1
|
Routabi P, Mehrabi M, Adibi H, Mehrabi M, Khodarahmi R. Design and evaluation of curcumin-derived aldopentose compounds: Unlocking their antidiabetic potential through integrative in vitro, in vivo, and in silico studies on carbohydrate-degrading enzymes. J Nutr Biochem 2025; 141:109897. [PMID: 40086674 DOI: 10.1016/j.jnutbio.2025.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Natural polyphenol compounds such as curcumin can inhibit carbohydrate-hydrolyzing enzymes, which may offer an alternative to expensive and potentially side-effect-inducing α-glucosidase inhibitors like acarbose. Hence, this study carried out the synthesis of curcumin aldopentose derivatives, examining their capacity to inhibit the α-glucosidase and α-amylase enzymes with the aim to alleviate hyperglycemia. Initially, the aldopentose derivatives from curcumin were synthesized and confirmed by spectroscopic methods such as MS, 13CNMR, 1HNMR, and FTIR. Afterward, we investigated the inhibitory effects of all derivatives on the α-amylase and α-glucosidase enzymes spectroscopically and determined their inhibition mechanism. We assessed the antioxidant activity and the stability of the synthetic derivatives in the simulated intestinal environment. Finally, we measured the postprandial blood glucose level after administering saturated starch in vivo. The modified compounds showed improved inhibitory effects compared to curcumin alone, with compound C3 demonstrating particularly strong enzyme inhibition. However, when compared with acarbose, a known commercial antidiabetic drug, the synthetic compounds showed lower inhibitory activity against both enzymes, resulting in fewer side effects related to undigested polysaccharides in the gut. Molecular docking studies show introducing a pentose moiety to the curcumin backbone enhanced docking affinities toward both enzymes and subsequently altered the associated IC50 and Ki values. Overall, compound C3 has the potential to be an inhibitor of carbohydrate-degrading enzymes and can effectively reduce glucose absorption in vivo. Given its antioxidant capabilities and reasonable stability, the compound in question shows promises as a potent derivative for the development of new anti-hyperglycemic drugs in future research endeavours.
Collapse
Affiliation(s)
- Pedram Routabi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Maryam Mehrabi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai, Negeri Sembilan, Malaysia
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Lakhani KG, Hamid R, Prajapati P, Suthar KP, Gupta S, Rathod V, Patel S. Data on the docking of millet-derived secondary metabolites as multi-target ligands for diabetes. Data Brief 2025; 59:111290. [PMID: 39931095 PMCID: PMC11808624 DOI: 10.1016/j.dib.2025.111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
The deterioration of human health due to unhealthy lifestyle and dietary habits has led to a worldwide increase in various metabolic diseases that significantly affect public health. Diabetes is one of the most serious health problems, is caused by abnormal metabolic processes and is becoming increasingly common. According to World Health Organisation (WHO) reports, a significant proportion of the world's population suffers from these diseases and their incidence continues to rise at an alarming rate. These metabolic disorders are characterised by elevated blood sugar levels, which serve as a warning sign for a variety of other health problems. Factors contributing to these diseases include a high-fat diet, insufficient physical activity, genetic predisposition, lack of exercise and underlying diseases. Diabetes mellitus, a fast-growing chronic metabolic disease, is characterised by insufficient insulin production by the pancreas or the body's inability to use insulin action. Various strategies are recommended by health and nutrition experts to manage this condition, including lifestyle changes, exercise, low-carbohydrate and low-fat diets and intermittent fasting. In cases where these measures prove insufficient, medication may be prescribed. However, the development of multi-drug therapies for metabolic disorders has proven to be an attractive field for pharmacists as they address several diseases simultaneously. Despite the promising effects of multi-drug therapies, the high costs and potential side effects associated with recently developed drugs necessitate alternative approaches. The utilisation of natural bioactive compounds from plant extracts represents a promising high-throughput strategy. This approach utilises network pharmacology and screening methods to identify potential ligands that act as inhibitors for the treatment of complex, interconnected diseases. In the current investigation, we used a molecular docking approach to investigate secondary metabolites from millet as potential multi-target ligands for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Komal G. Lakhani
- Department of Plant Molecular Biology and Biotechnology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Poojaben Prajapati
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Kirankumar P. Suthar
- Department of Plant Molecular Biology and Biotechnology, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sheetal Gupta
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Visha Rathod
- National Forensic Science university, Gandhinagar, India
| | - Saumya Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad 380009, India
| |
Collapse
|
3
|
Rocq C, Hamel V, Furtos-Matei A, Canesi S. Synthesis of (+)-Voglibose. Org Lett 2025; 27:3003-3006. [PMID: 40088164 DOI: 10.1021/acs.orglett.5c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
A concise asymmetric synthesis of voglibose, a natural product derivative and an alpha-glucosidase inhibitor with antihyperglycemic activity, was produced from an O-arylated lactic acid derivative in only seven steps. This approach was based on an oxidative phenol dearomatization process promoted by a hypervalent iodine reagent, a chiral auxiliary serving as a protecting group and allowing the asymmetric formation of the target, and a key hydrolysis leading to the formation of several contiguous stereocenters and removal of the chiral auxiliary.
Collapse
Affiliation(s)
- Camille Rocq
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| | - Vincent Hamel
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| | - Alexandra Furtos-Matei
- Département de Chimie, Université de Montréal, C.P.6128, Succ. Centre-Ville, Montréal, H3C 3J7, Québec, Canada
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| |
Collapse
|
4
|
Aroua LM, Alkhaibari IS, Alminderej FM, Messaoudi S, Chigurupati S, Al-mahmoud SA, Albadri AE, Emwas AH, Mohammed HA. Synthesis, bioactivity, and molecular docking of pyrazole bearing Schiff-bases as prospective dual alpha-amylase and alpha-glucosidase inhibitors with antioxidant activity. J Mol Struct 2025; 1320:139291. [DOI: 10.1016/j.molstruc.2024.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Hoang TNN, Nguyen QL, Le TTN, Vo NH, Dong TAD, Le THA. Comparative Study on the Hypoglycemic Effects of Different Parts of Musa balbisiana. Food Sci Nutr 2024; 12:10347-10356. [PMID: 39723093 PMCID: PMC11666822 DOI: 10.1002/fsn3.4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder that can cause elevated blood glucose levels due to impaired insulin secretion or resistance. Different parts of Musa balbisiana have been used widely in traditional medicine to treat many disorders. The present study aims to evaluate the antidiabetic ability of the corm, pseudostem, inflorescence, fruit, peel, and seed of M. balbisiana via in vitro experiments by inhibiting α-amylase and α-glucosidase enzymes as well as in vivo models on diabetic alloxan-induced mice. The results show that all investigated parts have performed potential inhibition on two investigated digestive enzymes. Seed poses the highest capacity among surveyed parts on α-amylase (IC50:f μg/mL) and α-glucosidase (IC50: 21.63 μg/mL) as well as effectively lowers the blood glucose index (IG) in alloxan-induced mice. In addition, fruit, corm, and inflorescence are considered essential parts that have high hypoglycemic effects via in vivo experiments. These findings indicate that all M. balbisiana parts are possibly a potential source for hypoglycemic agents; further clinical studies are needed to evaluate the safety of human beings before applying them in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Thi Ngoc Nhon Hoang
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Quang Liem Nguyen
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Thi Thanh Ngan Le
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Ngoc Hoa Vo
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Thi Anh Dao Dong
- Department of Food Technology, Faculty of Chemical EngineeringHo chi Minh City University of Technology (HCMUT)Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Thi Hong Anh Le
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| |
Collapse
|
6
|
Winder CI, Blackburn C, Hutchinson CL, Shen AQ, Turner NW, Sullivan MV. Enzyme Activity Inhibition of α-Amylase Using Molecularly Imprinted Polymer (MIP) Hydrogel Microparticles. Biomacromolecules 2024; 25:7459-7465. [PMID: 39479798 DOI: 10.1021/acs.biomac.4c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are a class of synthetic recognition materials that offer a cost-effective and robust alternative to antibodies. While MIPs have found predominant use in biosensing and diagnostic applications, their potential for alternative uses, such as enzyme inhibition, remains unexplored. In this work, we synthesized a range of acrylamide-based hydrogel MIP microparticles (35 μm) specific for the recognition of α-amylase. These MIPs also showed good selectivity toward the target protein with over 96% binding of the target protein, compared with the control nonimprinted polymer (NIP) counterparts. Specificity of the MIPs was determined with the binding of nontarget proteins, trypsin, human serum albumin (HSA), and bovine serum albumin (BSA). The MIPs were further evaluated for their ability to inhibit α-amylase enzymatic activity, showing a significant decrease in activity. These findings highlight the potential of MIPs as enzyme inhibitors, suggesting an innovative application beyond their conventional use.
Collapse
Affiliation(s)
- Charis I Winder
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Chester Blackburn
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Charles L Hutchinson
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Nicholas W Turner
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Mark V Sullivan
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Preinfalk V, Kimmeswenger I, Somoza V, Lieder B. Dipeptidyl-peptidase 4 (DPP4) mediates fatty acid uptake inhibition by glucose via TAS1R3 and GLUT-2 in Caco-2 enterocytes. Heliyon 2024; 10:e30329. [PMID: 38707340 PMCID: PMC11066672 DOI: 10.1016/j.heliyon.2024.e30329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Both high glucose intake with a high-fat meal and inhibition of dipeptidyl peptidase-4 (DPP4) have been associated with plasma lipid-lowering effects, but mechanistic understanding linking glucose and fat absorption is lacking. We here hypothesized that glucose ameliorates intestinal fatty acid uptake via a pathway involving DPP4. A concentration of 50 mM glucose reduced mean DPP4 activity in differentiated Caco-2 enterocytes by 42.5 % and fatty acid uptake by 66.0 % via nutrient sensing by the sweet taste receptor subunit TAS1R3 and glucose transporter GLUT-2. No effect of the DPP4 substrates GLP-1 and GIP or of the cellular energy status on the reduced uptake of fatty acids was seen, but a direct interaction between DPP4 and fatty acid transporters is suggested. Conclusively we identified DPP4 as a regulator of fatty acid absorption in Caco-2 enterocytes that mediates the inhibition of intestinal fatty acid uptake by glucose via an interplay of GLUT-2 and TAS1R3.
Collapse
Affiliation(s)
- Verena Preinfalk
- Christian Doppler Laboratory for Taste Research, Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Isabella Kimmeswenger
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Barbara Lieder
- Christian Doppler Laboratory for Taste Research, Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Clinical Nutrition, Department of Human Nutrition and Dietetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Angelini E, Martinelli M, Roà E, Ungarean CN, Salome C, Lefebvre Q, Bournez C, Fessard TC, Sarlah D. Diversification of Simple Arenes into Complex (Amino)cyclitols. Chemistry 2024; 30:e202303262. [PMID: 37856371 DOI: 10.1002/chem.202303262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Highly oxygenated cyclohexanes, including (amino)cyclitols, are featured in natural products possessing a notable range of biological activities. As such, these building blocks are valuable tools for medicinal chemistry. While de novo synthetic strategies have provided access to select compounds, challenges including stereochemical density and complexity have hindered the development of a general approach to (amino)cyclitol structures. This work reports the use of arenophile chemistry to access dearomatized intermediates which are amenable to diverse downstream transformations. Practical guidelines were developed for the synthesis of natural and non-natural (amino)cyclitols from simple arenes through a series of strategic functionalization events.
Collapse
Affiliation(s)
- Elisa Angelini
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Matteo Martinelli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Eugenio Roà
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Chad N Ungarean
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | | | | | - Colin Bournez
- SpiroChem AG, Mattenstrasse 22, 4058, Basel, Switzerland
| | | | - David Sarlah
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, 61801, Urbana, Illinois, USA
| |
Collapse
|
9
|
Kashtoh H, Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2944. [PMID: 37631156 PMCID: PMC10458243 DOI: 10.3390/plants12162944] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
10
|
Vinaykumar A, Surender B, Rao BV. Chemoselective Nozaki-Hiyama-Takai-Kishi and Grignard reaction: short synthesis of some carbahexopyranoses. RSC Adv 2023; 13:22824-22830. [PMID: 37520087 PMCID: PMC10375257 DOI: 10.1039/d3ra03704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
A common, divergent, efficient, stereoselective and short approach for the total syntheses of some carbahexopyranoses namely, MK7607, (-)-gabosine A, (-)-conduritol E, (-)-conduritol F, 6a-carba-β-d-fructopyranose and other carbasugars using chemoselective Grignard or Nozaki-Hiyama-Takai-Kishi (NHTK) reactions and RCM. Herein, the Grignard and NHTK reactions are able to differentiate the reactivity difference between lactol or lactolacetate and aldehyde of 2 & 6 under given conditions to give the desired skeleton chemoselectivity.
Collapse
Affiliation(s)
- Allam Vinaykumar
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Hyderabad India
| | - Banothu Surender
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad India
| | - Batchu Venkateswara Rao
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad India
| |
Collapse
|
11
|
Özge Ö, Avcı D, Sönmez F, Tamer Ö, Dege N, Başoğlu A, Atalay Y, Kurt BZ. Synthesis, DFT calculations, α‐glucosidase inhibitor activity, and docking studies on Schiff base metal complexes containing isothiocyanate. Appl Organomet Chem 2023. [DOI: 10.1002/aoc.7084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Wang X, Li J, Shang J, Bai J, Wu K, Liu J, Yang Z, Ou H, Shao L. Metabolites extracted from microorganisms as potential inhibitors of glycosidases (α-glucosidase and α-amylase): A review. Front Microbiol 2022; 13:1050869. [PMID: 36466660 PMCID: PMC9712454 DOI: 10.3389/fmicb.2022.1050869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 09/30/2023] Open
Abstract
α-Glucosidase and α-amylase are the two main glycosidases that participate in the metabolism of carbohydrates. Inhibitors of these two enzymes are considered an important medical treatment for carbohydrate uptake disorders, such as diabetes and obesity. Microbes are an important source of constituents that have the potential to inhibit glycosidases and can be used as sources of new drugs and dietary supplements. For example, the α-glucosidase inhibitor acarbose, isolated from Actinoplanes sp., has played an important role in adequately controlling type 2 diabetes, but this class of marketed drugs has many drawbacks, such as poor compliance with treatment and expense. This demonstrates the need for new microorganism-derived resources, as well as novel classes of drugs with better compliance, socioeconomic benefits, and safety. This review introduces the literature on microbial sources of α-glucosidase and α-amylase inhibitors, with a focus on endophytes and marine microorganisms, over the most recent 5 years. This paper also reviews the application of glycosidase inhibitors as drugs and dietary supplements. These studies will contribute to the future development of new microorganism-derived glycosidase inhibitors.
Collapse
Affiliation(s)
- Xiaojing Wang
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaying Li
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Kai Wu
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Liu
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhijun Yang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Ou
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
13
|
Kashtoh H, Baek KH. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202722. [PMID: 36297746 PMCID: PMC9612090 DOI: 10.3390/plants11202722] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Diabetes is a common metabolic disorder marked by unusually high plasma glucose levels, which can lead to serious consequences such as retinopathy, diabetic neuropathy and cardiovascular disease. One of the most efficient ways to reduce postprandial hyperglycemia (PPHG) in diabetes mellitus, especially insulin-independent diabetes mellitus, is to lower the amount of glucose that is absorbed by inhibiting carbohydrate hydrolyzing enzymes in the digestive system, such as α-glucosidase and α-amylase. α-Glucosidase is a crucial enzyme that catalyzes the final stage of carbohydrate digestion. As a result, α-glucosidase inhibitors can slow D-glucose release from complex carbohydrates and delay glucose absorption, resulting in lower postprandial plasma glucose levels and control of PPHG. Many attempts have been made in recent years to uncover efficient α-glucosidase inhibitors from natural sources to build a physiologic functional diet or lead compound for diabetes treatment. Many phytoconstituent α-glucosidase inhibitors have been identified from plants, including alkaloids, flavonoids, anthocyanins, terpenoids, phenolic compounds, glycosides and others. The current review focuses on the most recent updates on different traditional/medicinal plant extracts and isolated compounds' biological activity that can help in the development of potent therapeutic medications with greater efficacy and safety for the treatment of type 2 diabetes or to avoid PPHG. For this purpose, we provide a summary of the latest scientific literature findings on plant extracts as well as plant-derived bioactive compounds as potential α-glucosidase inhibitors with hypoglycemic effects. Moreover, the review elucidates structural insights of the key drug target, α-glucosidase enzymes, and its interaction with different inhibitors.
Collapse
|
14
|
Zhang J, Li YN, Guo LB, He J, Liu PH, Tian HY, Zhang WK, Xu JK. Diverse gallotannins with α-glucosidase and α-amylase inhibitory activity from the roots of Euphorbia fischeriana steud. PHYTOCHEMISTRY 2022; 202:113304. [PMID: 35803305 DOI: 10.1016/j.phytochem.2022.113304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
A phytochemical investigation of the roots of Euphorbia fischeriana Steud. led to the isolation of eleven undescribed gallotannins, fishertannins A-K, together with four known analogues. Their structures were elucidated by the comprehensive spectroscopic data including UV, IR, HR-ESI-MS, and NMR, while the absolute configurations of the sugar moiety were determined by the acid hydrolysis and HPLC analyses. Fishertannin A possessed an unusual skeleton comprised of acetophenone, galloyl group, arabinofuranosyl and glucopyranosyl moieties. Fishertannin B, fishertannin H, fishertannin K, 1,2,3-tri-O-galloyl-β-D-glucopyranose, 3,4,6-tri-O-galloyl-D-glucopyranose, and 1,6-di-O-galloyl-β-D-glucopyranose displayed the potent α-glucosidase inhibitory activities with the IC50 values of 15.48-177.13 μM. Examination of the structure-activity relationships (SAR) demonstrated that the galloyl and glucopyranosyl moieties played a key role in the inhibitory activity for both α-glucosidase and α-amylase inhibitory activity. Among all isolates, 1,2,3-tri-O-galloyl-β-D-glucopyranose showed the most potent and highly specific inhibitory activity against α-glucosidase with an IC50 value of 15.48 ± 0.60 μM. The kinetic analysis of 1,2,3-tri-O-galloyl-β-D-glucopyranose disclosed the mixed inhibition type on α-glucosidase, and the molecular docking visualized the stable binding with the catalytic pocket of α-glucosidase (pdb 3A4A). These findings indicated the excellent antidiabetic potential of the gallotannins from E. fischeriana, while 1,2,3-tri-O-galloyl-β-D-glucopyranose could be developed as a promising candidate for the treatment of T2DM with fewer side effects.
Collapse
Affiliation(s)
- Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ya-Nan Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lin-Bo Guo
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Peng-Hui Liu
- Department of Medicine and Trade, Henan Technician College of Medicine and Health, Kaifeng, Henan, 475000, China
| | - Hai-Yan Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
15
|
Antidiabetes, Antimicrobial and Antioxidant studies of mixed β-diketone and diimine Copper(II) complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Anti-diabetic potential of Urtica Dioica: current knowledge and future direction. J Diabetes Metab Disord 2022; 21:931-940. [PMID: 35673511 PMCID: PMC9167344 DOI: 10.1007/s40200-021-00942-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023]
Abstract
Aim This review summarizes studies on the anti-diabetic effect of Urtica Dioica (UD) in Type-2-diabetes. Materials and methods We studied worldwide traditional medicines, old texts, and published literature for anti-diabetic effect of UD. Electronic databases comprising PubMed, Web of Science, Science Direct, Scopus and Google Scholar were searched to collect articles published between 1990 and 2021 years. Results Our literature investigation suggests UD as a glucose lowering, blood lipid regulating, anti-inflammatory and anti-oxidation plant. Conclusions UD's anti-diabetic properties make it potential traditional therapeutics for lowering the clinical manifestations of T2DM through affecting hyperglycemia and therefore suggest it as a proper medication with no or limited side effects.
Collapse
|
17
|
OGAWA S, KUNO S, TOYOKUNI T. Design and synthesis of biologically active carbaglycosylamines: From glycosidase inhibitors to pharmacological chaperones. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:336-360. [PMID: 35908956 PMCID: PMC9363598 DOI: 10.2183/pjab.98.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
For over 50 years, our group has been involved in synthetic studies on biologically active cyclitols including carbasugars. Among a variety of compounds synthesized, this review focuses on carbaglycosylamine glycosidase inhibitors, highlighting the following: (1) the naturally occurring N-linked carbaoligosaccharide α-amylase inhibitor acarbose and related compounds; (2) the novel synthetic β-glycosidase inhibitors, 1'-epi-acarviosin and its 6-hydroxy analogue as well as β-valienaminylceramide and its 4'-epimer; (3) the discovery of the β-glycosidase inhibitors with chaperone activity, N-octyl-β-valienamine (NOV) and its 4-epimer (NOEV); and (4) the recent development of the potential pharmacological chaperone N-alkyl-conduramine F-4 derivatives.
Collapse
Affiliation(s)
- Seiichiro OGAWA
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| | | | - Tatsushi TOYOKUNI
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Nivetha N, Martiz RM, Patil SM, Ramu R, Sreenivasa S, Velmathi S. Benzodioxole grafted spirooxindole pyrrolidinyl derivatives: synthesis, characterization, molecular docking and anti-diabetic activity. RSC Adv 2022; 12:24192-24207. [PMID: 36128541 PMCID: PMC9404121 DOI: 10.1039/d2ra04452h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
A highly stereoselective, three-component method has been developed to synthesize pyrrolidine and pyrrolizidine containing spirooxindole derivatives. The interaction between the dipolarophile α,β-unsaturated carbonyl compounds and the dipole azomethine ylide formed in situ by the reaction of 1,2-dicarbonyl compounds and secondary amino acids is referred to as the 1,3-dipolar cycloaddition reaction. The reaction conditions were optimized to achieve excellent stereo- and regioselectivity. Shorter reaction time, simple work-up and excellent yields are the salient features of the present approach. Various spectroscopic methods and single crystal X-ray diffraction examinations of one example of compound 6i validated the stereochemistry of the expected products. The anti-diabetic activity of the newly synthesized spirooxindole derivatives was tested against the α-glucosidase and α-amylase enzymes. Compound 6i was found to exhibit potent inhibition activity against α-glucosidase and α-amylase enzymes which is further evidenced by molecular docking studies. A highly stereoselective, three-component method has been developed for the synthesis of pyrrolidine and pyrrolizidine containing spirooxindole derivatives that exhibits excellent anti-diabetic activity.![]()
Collapse
Affiliation(s)
- Narayanasamy Nivetha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, Tamil Nadu, India
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Swamy Sreenivasa
- Department of Chemistry, University College of Science, Tumkur University, Tumkur, 572 103, Karnataka, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, Tamil Nadu, India
| |
Collapse
|
19
|
Karade SS, Hill ML, Kiappes JL, Manne R, Aakula B, Zitzmann N, Warfield KL, Treston AM, Mariuzza RA. N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum α-Glucosidases I and II with Antiviral Activity. J Med Chem 2021; 64:18010-18024. [PMID: 34870992 DOI: 10.1021/acs.jmedchem.1c01377] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Most enveloped viruses rely on the host cell endoplasmic reticulum (ER) quality control (QC) machinery for proper folding of glycoproteins. The key ER α-glucosidases (α-Glu) I and II of the ERQC machinery are attractive targets for developing broad-spectrum antivirals. Iminosugars based on deoxynojirimycin have been extensively studied as ER α-glucosidase inhibitors; however, other glycomimetic compounds are less established. Accordingly, we synthesized a series of N-substituted derivatives of valiolamine, the iminosugar scaffold of type 2 diabetes drug voglibose. To understand the basis for up to 100,000-fold improved inhibitory potency, we determined high-resolution crystal structures of mouse ER α-GluII in complex with valiolamine and 10 derivatives. The structures revealed extensive interactions with all four α-GluII subsites. We further showed that N-substituted valiolamines were active against dengue virus and SARS-CoV-2 in vitro. This study introduces valiolamine-based inhibitors of the ERQC machinery as candidates for developing potential broad-spectrum therapeutics against the existing and emerging viruses.
Collapse
Affiliation(s)
- Sharanbasappa S Karade
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| | - Michelle L Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - J L Kiappes
- Department of Chemistry, University College, London WC1H 0AJ, U.K
| | - Rajkumar Manne
- Sai Life Sciences Ltd., Hyderabad, 500032 Telangana, India
| | | | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Kelly L Warfield
- Emergent BioSolutions, Gaithersburg, Maryland 20879, United States
| | | | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
BENKHERARA S, BORDJIBA O, HARRAT S, DJAHRA AB. Antidiabetic Potential and Chemical Constituents of Haloxylon scoparium Aerial Part, An Endemic Plant from Southeastern Algeria. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.990569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Antil N, Akhtar N, Newar R, Begum W, Kumar A, Chauhan M, Manna K. Chiral Iron(II)-Catalysts within Valinol-Grafted Metal–Organic Frameworks for Enantioselective Reduction of Ketones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
22
|
A Review on Antidiabetic Activity of Centaurea spp.: A New Approach for Developing Herbal Remedies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5587938. [PMID: 34285703 PMCID: PMC8275385 DOI: 10.1155/2021/5587938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023]
Abstract
Objective Diabetes mellitus (DM) is a long-life metabolic disorder, characterized by high blood glucose levels. The hyperglycemic condition generally leads to irreversible nerve injury and vascular damage. Among different types of diabetes, type 2 is more common and has spread all over the world. Although various therapeutic approaches have been developed to control type 2 DM, regulating blood glucose levels has still remained a controversial challenge for patients. Also, most prescription drugs cause different side effects, such as gastrointestinal disorders. Thus, developing novel and efficient antidiabetic agents possessing fewer adverse effects is in high demand. Method The literature was comprehensively surveyed via search engines such as Google Scholar, PubMed, and Scopus using appropriate keywords. Results Medicinal plants, both extracts and isolated active components, have played a significant role in controlling the blood glucose levels. Good-to-excellent results documented in the literature have made them a precious origin for developing and designing drugs and supplements against DM. Centaurea spp. have been traditionally used for controlling high blood glucose levels. Also, the antidiabetic properties of different species of Centaurea have been confirmed in recent studies through in vitro assays as well as in vivo experiments. Conclusion Potent results encouraged us to review their efficacy to open a new horizon for development of herbal antidiabetic agents.
Collapse
|
23
|
Mehrabi M, Esmaeili S, Ezati M, Abassi M, Rasouli H, Nazari D, Adibi H, Khodarahmi R. Antioxidant and glycohydrolase inhibitory behavior of curcumin-based compounds: Synthesis and evaluation of anti-diabetic properties in vitro. Bioorg Chem 2021; 110:104720. [PMID: 33662896 DOI: 10.1016/j.bioorg.2021.104720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 02/02/2023]
Abstract
Naturally occurring anti-diabetic compound curcumin can prevent diabetes complications due to antioxidant and anti-inflammatory properties as well as the attenuation of postprandial hyperglycemia. In this line, we have synthesized thirteen curcumin based derivatives (L1-L13) by multi-component reaction, characterized by IR, 1HNMR, 13C NMR, MS, elemental analysis and evaluated for possible antioxidant properties and α-glucosidase (α-Glu) and α-amylase (α-Amy) inhibitory potential. The curcumin-based pyrano[2,3-d]pyrimidine derivatives could inhibit α-Glu and α-Amy enzyme activity which showed desirable antioxidant activity. Furthermore, among the series, L5, L12, L9, L10, L8 and L11 were identified as more potent inhibitors of α-Glu enzyme than curcumin and the compounds of L12, L4, L9, L5, L10, L8, L13, and L11 were the stronger inhibitors of the α-Amy enzyme in vitro. Besides, among them, L12 had the lowest IC50 for the inhibition of both enzymes. Since strong inhibitors for pancreatic α-Amy result in the progression of severe gastrointestinal side effects, the inhibitors that show the lower α-Amy/α-Glu inhibitory ratio have attracted much attention in medicinal chemistry. Besides, considering antioxidant characteristics of synthesized compounds, the L7 derivative with the highest antioxidant activity and the lowest "α-Amy/α-Glu inhibitory" ratio could be an appropriate candidate for further study through the rational drug design to the exploration of a new class of powerful anti-diabetic drugs.
Collapse
Affiliation(s)
- Maryam Mehrabi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Sajjad Esmaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ezati
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Abassi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassan Rasouli
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Soil and Water Research Institute (SWRI), Karaj, Iran; National Institute of Genetic Engineering and Plant Biotechnology (NIGEB), Karaj, Iran
| | - Donya Nazari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
Esmaeili S, Ghobadi N, Nazari D, Pourhossein A, Rasouli H, Adibi H, Khodarahmi R. Curcumin-based Antioxidant and Glycohydrolase Inhibitor Compounds: Synthesis and In Vitro Appraisal of the Dual Activity Against Diabetes. Med Chem 2021; 17:677-698. [PMID: 32370719 DOI: 10.2174/1573406416666200506083718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin, as the substantial constituent of the turmeric plant (Curcuma longa), plays a significant role in the prevention of various diseases, including diabetes. It possesses ideal structure features as an enzyme inhibitor, including a flexible backbone, hydrophobic nature, and several available hydrogen bond (H-bond) donors and acceptors. OBJECTIVE The present study aimed at synthesizing several novel curcumin derivatives and further evaluation of these compounds for possible antioxidant and anti-diabetic properties along with inhibitory effect against two carbohydrate-hydrolyzing enzymes, α-amylase and α-glucosidase, as these enzymes are therapeutic targets for attenuation of postprandial hyperglycemia. METHODS Therefore, curcumin-based pyrido[2,3-d]pyrimidine derivatives were synthesized and identified using an instrumental technique like NMR spectroscopy and then screened for antioxidant and enzyme inhibitory potential. Total antioxidant activity, reducing power assay and 1,1-diphenyl-2- picrylhydrazyl (DPPH•) radical scavenging activity were done to appraise the antioxidant potential of these compounds in vitro. RESULTS Compounds L6-L9 showed higher antioxidant activity while L4, L9, L12 and especially L8 exhibited the best selectivity index (lowest α-amylase/α-glucosidase inhibition ratio). CONCLUSION These antioxidant inhibitors may be potential anti-diabetic drugs, not only to reduce glycemic index but also to limit the activity of the major reactive oxygen species (ROS) producing pathways.
Collapse
Affiliation(s)
- Sajjad Esmaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Ghobadi
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Donya Nazari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Pourhossein
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassan Rasouli
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr 2020; 8:6320-6337. [PMID: 33312519 PMCID: PMC7723208 DOI: 10.1002/fsn3.1987] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
The strategy of reducing carbohydrate digestibility by controlling the activity of two hydrolyzing enzymes (α-amylase and α-glucosidase) to control postprandial hyperglycemia is considered as a viable prophylactic treatment of type 2 diabetes mellitus (T2DM). Thus, the consumption of foods rich in hydrolyzing enzyme inhibitors is recommended for diet therapy of diabetes. Whole cereal products have gained increasing interests for plasma glucose-reducing effects. However, the mechanisms for whole cereal benefits in relation to T2DM are not yet fully understood, but most likely involve bioactive components. Cereal-derived phenolic compounds, peptides, nonstarch polysaccharides, and lipids have been shown to inhibit α-amylase and α-glucosidase activities. These hydrolyzing enzyme inhibitors seem to make whole cereals become nutritional strategies in managing postmeal glucose for T2DM. This review presents an updated overview on the effects provided by cereal-derived ingredients on carbohydrate digestibility. It suggests that there is some evidence for whole cereal intake to be beneficial in amelioration of T2DM through inhibiting α-glucosidase and α-amylase activities.
Collapse
Affiliation(s)
- Lingxiao Gong
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Danning Feng
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Tianxi Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Yuqing Ren
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Yingli Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Jing Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| |
Collapse
|
26
|
Wang L, Fang Z. Exploring substituent diversity of deoxynojirimycin–triazole hybrid iminosugars: Discovery of potent glucosidase inhibitors. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1837150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lin Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Zhijie Fang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P. R. China
| |
Collapse
|
27
|
Ta S, Ghosh M, Salam N, Das J, Islam M, Brandão P, Félix V, Sanmartin J, Das D. X‐ray structurally characterized Mo (VI), Fe (III) and Cu (II) complexes of amide‐imine conjugate: (bio)catalytic and histidine recognition studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sabyasachi Ta
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Milan Ghosh
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Noor Salam
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Jayanta Das
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| | - Manirul Islam
- Department of Chemistry University of Kalyani Kalyani Nadia 741235 India
| | - Paula Brandão
- CICECO – Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Vítor Félix
- CICECO – Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro 3810‐193 Portugal
| | - Jesus Sanmartin
- Departamento de Química Inorgánica Facultad de Química, Avda Das Ciencias s/n Santiago de Compostela 15782 Spain
| | - Debasis Das
- Department of Chemistry The University of Burdwan 713104, W Burdwan B India
| |
Collapse
|
28
|
Široký M, Gonda J, Martinková M, Jacková D, Vilková M, Bindzár V, Kuchár J, Šesták S. Synthesis and mannosidase inhibitory profile of a small library of aminocyclitols from shikimic acid-derived scaffolds. Carbohydr Res 2020; 493:108027. [DOI: 10.1016/j.carres.2020.108027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
|
29
|
Koh HSA, Lu J, Zhou W. Structural Dependence of Sulfated Polysaccharide for Diabetes Management: Fucoidan From Undaria pinnatifida Inhibiting α-Glucosidase More Strongly Than α-Amylase and Amyloglucosidase. Front Pharmacol 2020; 11:831. [PMID: 32581797 PMCID: PMC7289976 DOI: 10.3389/fphar.2020.00831] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/20/2020] [Indexed: 11/26/2022] Open
Abstract
Fucoidan refers to a group of sulfated polysaccharide that is commonly obtained from various species of brown seaweed. Fucoidan has gained increased popularity among researchers in the recent years due to its numerous biological activities, including its inhibitory effects against starch hydrolyzing enzymes such as α-amylase and α-glucosidase. This highlights the potential of fucoidan as an antidiabetic agent in the management and prevention of diabetes mellitus. In this study, the inhibitory effects of fucoidan isolated from the New Zealand Undaria pinnatifida seaweed species against three starch hydrolyzing enzymes—α-amylase, α-glucosidase, and amyloglucosidase—was investigated. It was demonstrated that while the fucoidan exhibited significant inhibitory effects against all the three starch hydrolases, it is an uncompetitive inhibitor of α-amylase and amyloglucosidase, and is a competitive inhibitor of α-glucosidase. Moreover, it exhibited significantly stronger inhibitory effects against α-glucosidase than α-amylase, thus having the desirable characteristics as an antidiabetic agent.
Collapse
Affiliation(s)
- Hui Si Audrey Koh
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun Lu
- Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand.,Faculty of Health and Environmental Sciences, School of Public Health and Interdisciplinary Studies, Auckland University of Technology, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand.,College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, China
| | - Weibiao Zhou
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
30
|
|
31
|
Ueda A, Pi J, Makura Y, Tanaka M, Uenishi J. Stereoselective synthesis of (+)-5-thiosucrose and (+)-5-thioisosucrose. RSC Adv 2020; 10:9730-9735. [PMID: 35497214 PMCID: PMC9050154 DOI: 10.1039/d0ra01033b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 01/16/2023] Open
Abstract
(+)-5-Thiosucrose 1, a novel isosteric sulfur analog of sucrose, was synthesized stereoselectively for the first time via indirect β-d-fructofuranosidation involving selective β-d-psicofuranosidation, followed by stereo-inversion of the secondary hydroxy group at the C-3 position on the furanose ring. Glycosidation of protected 5-thio-d-glucose with a d-psicofuranosyl donor provided β-d-psicofuranosyl 5-thio-α-d-glucopyranoside and that with d-fructofuranosyl donor gave α-d-fructofuranosyl 5-thio-α-d-glucopyranoside. Two anomeric stereocenters of the glycosyl donor and acceptor were controlled correctly to provide a single disaccharide among four possible anomeric isomers in the glycosylation. Conversion of the resulting disaccharides afforded (+)-5-thiosucrose 1 and (+)-5-thioisosucrose 2 in excellent yields, respectively. Inhibitory activities of 1 and 2 against α-glucosidase in vitro were also examined.
Collapse
Affiliation(s)
- Atsushi Ueda
- Kyoto Pharmaceutical University Misasagi, Yamashina Kyoto 607-8412 Japan
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Jinhong Pi
- Kyoto Pharmaceutical University Misasagi, Yamashina Kyoto 607-8412 Japan
| | - Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Jun'ichi Uenishi
- Kyoto Pharmaceutical University Misasagi, Yamashina Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
32
|
Yeon SJ, Kim JH, Cho WY, Kim SK, Seo HG, Lee CH. In Vitro Studies of Fermented Korean Chung-Yang Hot Pepper Phenolics as Inhibitors of Key Enzymes Relevant to Hypertension and Diabetes. Foods 2019; 8:foods8100498. [PMID: 31615144 PMCID: PMC6835475 DOI: 10.3390/foods8100498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
This study was investigated to evaluate the antioxidant activity, the angiotensin I-converting enzyme (ACE) inhibition effect, and the α-amylase and α-glucosidase inhibition activities of hot pepper water extracts both before and after their fermentation. The fermented pepper water extract (FP) showed significantly higher total phenol content, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical inhibition effect, metal chelating activity and ACE inhibition activity compared to the non-fermented raw pepper water extract (RP) (p < 0.05). Meanwhile, the FP showed lower α-amylase and higher α-glucosidase inhibitory activities, but the RP showed similar levels of α-amylase and α-glucosidase inhibitory activities. Taken together, these results suggested that fermented pepper extract using water should be expected to have potentially inhibitory effects against both hyperglycemia and hypertension.
Collapse
Affiliation(s)
- Su-Jung Yeon
- Department of Agricultural, Life and Environmental Science, Tottori University, Tottori 680-8550, Japan.
| | - Ji-Han Kim
- AgResearch (Grasslands Research Centre), Palmerston North 4442, New Zealand.
| | - Won-Young Cho
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| | - Soo-Ki Kim
- Department of animal science and technology, Konkuk University, Seoul 05029, Korea.
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| | - Chi-Ho Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
33
|
Lorillière M, Dumoulin R, L’enfant M, Rambourdin A, Thery V, Nauton L, Fessner WD, Charmantray F, Hecquet L. Evolved Thermostable Transketolase for Stereoselective Two-Carbon Elongation of Non-Phosphorylated Aldoses to Naturally Rare Ketoses. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marion Lorillière
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Romain Dumoulin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Agnès Rambourdin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
34
|
Chain-Branched Polyhydroxylated Octahydro- 1H-Indoles as Potential Leads against Lysosomal Storage Diseases. Pharmaceuticals (Basel) 2019; 12:ph12020047. [PMID: 30934879 PMCID: PMC6631223 DOI: 10.3390/ph12020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Here, the synthesis and glycosidase inhibition properties of the two first known 3-ethyloctahydro-1H-indole-4,5,6-triols are reported. This study shows the transformation of d-glucose into polyhydroxylated 1-(2-nitrocyclohexane) acetaldehydes, followed by a protocol involving the formation of the azacyclopentane ring. Results of inhibitory potency assays and docking calculations show that at least one of them could be a lead for optimization in the search for compounds that behave like folding chaperones in lysosomal storage diseases.
Collapse
|
35
|
Kumari N, Choudhary SB, Sharma HK, Singh BK, Kumar AA. Health-promoting properties of Corchorus leaves: A review. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Abstract
Pseudo-oligosaccharides are microbial-derived secondary metabolites whose chemical structures contain pseudosugars (glycomimetics). Due to their high resemblance to the molecules of life (carbohydrates), most pseudo-oligosaccharides show significant biological activities. Some of them have been used as drugs to treat human and plant diseases. Because of their significant economic value, efforts have been put into understanding their biosynthesis, optimizing their fermentation conditions, and engineering their metabolic pathways to obtain better production yields. A number of unusual enzymes participating in diverse biosynthetic pathways to pseudo-oligosaccharides have been reported. Various methods and conditions to improve the production yields of the target compounds and eliminate byproducts have also been developed. This review article describes recent studies on the biosynthesis, fermentation optimization, and metabolic engineering of high-value pseudo-oligosaccharides.
Collapse
|
37
|
Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int J Biol Macromol 2018; 119:741-746. [PMID: 30076927 DOI: 10.1016/j.ijbiomac.2018.08.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/20/2022]
Abstract
The glutathione S-transferase (GST) was purified from fresh blood erythrocytes using affinity column chromatography. Also, α-amylase from porcine pancreas and α-glycosidase from Saccharomyces cerevisiae were used as target enzymes. In this study, these compounds were tested on α-amylase, α-glycosidase, and GST enzymes and demonstrated effective inhibitor compounds with Ki values in the range of 8.34-40.78 μM against GST, and 120.53-892.36 nM against α-glycosidase. Additionally, the phenolic molecules were tested for the inhibition of α-amylase enzyme which determined effective inhibition profile with IC50 values in the range of 175.01-626.58 nM. Indeed, these molecules can be elective inhibitors of GST, α-glycosidase and α-amylase enzymes as antidiabetic and antiparasitic agents.
Collapse
|
38
|
Kumar RS, Almansour AI, Arumugam N, Mohammad F, Alshahrani WS, D K, Altaf M, Azam M, Menéndez JC. Highly functionalized pyrrolidine analogues: stereoselective synthesis and caspase-dependent apoptotic activity. RSC Adv 2018; 8:41226-41236. [PMID: 35559303 PMCID: PMC9091711 DOI: 10.1039/c8ra07985d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
Spiropyrrolidines were synthesized employing a new class of azomethine ylide for the first time and were tested for their anticancer activity, where the cell death mechanism revealed that it is occurring through the caspase-3 dependent pathway.
Collapse
Affiliation(s)
- Raju Suresh Kumar
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | - Natarajan Arumugam
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Faruq Mohammad
- Surfactant Research Chair
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
| | | | - Kotresha D
- Department of Microbiology
- East West Group of Institution
- Bangaluru-560091
- India
| | - Mohammad Altaf
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Mohammad Azam
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense
- 28040 Madrid
| |
Collapse
|
39
|
Knudsen IMB, Hedberg C, Ladefoged LK, Ide D, Brinkø A, Eikeland EZ, Kato A, Jensen HH. Divergent synthesis of new α-glucosidase inhibitors obtained through a vinyl Grignard-mediated carbocyclisation. Org Biomol Chem 2018; 16:6250-6261. [DOI: 10.1039/c8ob01433g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Four new α-glucosidase inhibitors have been synthesised through 5–8 synthetic steps from a common synthetic intermediate obtained through a recently developed carbocyclisation.
Collapse
Affiliation(s)
| | | | - Lucy Kate Ladefoged
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
- Interdisciplinary Nanoscience Center (iNANO)
| | - Daisuke Ide
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Anne Brinkø
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Espen Z. Eikeland
- Center for Materials Crystallography
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | | |
Collapse
|
40
|
Axen SD, Huang XP, Cáceres EL, Gendelev L, Roth BL, Keiser MJ. A Simple Representation of Three-Dimensional Molecular Structure. J Med Chem 2017; 60:7393-7409. [PMID: 28731335 DOI: 10.1021/acs.jmedchem.7b00696] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Statistical and machine learning approaches predict drug-to-target relationships from 2D small-molecule topology patterns. One might expect 3D information to improve these calculations. Here we apply the logic of the extended connectivity fingerprint (ECFP) to develop a rapid, alignment-invariant 3D representation of molecular conformers, the extended three-dimensional fingerprint (E3FP). By integrating E3FP with the similarity ensemble approach (SEA), we achieve higher precision-recall performance relative to SEA with ECFP on ChEMBL20 and equivalent receiver operating characteristic performance. We identify classes of molecules for which E3FP is a better predictor of similarity in bioactivity than is ECFP. Finally, we report novel drug-to-target binding predictions inaccessible by 2D fingerprints and confirm three of them experimentally with ligand efficiencies from 0.442-0.637 kcal/mol/heavy atom.
Collapse
Affiliation(s)
- Seth D Axen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Elena L Cáceres
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.,Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, and Institute for Computational Health Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| | - Leo Gendelev
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.,Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, and Institute for Computational Health Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Michael J Keiser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States.,Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, and Institute for Computational Health Sciences, University of California, San Francisco , 675 Nelson Rising Lane NS 416A, San Francisco, California 94143, United States
| |
Collapse
|
41
|
Jadhav NC, Pahelkar AR, Desai NV, Telvekar VN. Design, synthesis and molecular docking study of novel pyrrole-based α-amylase and α-glucosidase inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1965-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Ren D, Kuang G, Hu X, Li X. Synthesis of novel dispiro[indazole-5,3′-pyrrolidine-2′,3″-indole] derivatives via 1,3-dipolar cycloaddition of azomethine ylide. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14981229444848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 1,3-dipolar cycloaddition of azomethine ylide, generated in situ from isatin and sarcosine, to 5-arylmethylidene-1-phenyl-6,7-dihydro-1 H-indazol-4(5 H)-ones afforded novel 1′-methyl-4′-aryl-1-phenyl-6,7-dihydrodispiro[indazole-5,3′-pyrrolidine-2′,3″-indole]-2″,4(1 H,1″ H)-diones in moderate yields. The structures of all the products were characterised thoroughly by NMR, IR, HRMS, together with X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Demin Ren
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Guoqiang Kuang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Xiaolian Hu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Xiaofang Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| |
Collapse
|
43
|
Schalli M, Wolfsgruber A, Gonzalez Santana A, Tysoe C, Fischer R, Stütz AE, Thonhofer M, Withers SG. C-5a-substituted validamine type glycosidase inhibitors. Carbohydr Res 2017; 440-441:1-9. [PMID: 28135569 DOI: 10.1016/j.carres.2017.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/30/2022]
Abstract
A series of N-alkyl derivatives of the D-galactosidase inhibitor 1,4-di-epi-validamine featuring lipophilic substituents at position C-5a was prepared and screened for their glycosidase inhibitory properties. Products turned out selective for β-galactosidases as well as β-glucosidases.
Collapse
Affiliation(s)
- Michael Schalli
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andres Gonzalez Santana
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Christina Tysoe
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Roland Fischer
- Institute of Inorganic Chemistry Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria.
| | - Martin Thonhofer
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Stephen G Withers
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
44
|
Tak R, Kumar M, Menapara T, Choudhary MK, Kureshy RI, Khan NUH. Asymmetric Catalytic Syntheses of Pharmaceutically Importantβ-Amino-α-Hydroxyl Esters by Enantioselective Aminolysis of Methyl Phenylglycidate. ChemCatChem 2016. [DOI: 10.1002/cctc.201601208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajkumar Tak
- Inorganic Materials and Catalysis Division; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg Bhavnagar 364021 Gujarat India
- Academy of Scientific and Innovative Research; Central Salt and Marine Chemicals Research Institute (CSMCRI); Council of Scientific & Industrial Research (CSIR); G. B. Marg Bhavnagar 364021 Gujarat India
| | - Manish Kumar
- Inorganic Materials and Catalysis Division; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg Bhavnagar 364021 Gujarat India
| | - Tusharkumar Menapara
- Inorganic Materials and Catalysis Division; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg Bhavnagar 364021 Gujarat India
- Academy of Scientific and Innovative Research; Central Salt and Marine Chemicals Research Institute (CSMCRI); Council of Scientific & Industrial Research (CSIR); G. B. Marg Bhavnagar 364021 Gujarat India
| | - Manoj Kumar Choudhary
- Inorganic Materials and Catalysis Division; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg Bhavnagar 364021 Gujarat India
- Academy of Scientific and Innovative Research; Central Salt and Marine Chemicals Research Institute (CSMCRI); Council of Scientific & Industrial Research (CSIR); G. B. Marg Bhavnagar 364021 Gujarat India
| | - Rukhsana I. Kureshy
- Inorganic Materials and Catalysis Division; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg Bhavnagar 364021 Gujarat India
- Academy of Scientific and Innovative Research; Central Salt and Marine Chemicals Research Institute (CSMCRI); Council of Scientific & Industrial Research (CSIR); G. B. Marg Bhavnagar 364021 Gujarat India
| | - Noor-ul H. Khan
- Inorganic Materials and Catalysis Division; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg Bhavnagar 364021 Gujarat India
- Academy of Scientific and Innovative Research; Central Salt and Marine Chemicals Research Institute (CSMCRI); Council of Scientific & Industrial Research (CSIR); G. B. Marg Bhavnagar 364021 Gujarat India
| |
Collapse
|
45
|
Rai VK, Kosta RK. One-pot cis-selective route to sugar-fused thiazines via a masking–unmasking strategy in basic ionic liquid. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel sequential Knoevenagel condensation, thia-Michael, and amino/mercaptoacetylative ring transformation reaction cascade for cis-selective synthesis of sugar-fused 1,3-thiazine is reported. The expeditious one-pot multicomponent annulation was performed using masked amino acid viz. 2-phenyl-1,3-oxazol-5-one or masked mercaptoacid viz. 2-methyl-2-phenyl-1,3-oxathiolan-5-one, d-xylose/d-glucose, and N-aryldithiocarbamic acid in ionic liquid [bmim]OH. The acetophenone obtained as a by-product and [bmim]OH itself could be easily recycled for further use without loss of efficiency. The envisaged method is operationally simple, high yielding, and excellent diastereoselective in favor of the cis-isomer of fused thiazines.
Collapse
Affiliation(s)
- Vijai K. Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., 495 009, India
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., 495 009, India
| | - Rahul K. Kosta
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., 495 009, India
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., 495 009, India
| |
Collapse
|
46
|
Abstract
The first synthesis of carbasugars, compounds in which the ring oxygen of a monosaccharide had been replaced by a methylene moiety, was described in 1966 by Professor G. E. McCasland’s group. Seven years later, the first true natural carbasugar (5a-carba-R-D-galactopyranose) was isolated from a fermentation broth of Streptomyces sp. MA-4145. In the following decades, the chemistry and biology of carbasugars have been extensively studied. Most of these compounds show interesting biological properties, especially enzymatic inhibitory activities, and, in consequence, an important number of analogues have also been prepared in the search for improved biological activities. The aim of this review is to give coverage on the progress made in two important aspects of these compounds: the elucidation of their biosynthesis and the consideration of their biological properties, including the extensively studied carbapyranoses as well as the much less studied carbafuranoses.
Collapse
|
47
|
An efficient method for the stereoselective synthesis of N-substituted trihydroxypiperidine derivatives promoted by p-TsOH. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Inhibitory effect of aqueous extract of different parts of Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Metal complexes of anthranilic acid derivatives: A new class of non-competitive α-glucosidase inhibitors. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Ernawita, Wahyuono RA, Hesse J, Hipler UC, Elsner P, Böhm V. Carotenoids of indigenous citrus species from Aceh and its in vitro antioxidant, antidiabetic and antibacterial activities. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2686-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|