell. Despite the higher activity and turnover number of catalase inside the cell, its activity outside the cell is unexplored. Therefore, to explore the hidden potential of catalase for catalyzing the organic transformations, here we reported a green and efficient method for synthesis of benzazoles by the cyclocondensation of o-aminothiophenol or o-phenylenediammine and various aryl aldehydes with ensuing dehydrogenation. This protocol is greener, sustainable and rapid with excellent yields of the products and in addition to this, the catalase demonstrates good functional group tolerance.
Collapse
|
29
|
Raut DG, Patil SB, Choudhari PB, Kadu VD, Lawand AS, Hublikar MG, Bhosale RB. POCl3 Mediated Syntheses, Pharmacological Evaluation and Molecular Docking Studies of Some Novel Benzofused Thiazole Derivatives as a Potential Antioxidant and Anti-inflammatory Agents. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212796813666191118100520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background:
The present research work is focused on the development of alternative
antioxidant and anti-inflammatory agents. The review of the literature reveals that many
benzofused thiazole analogues have been used as lead molecules for the design and development
of therapeutic agent, including anticancer, anti-inflammatory, antioxidant and antiviral.
The synthesized benzofused thiazole derivatives are evaluated for in vitro antioxidant,
anti-inflammatory activities and molecular docking study. Thus, the present research work
aims to synthesize benzofused thiazole derivatives and to test their antioxidant and antiinflammatory
activities.
Objective:
To design and synthesize an alternative antioxidant and anti-inflammatory agents.
Methods:
The substituted benzofused thiazoles 3a-g were prepared by cyclocondensation reaction
of appropriate carboxylic acid with 2-aminothiophenol in POCl3 and heated for about
2-3 h to offer benzofused thiazole derivatives 3a-g. All the newly synthesized compounds
were in vitro screened for their anti-inflammatory and antioxidant activities by using a
known literature method.
Results:
At the outset, the study of in vitro indicated that the compounds code 3c, 3d and 3e
possessed distinct anti-inflammatory activity as compared to a standard reference. All the
tested compounds show potential antioxidant activity against one or more reactive (H2O2,
DPPH, SO and NO) radical scavenging species. Additionally, docking simulation is further
performed to the position of compounds 3d & 3e into the anti-inflammatory active site to determine
the probable binding model.
Conclusion:
New anti-inflammatory and antioxidant agents were needed; it has been proved
that benzofused thiazole derivatives were 3c, 3d and 3e constituted as an interesting template
for the evaluation of new anti-inflammatory agents and an antioxidant’s work also may provide
an interesting template for further development.
Collapse
Affiliation(s)
- Dattatraya G. Raut
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255. Maharashtra, India
| | - Sandeep B. Patil
- Department of Pharmacology, Adarsh College of Pharmacy, Bhavani Nagar, Vita, Dist.-Sangli, Maharashtra, India
| | - Prafulla B. Choudhari
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth College of Pharmacy, near Chitranageri Morewadi, Kolhapur-416013. Maharashtra, India
| | - Vikas D. Kadu
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255. Maharashtra, India
| | - Anjana S. Lawand
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255. Maharashtra, India
| | - Mahesh G. Hublikar
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255. Maharashtra, India
| | - Raghunath B. Bhosale
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255. Maharashtra, India
| |
Collapse
|
30
|
Elgemeie GH, Azzam RA, Osman RR. Recent advances in synthesis, metal complexes and biological evaluation of 2-aryl, 2-pyridyl and 2-pyrimidylbenzothiazoles as potential chemotherapeutics. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Yakantham T, Sreenivasulu R, Alluraiah G, Tej MB, Ramesh Raju R. Design, Synthesis, and Anticancer Activity of 1,2,3-Triazole Likned Thiazole-1,2-isoxazole Derivatives. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363219120314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Pathak N, Rathi E, Kumar N, Kini SG, Rao CM. A Review on Anticancer Potentials of Benzothiazole Derivatives. Mini Rev Med Chem 2020; 20:12-23. [PMID: 31288719 DOI: 10.2174/1389557519666190617153213] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
Benzothiazole is an organic compound bearing a heterocyclic nucleus (thiazole) which imparts a broad spectrum of biological activities to it. The significant and potent activity of benzothiazole moiety influenced distinctively by nature and position of substitutions. This review summarizes the effect of various substituents in recent trends and approaches to design and develop novel benzothiazole derivatives for anticancer potential in different cell lines by interpreting the Structure- Activity Relationship (SAR) and mechanism of action of a wide range of derivatives. The list of derivatives is categorized into different groups and reviewed for their anticancer activity. The structure-activity relationship for the various derivatives revealed an excellent understanding of benzothiazole moiety in the field of cancer therapy against different cancer cell line. Data obtained from the various articles showed the potential effect of benzothiazole moiety and its derivatives to produce the peculiar and significant lead compound. The important anticancer mechanisms found are tyrosine kinase inhibition, topoisomerase inhibition and induction of apoptosis by Reactive Oxygen Species (ROS) activation. Therefore, the design and development of novel benzothiazole have broad scope in cancer chemotherapy.
Collapse
Affiliation(s)
- Nandini Pathak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
33
|
Benzekri Z, Sibous S, Serrar H, Ouasri A, Boukhris S, Ghailane R, Rhandour A, Souizi A. NH3(CH2)5NH3BiCl5 as a new hybrid and efficient catalyst for the synthesis of 1-(benzothiazolylamino)methyl-2-naphthol derivatives under solvent-free conditions. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Damghani FK, Pourmousavi SA, Kiyani H. Sulfonic Acid-Functionalized Magnetic Nanoparticles as an Efficient Catalyst for the Synthesis of Benzo[4, 5]imidazo[1, 2-a]pyrimidine Derivatives, 2-Aminobenzothia Zolomethylnaphthols and 1-Amidoalkyl-2-naphthols. Curr Org Synth 2020; 16:1040-1054. [PMID: 31984885 DOI: 10.2174/1570179416666190725101422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbon-based sulfonated catalysts have several advantages but their separation by filtration is still a challenge. On the other hand, the synthesis of magnetic sulfonated carbon nanoparticle indicated that the magnetic separation could be an efficient way to separate the catalyst from the reaction mixture. OBJECTIVE In order to synthesize a separable magnetic Fe3O4@C-SO3H nanoparticle (MNPs) with high catalytic activity in organic transformation, three environmental-benign and low-cost sulfonic acidfunctionalized magnetic nanoparticle (Fe3O4@C-SO3H) were successfully synthesized. MATERIALS AND METHODS The Nano catalysts were prepared by solvothermal carbonization of Sucrose (Suc), Starch (Sta) or Cellulose (Cel) in the presence of Fe3O4 Nanoparticle and then grafting of the sulfonic groups on the surface of resulted Fe3O4@C nanoparticles in the presence of p-Toluenesulfonic. Then the Nano catalysts were characterized using XRD, FESEM and FT-IR. RESULTS Three Fe3O4@C-SO3H were successfully synthesized. The resulted MNPs were used for the synthesis of benzo [4, 5] imidazo[1, 2-a]-pyrimidine derivatives, 2/-aminobenzothiazolomethylnaphthols and 1-amidoalkyl-2-naphthols under solvent-free conditions in excellent yields. It was found that high catalytic activity and easy magnetic separation from the reaction mixture are important achievement with regard to the efficiency and reusability of the catalyst in synthesis. CONCLUSION The MNPs were synthesized and used as an efficient catalysts for the one-pot synthesis of benzo [4, 5] imidazo[1, 2-a]-pyrimidine derivatives, 2/-aminobenzothiazolomethylnaphthols, and 1-amidoalkyl-2- naphthols under solvent-free conditions in excellent yields. High catalytic activity and easy magnetic separation from the reaction mixture are two factors for evaluating the performance of Fe3O4@C-SO3H nanoparticles in the organic transformations.
Collapse
Affiliation(s)
| | | | - Hamzeh Kiyani
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| |
Collapse
|
35
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
36
|
Wang Y, Liu Y, Tang T, Luo Y, Stevens MFG, Cheng X, Yang Y, Shi D, Zhang J, Bradshaw TD. The antitumour activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole in human gastric cancer models is mediated by AhR signalling. J Cell Mol Med 2019; 24:1750-1759. [PMID: 31876059 PMCID: PMC6991636 DOI: 10.1111/jcmm.14869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Stomach cancer is the fourth most common cancer worldwide. Identification of novel molecular therapeutic targets and development of novel treatments are critical. Against a panel of gastric carcinoma cell lines, the activity of 2‐(4‐amino‐3‐methylphenyl)‐5‐fluorobenzothiazole (5F 203) was investigated. Adopting RT‐PCR, Western blot and immunohistochemical techniques, we sought to determine molecular pharmacodynamic (PD) markers of sensitivity and investigate arylhydrocarbon (AhR) receptor‐mediated signal transduction activation by 5F 203. Potent (IC50 ≤ 0.09 μmol/L), selective (>250‐fold) in vitro antitumour activity was observed in MKN‐45 and AGS carcinoma cells. Exposure of MKN‐45 cells to 5F 203 triggered cytosolic AhR translocation to nuclei, inducing CYP1A1 (>50‐fold) and CYP2W1 (~20‐fold) transcription and protein (CYP1A1 and CYP2W1) expression. G2/M arrest and γH2AX expression preceded apoptosis, evidenced by PARP cleavage. In vivo, significant (P < .01) 5F 203 efficacy was observed against MKN‐45 and AGS xenografts. In mice‐bearing 5F 203‐sensitive MKN‐45 and 5F 203‐insensitive BGC‐823 tumours in opposite flanks, CYP1A1, CYP2W1 and γH2AX protein in MKN‐45 tumours only following treatment of mice with 5F 203 (5 mg/kg) revealed PD biomarkers of sensitivity. 5F 203 evokes potent, selective antitumour activity in vitro and in vivo in human gastric cancer models. It triggers AhR signal transduction, CYP‐catalysed bioactivation to electrophilic species causing lethal DNA double‐strand breaks exclusively in sensitive cells. 5F 203 represents a novel therapeutic agent with a mechanism of action distinct from current clinical drugs, exploiting novel molecular targets pertinent to gastric tumourigenesis: AhR, CYP1A1 and CYP2W1. PD markers of 5F 203 sensitivity that could guide patient selection have been identified.
Collapse
Affiliation(s)
- Yuling Wang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ying Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Tao Tang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Malcolm F G Stevens
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Xi Cheng
- Atom Bioscience and Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Yan Yang
- Atom Bioscience and Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Dongfang Shi
- Atom Bioscience and Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Jihong Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Tracey D Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
37
|
Breen AF, Scurr D, Cassioli ML, Wells G, Thomas NR, Zhang J, Turyanska L, Bradshaw TD. Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery. Int J Nanomedicine 2019; 14:9525-9534. [PMID: 31824148 PMCID: PMC6901036 DOI: 10.2147/ijn.s226293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Advancement of novel anticancer drugs into clinical use is frequently halted by their lack of solubility, reduced stability under physiological conditions, and non-specific uptake by normal tissues, causing systemic toxicity. Their progress to use in the clinic could be accelerated by the development of new formulations employing suitable and complementary drug delivery vehicles. METHODS A robust method for apoferritin (AFt)-encapsulation of antitumour benzothiazoles has been developed for enhanced activity against and drug delivery to benzothiazole-sensitive cancers. RESULTS More than 70 molecules of benzothiazole 5F 203 were encapsulated per AFt cage. Post-encapsulation, the size and integrity of the protein cages were retained as evidenced by dynamic light scattering. ToF-SIMS depth profiling using an argon cluster beam confirmed 5F 203 exclusively within the AFt cavity. Improved encapsulation of benzothiazole lysyl-amide prodrugs was achieved (~130 molecules of Phortress per AFt cage). Transferrin receptor 1, TfR1, was detected in lysates prepared from most cancer cell lines studied, contributing to enhanced anticancer potency of the AFt-encapsulated benzothiazoles (5F 203, Phortress, GW 610, GW 608-Lys). Nanomolar activity was demonstrated by AFt-formulations in breast, ovarian, renal and gastric carcinoma cell lines, whereas GI50 >50 µM was observed in non-tumourigenic MRC-5 fibroblasts. Intracellular 5F 203, a potent aryl hydrocarbon receptor (AhR) ligand, and inducible expression of cytochrome P450 (CYP) 1A1 were detected following exposure of sensitive cells to AFt-5F 203, confirming that the activity of benzothiazoles was not compromised following encapsulation. CONCLUSION Our results show enhanced potency and selectivity of AFt-encapsulated 5F 203 against carcinomas derived from breast, ovarian, renal, colorectal as well as gastric cancer models, and offer realistic prospects for potential refinement of tumour-targeting and treatment, and merit further in vivo investigations.
Collapse
Affiliation(s)
- Alastair F Breen
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NottinghamNG7 2RD, UK
| | - David Scurr
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NottinghamNG7 2RD, UK
| | - Maria Letizia Cassioli
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NottinghamNG7 2RD, UK
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - Neil R Thomas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, NottinghamNG7 2RD, UK
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | | | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, NottinghamNG7 2RD, UK
| |
Collapse
|
38
|
Novel benzothiazole containing 4H-pyrimido[2,1-b]benzothiazoles derivatives: One pot, solvent-free microwave assisted synthesis and their biological evaluation. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
39
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
40
|
Katrahalli U, Chanabasappa Yallur B, Manjunatha DH, Krishna PM. BSA interaction and DNA cleavage studies of anti-bacterial benzothiazol-2-yl-malonaldehyde. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Kumar Y, Ila H. Domino Synthesis of 2-Substituted Benzothiazoles by Base-Promoted Intramolecular C–S Bond Formation. Org Lett 2019; 21:7863-7867. [DOI: 10.1021/acs.orglett.9b02855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yogendra Kumar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
42
|
Jonnala S, Nameta B, Chavali M, Bantu R, Choudante P, Misra S, Sridhar B, Dilip S, Reddy BS. Design, Synthesis, Molecular Docking and Biological Evaluation of 1-(benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol Derivatives as Antiproliferative Agents. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190408101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.
Collapse
Affiliation(s)
- Sandhya Jonnala
- Division of Chemistry, Department of Sciences & Humanities Vignans Foundation for Science, Technology & Research Guntur, India
| | - Bhaskar Nameta
- Division of Chemistry, Department of Sciences & Humanities Vignans Foundation for Science, Technology & Research Guntur, India
| | - Murthy Chavali
- Division of Chemistry, Department of Sciences & Humanities Vignans Foundation for Science, Technology & Research Guntur, India
| | - Rajashaker Bantu
- Centre for Semiochemicals, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| | - Pallavi Choudante
- Pharmacology & Toxicology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| | - Sunil Misra
- Pharmacology & Toxicology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| | - B. Sridhar
- Centre for X-Ray Crystallography, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| | - S. Dilip
- National Institute of Pharmaceutical Education & Research, Hyderabad, India
| | - B.V. Subba Reddy
- Centre for Semiochemicals, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India
| |
Collapse
|
43
|
Yakantham T, Sreenivasulu R, Raju RR. Design, Synthesis, and Anticancer Evaluation of 2-{3-{4-[(5-Aryl-1,2,4-oxadiazol-3-yl)methoxy]phenyl}isoxazol-5-yl}-N-(3,4,5-trimethylphenyl)thiazol-4-amine Derivatives. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219070181] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Lal J, Singh S, Rani P. Synthesis of 2-Aminobenzothiazolomethyl Naphthols Using l-Valine Organocatalyst: An Efficient, Versatile and Biodegradable Catalyst. CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-019-00089-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Philoppes JN, Lamie PF. Design and synthesis of new benzoxazole/benzothiazole-phthalimide hybrids as antitumor-apoptotic agents. Bioorg Chem 2019; 89:102978. [DOI: 10.1016/j.bioorg.2019.102978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
|
46
|
Yu X, Yin Q, Zhang Z, Huang T, Pu Z, Bao M. Synthesis of 2-substituted benzothiazoles via the Brønsted acid catalyzed cyclization of 2-amino thiophenols with nitriles. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Kavitha K, Srikrishna D, Dubey PK, Aparna P. A Green and Efficient Synthesis of Substituted 2-(4-(2-Oxo-2H-chromen-3- yl)thiazol-2-yl)-3-phenylacrylonitriles Under Environmentally Benign Conditions. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666181224112851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient and convenient method for the condensation of various aldehydes with 2-(4-(2- oxo-2H-chromen-3-yl)thiazol-2-yl)acetonitrile has been demonstrated via triphenylphosphinecatalyzed Knoevenagel condensation in good to excellent yields. The effect of solvent on this reaction was studied. In addition, a tandem method for the synthesis of 2-(4-(2-oxo-2H-chromen-3-yl)thiazol-2- yl)acetonitrile has been outlined using tetrabutylammonium tribromide as an efficient, green and ecofriendly reagent. Subsequently, the latter was reacted with various aromatic aldehydes in the presence of PEG-600 as reaction media to afford the title compounds. These reactions have widened the scope and applicability of the use of tetrabutylammonium tribromide, triphenylphosphine in organic synthesis. All these synthesized compounds were characterized by IR, 1H-NMR, Mass and 13C-NMR spectral data.
Collapse
Affiliation(s)
- Kotthireddy Kavitha
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Devulapally Srikrishna
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Pramod Kumar Dubey
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Pasula Aparna
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| |
Collapse
|
48
|
Dawood DH, Abbas EMH, Farghaly TA, Ali MM, Ibrahim MF. ZnO Nanoparticles Catalyst in the Synthesis of Bioactive Fused Pyrimidines as Anti-breast Cancer Agents Targeting VEGFR-2. Med Chem 2019; 15:277-286. [PMID: 30207239 DOI: 10.2174/1573406414666180912113226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pyrimidines emerged as a remarkable class of heterocyclic compounds that have reinforced the pharmaceutical chemistry with various bioactive antitumor agents. Moreover, pyrimidine scaffold displayed VEGFR-2 inhibitory activity. Also, nano-sized catalysts are used in organic reactions in order to speed up the catalytic process. OBJECTIVE We were interested herein to synthesize a new series of fused pyrimidines using ZnO(NPs) to investigate their antitumor efficiency against breast MCF7 cancer and their VEGFR- 2 inhibition properties. METHOD A simple and efficient method for the synthesis of fused pyrimidines was developed using zinc oxide nanoparticles ZnO(NPs) in refluxing ethanol. RESULTS The proposed structures of all new fused pyrimidines are in agreement with their spectral data. Antitumor evaluation of newly fused pyrimidine derivatives against breast MCF-7 cancer was performed. It was apparent that the 2-phenylpyrazolo[1,5-a]pyrimidine derivatives 9a (IC50 = 9.12±1.16 µg/ml), 9c (IC50 = 9.10±1.07 µg/ml) and 9d (IC50 = 9.60±1.22 µg/ml) exhibited equipotent antitumor activity as Tamoxifen (IC50 = 9.11±0.90 µg/ml). Also, the inhibitory activity of the novel fused pyrimidine derivatives on VEGFR-2 as well as Tamoxifen was determined using breast cancer cell line MCF-7. The data was obvious that 2-phenylpyrazolo[1,5-a]pyrimidine derivatives 9a, 9c and 9d exhibited noticeable VEGFR-2 inhibitory effect with % inhibition ranging from 80-84 % versus Tamoxifen 93.5%. CONCLUSION We succeeded in this context to synthesize new fused pyrimidines using ZnO(NPs) as anti-breast cancer agents targeting VEGFR-2.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, 33 El Bohouth St.( former El Tahrir St.) Dokki, Giza, P.O. Box 12622, Egypt
| | - Eman M H Abbas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, 33 El Bohouth St.( former El Tahrir St.) Dokki, Giza, P.O. Box 12622, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.,Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia
| | - Mamdouh M Ali
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Center, 33 El Bohouth St. (former El Tahrir St.) Dokki, Giza, P.O. Box 12622, Egypt
| | - Mohammed F Ibrahim
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Center, 33 El Bohouth St. (former El Tahrir St.) Dokki, Giza, P.O. Box 12622, Egypt
| |
Collapse
|
49
|
Peroxide-mediated oxidative coupling of primary alcohols and disulfides: Synthesis of 2-substituted benzothiazoles. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Mishra N, Singh AS, Agrahari AK, Singh SK, Singh M, Tiwari VK. Synthesis of Benz-Fused Azoles via C-Heteroatom Coupling Reactions Catalyzed by Cu(I) in the Presence of Glycosyltriazole Ligands. ACS COMBINATORIAL SCIENCE 2019; 21:389-399. [PMID: 30943366 DOI: 10.1021/acscombsci.9b00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosyl triazoles are conveniently accessible and contain multiple metal-binding units that may assist in metal-mediated catalysis. Azide derivatives of d-glucose have been converted to their respective aryltriazoles and screened as ligands for the synthesis of 2-substituted benz-fused azoles and benzimidazoquinazolinones by Cu-catalyzed intramolecular Ullmann type C-heteroatom coupling. Good to excellent yields for a variety of benz-fused heterocyles were obtained for this readily accessible catalytic system.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anoop S. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anand K. Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sumit K. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|