1
|
Pippa LF, Vozmediano V, Mitrov‐Winkelmolen L, Touw D, Soliman A, Cristofoletti R, Salgado Junior W, de Moraes NV. Impact of obesity and roux-en-Y gastric bypass on the pharmacokinetics of (R)- and (S)-omeprazole and intragastric pH. CPT Pharmacometrics Syst Pharmacol 2024; 13:1528-1541. [PMID: 38923321 PMCID: PMC11533107 DOI: 10.1002/psp4.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This study employed physiologically-based pharmacokinetic-pharmacodynamics (PBPK/PD) modeling to predict the effect of obesity and gastric bypass surgery on the pharmacokinetics and intragastric pH following omeprazole treatment. The simulated plasma concentrations closely matched the observed data from non-obese, morbidly obese, and post-gastric bypass populations. Obesity significantly reduces CYP3A4 and CYP2C19 activities, as reflected by the metabolic ratio [omeprazole sulphone]/[omeprazole] and [5-hydroxy-omeprazole]/[omeprazole]. The morbidly obese model accounted for the down-regulation of CYP2C19 and CYP3A4 to recapitulate the observed data. Sensitivity analysis showed that intestinal CYP3A4, gastric pH, small intestine bypass, and the delay in bile release do not have a major influence on omeprazole exposure. Hepatic CYP3A4 had a significant impact on the AUC of (S)-omeprazole, while hepatic CYP2C19 affected both (R)- and (S)-omeprazole AUC. After gastric bypass surgery, the activity of CYP3A4 and CYP2C19 is restored. The PBPK model was linked to a mechanism-based PD model to assess the effect of omeprazole on intragastric pH. Following 40 mg omeprazole, the mean intragastric pH was 4.3, 4.6, and 6.6 in non-obese, obese, and post-gastric bypass populations, and the daily time with pH >4 was 14.7, 16.4, and 24 h. Our PBPK/PD approach provides a comprehensive understating of the impact of obesity and weight loss on CYP3A4 and CYP2C19 activity and omeprazole pharmacokinetics. Given that simulated intragastric pH is relatively high in post-RYGB patients, irrespective of the dose of omeprazole, additional clinical outcomes are imperative to assess the effect of proton pump inhibitor in preventing marginal ulcers in this population.
Collapse
Affiliation(s)
- Leandro F. Pippa
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | - Valvanera Vozmediano
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | - Daan Touw
- Department of Clinical Pharmacy and PharmacologyUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| | - Amira Soliman
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
- Department of Pharmacy Practice, Faculty of PharmacyHelwan UniversityHelwanEgypt
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | - Natalia Valadares de Moraes
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| |
Collapse
|
2
|
Sanfilippo C, Cernuto F, Patti A. Expanding the Use of Peroxygenase from Oat Flour in Organic Synthesis: Enantioselective Oxidation of Sulfides. Int J Mol Sci 2023; 24:ijms24087464. [PMID: 37108626 PMCID: PMC10138840 DOI: 10.3390/ijms24087464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Biocatalyzed oxidations are an important target in sustainable synthesis since chemical oxidations often require harsh conditions and metal-based catalysts. A raw peroxygenase-containing enzymatic preparation from oat flour was tested as a biocatalyst for the enantioselective oxidation of sulfides to sulfoxides and the variations of some reaction parameters were evaluated. Under optimal conditions, thioanisole was fully converted into the corresponding (R)-sulfoxide with high optical purity (80% ee) and the same stereopreference was maintained in the oxidation of some other sulfides. Changes in the substituent on the sulfur atom affected the selectivity of the enzyme and the best results were obtained with phenyl methoxymethyl sulfide, which gave the corresponding sulfoxide in 92% ee as exclusive product. The over-oxidation of sulfides to sulfones was instead detected in all the other cases and preferential oxidation of the (S)-enantiomer of the sulfoxide intermediate was observed, albeit with low selectivity. Carrying out the oxidation of thioanisole up to the 29% formation of sulfone led to enhancement of the sulfoxide optical purity (89% ee). The activity in sulfoxidation reactions, in addition to that reported in the epoxidation of different substrates, makes this plant peroxygenase a promising and useful tool in organic synthesis.
Collapse
Affiliation(s)
- Claudia Sanfilippo
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Federica Cernuto
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Angela Patti
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
3
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
4
|
Synergism of 2-mercaptobenzimidazole and oleic imidazoline on corrosion inhibition of carbon steel in CO2 -saturated brine solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Moffatt K, Rossi M, Park E, Svendsen JC, Wilson JM. Inhibition of gastric acid secretion with omeprazole affects fish specific dynamic action and growth rate: Implications for the development of phenotypic stomach loss. Front Physiol 2022; 13:966447. [PMID: 36237533 PMCID: PMC9552000 DOI: 10.3389/fphys.2022.966447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
An acid-secreting stomach provides many selective advantages to fish and other vertebrates; however, phenotypic stomach loss has occurred independently multiple times and is linked to loss of expression of both the gastric proton pump and the protease pepsin. Reasons underpinning stomach loss remain uncertain. Understanding the importance of gastric acid-secretion to the metabolic costs of digestion and growth will provide information about the metabolic expense of acid-production and performance. In this study, omeprazole, a well characterized gastric proton pump inhibitor, was used to simulate the agastric phenotype by significantly inhibiting gastric acidification in Nile tilapia. The effects on post-prandial metabolic rate and growth were assessed using intermittent flow respirometry and growth trials, respectively. Omeprazole reduced the duration (34.4%) and magnitude (34.5%) of the specific dynamic action and specific growth rate (21.3%) suggesting a decrease in digestion and assimilation of the meal. Gastric pH was measured in control and omeprazole treated fish to confirm that gastric acid secretion was inhibited for up to 12 h post-treatment (p < 0.05). Gastric evacuation measurements confirm a more rapid emptying of the stomach in omeprazole treated fish. These findings reinforce the importance of stomach acidification in digestion and growth and present a novel way of determining costs of gastric digestion.
Collapse
Affiliation(s)
| | - Mark Rossi
- Wilfrid Laurier University, Waterloo, Canada
| | - Edward Park
- Wilfrid Laurier University, Waterloo, Canada
| | - Jon Christian Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Lyngby, Denmark
| | - Jonathan M. Wilson
- Wilfrid Laurier University, Waterloo, Canada
- CIIMAR University of Porto, Matosinhos, Portugal
- *Correspondence: Jonathan M. Wilson,
| |
Collapse
|
6
|
Abomasal Ulcers: Do ranitidine or omeprazole prevent phenylbutazone-induced lesions in sheep? Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Prasoona G, Kishore B, Brahmeshwari G. A Simple and Efficient Four-Component One-Pot Synthesis of Novel
2-Aryl-3-benzimidazolyl-3,4-dihydroimidazo[4,5-b]indoles Catalyzed by Ceric Ammonium Nitrate in Aqueous
Ethanol. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Watanabe T. Synthesis and Structure−Activity Relationship Study of Intervenolin, an Antitumor and Anti-Helicobacter pylori Quinolone Natural Product. HETEROCYCLES 2021. [DOI: 10.3987/rev-21-957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Menger MM, Bremer P, Scheuer C, Rollmann MF, Braun BJ, Herath SC, Orth M, Später T, Pohlemann T, Menger MD, Histing T. Pantoprazole impairs fracture healing in aged mice. Sci Rep 2020; 10:22376. [PMID: 33361800 PMCID: PMC7758334 DOI: 10.1038/s41598-020-79605-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Proton pump inhibitors (PPIs) belong to the most common medication in geriatric medicine. They are known to reduce osteoclast activity and to delay fracture healing in young adult mice. Because differentiation and proliferation in fracture healing as well as pharmacologic actions of drugs markedly differ in the elderly compared to the young, we herein studied the effect of the PPI pantoprazole on bone healing in aged mice using a murine fracture model. Bone healing was analyzed by biomechanical, histomorphometric, radiological and protein biochemical analyses. The biomechanical analysis revealed a significantly reduced bending stiffness in pantoprazole-treated animals when compared to controls. This was associated with a decreased amount of bone tissue within the callus, a reduced trabecular thickness and a higher amount of fibrous tissue. Furthermore, the number of osteoclasts in pantoprazole-treated animals was significantly increased at 2 weeks and decreased at 5 weeks after fracture, indicating an acceleration of bone turnover. Western blot analysis showed a lower expression of the bone morphogenetic protein-4 (BMP-4), whereas the expression of the pro-angiogenic parameters was higher when compared to controls. Thus, pantoprazole impairs fracture healing in aged mice by affecting angiogenic and osteogenic growth factor expression, osteoclast activity and bone formation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany. .,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| | - Philipp Bremer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Tina Histing
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| |
Collapse
|
10
|
Abstract
Imines, versatile intermediates for organic synthesis, can be exploited for the
preparation of diverse classes of biologically active benzazoles. Because of the special
characteristics of the C=N bond, imines can be simultaneously used in the synthesis of
1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of
novel cascade reactions for benzazole synthesis have been reported in the last decade.
Therefore, there is a strong need to elucidate the recent progress in the formation of various
classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles,
and benzisoxazoles, via imines obtained by condensation reactions or oxidative/
redox coupling reactions In this review, we provide a comprehensive survey of this
area. In particular, various green and mild synthetic methodologies are summarized, and
the multiple roles of novel catalysts and significant mechanisms for several transformations are highlighted in
detail. We believe that this review will aid researchers studying the synthesis of complex molecules containing
the benzazole motif via imines.
Collapse
Affiliation(s)
- Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingbo Zang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
11
|
Dragasevic N, Jakovljevic V, Zivkovic V, Draginic N, Andjic M, Bolevich S, Jovic S. The role of aldosterone inhibitors in cardiac ischemia-reperfusion injury. Can J Physiol Pharmacol 2020; 99:18-29. [PMID: 32799671 DOI: 10.1139/cjpp-2020-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myocardial ischaemia-reperfusion (I/R) injury is a well-known term for exacerbation of cellular destruction and dysfunction after the restoration of blood flow to a previously ischaemic heart. A vast number of studies that have demonstrated that the role of mineralocorticoids in cardiovascular diseases is based on the use of pharmacological mineralocorticoid receptor (MR) antagonists. This review paper aimed to summarize current knowledge on the effects of MR antagonists on myocardial I/R injury as well as postinfarction remodeling. Animal models, predominantly the Langendorff technique and left anterior descending coronary artery occlusion, have confirmed the potency of MR antagonists as preconditioning and postconditioning agents in limiting infarct size and postinfarction remodeling. Several preclinical studies in rodents have established and proved possible mechanisms of cardioprotection by MR antagonists, such as reduction of oxidative stress, reduction of inflammation, and apoptosis, therefore limiting the infarct zone. However, the results of some clinical trials are inconsistent, since they reported no benefit of MR antagonists in acute myocardial infarction. Due to this, further studies and the results of ongoing clinical trials regarding MR antagonist administration in patients with acute myocardial infarction are being awaited with great interest.
Collapse
Affiliation(s)
- Nevena Dragasevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia.,1st Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Vladimir Zivkovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Nevena Draginic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Marijana Andjic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Sergey Bolevich
- 1 Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Slavoljub Jovic
- University of Belgrade, Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, Bul. Oslobodjenja 18, Belgrade, Serbia
| |
Collapse
|
12
|
Dastmard S, Mamaghani M, Rassa M. Ultrasound‐assisted efficient synthesis of polyfunctional 1,2,4‐triazoles as novel antibacterial and antioxidant agents. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sahar Dastmard
- Department of Chemistry, Faculty of SciencesUniversity of Guilan Rasht Iran
| | | | - Mehdi Rassa
- Department of Biology, Faculty of SciencesUniversity of Guilan Rasht Iran
| |
Collapse
|
13
|
Abd-Elmonem M, A. Mekheimer R, M. Hayallah A, A. Abo Elsoud F, U. Sadek K. Recent Advances in the Utility of Glycerol as a Benign and Biodegradable Medium in Heterocyclic Synthesis. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191025150646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
:
Glycerol is a non-toxic, recyclable and biodegradable organic waste produced
as a byproduct in the production of biodiesel fuel. Currently, glycerol is considered
a green solvent and catalyst for a large variety of applications. This work discusses
the significance of glycerol for heterocyclic synthesis. All the reported studies
consider glycerol as an efficient and sustainable benign medium.
Collapse
Affiliation(s)
- Mohamed Abd-Elmonem
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ramadan A. Mekheimer
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Alaa M. Hayallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Fatma A. Abo Elsoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Kamal U. Sadek
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
14
|
Patel G, Patel AR, Banerjee S. Visible light-emitting diode light-driven one-pot four component synthesis of poly-functionalized imidazoles under catalyst- and solvent-free conditions. NEW J CHEM 2020. [DOI: 10.1039/d0nj02527e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible light-emitting diode light-driven green and sustainable protocol has been demonstrated for the one-pot four component synthesis of poly-functionalized imidazoles under catalyst- and solvent-free conditions.
Collapse
Affiliation(s)
- Geetika Patel
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Ashok Raj Patel
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Subhash Banerjee
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| |
Collapse
|
15
|
Wei LQ, Ye BH. Cyclometalated Ir-Zr Metal-Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41448-41457. [PMID: 31604013 DOI: 10.1021/acsami.9b15646] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aerobic photo-oxidation of sulfide into sulfoxide in water is of great interest in green chemistry. In this study, three highly stable Ir(III)-Zr(IV) metal-organic frameworks (Ir-Zr MOFs), namely Zr6-Irbpy (bpy is 2,2'-bipyridine), Zr6-IrbpyOMe (bpyOMe is 4,4'-dimethoxy-2,2'-bipyridine), and Zr6-Irphen (phen is 1,10-phenanthroline), are constructed by using [Ir(pqc)2(L)2]Cl complexes (where pqc is 2-phenylquinoline-4-carboxylic acid and L is an ancillary ligand bpy, bpyOMe, or phen) as linkers and Zr6 cluster as nodes. The constructed Ir-Zr MOFs present high catalytic activity on aerobic photo-oxidation of sulfide into sulfoxide under visible light irradiation in water at room temperature. Moreover, the reaction is high chemoselectivity and functional group tolerance. The catalyst can be readily recycled and reused at least 10 times without loss of catalytic activity. Mechanism studies demonstrate that superoxide radical is the reactive oxygen species in the sulfoxidation, which is generated by electron transfer from the excited triplet photosensitizer 3[Ir-Zr-MOF]* to O2. The high activity of photocatalytic sulfoxidation in water may be attributed to the stabilization of the persulfoxide intermediate by hydrogen bond formation with water solvent, which accelerates the conversion of persulfoxide into sulfoxide and prevents further oxidation of sulfoxide into sulfone. This work provides a new strategy for the green synthesis of sulfoxides under ambient conditions.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
- College of Chemistry and Bioengineering , Hechi University , Yizhou , 546300 , China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
16
|
Sobrino-Cossío S, Teramoto-Matsubara O, Mateos-Pérez G, Abdo-Francis JM, Tawil J, Olguín-Ramírez C, Orozco-Gamiz A, Galvis-García ES. In search of the grail: A race for acid suppression. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2019; 84:344-356. [PMID: 31239096 DOI: 10.1016/j.rgmx.2019.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Proton pump inhibitors are the reference standards for the treatment of acid-related diseases. Acid suppression in gastroesophageal reflux disease is associated with a high rate of mucosal cicatrization, but symptom response differs among endoscopic phenotypes. Extraesophageal manifestations have a good clinical response in patients that present with abnormal acid exposure (diagnostic test) in the esophagus. Proton pump inhibitors have shown their effectiveness for reducing symptom intensity in nighttime reflux and sleep disorders, improving quality of life and work productivity. That can sometimes be achieved through dose modifications by splitting or increasing the dose, or through galenic formulation. Proton pump inhibitors are not exempt from controversial aspects related to associated adverse events. Technological development is directed at improving proton pump inhibitor performance through increasing the half-life, maximum concentration, and area under the curve of the plasma concentrations through galenic formulation, as well as creating safer and more tolerable drugs. The present review is focused on the mechanisms of action, pharmacokinetic properties, and technological advances for increasing the pharmacologic performance of a proton pump inhibitor.
Collapse
Affiliation(s)
- S Sobrino-Cossío
- Hospital Ángeles del Pedregal, Ciudad de México, México; Gástrica, Centro Avanzado en Endoscopia y Estudios Funcionales, Ciudad de México, México.
| | - O Teramoto-Matsubara
- Gástrica, Centro Avanzado en Endoscopia y Estudios Funcionales, Ciudad de México, México; Centro Médico ABC, Ciudad de México, México
| | - G Mateos-Pérez
- Hospital Ángeles del Pedregal, Ciudad de México, México; Hospital Ángeles Acoxpa, Ciudad de México, México
| | - J M Abdo-Francis
- Gástrica, Centro Avanzado en Endoscopia y Estudios Funcionales, Ciudad de México, México; Hospital Ángeles Acoxpa, Ciudad de México, México
| | - J Tawil
- Departamento de Trastornos Funcionales Digestivos, Gedyt-Gastroenterología Diagnóstica y Terapéutica, Buenos Aires, Argentina
| | - C Olguín-Ramírez
- Gástrica, Centro Avanzado en Endoscopia y Estudios Funcionales, Ciudad de México, México
| | - A Orozco-Gamiz
- Gastrolab Laboratorio de Fisiología Gastrointestinal, Guadalajara, Jalisco, México
| | - E S Galvis-García
- Gástrica, Centro Avanzado en Endoscopia y Estudios Funcionales, Ciudad de México, México; Hospital General de México «Dr. Eduardo Liceaga», Ciudad de México, México
| |
Collapse
|
17
|
Sobrino-Cossío S, Teramoto-Matsubara O, Mateos-Pérez G, Abdo-Francis J, Tawil J, Olguín-Ramírez C, Orozco-Gamiz A, Galvis-García E. In search of the grail: A race for acid suppression. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2019. [DOI: 10.1016/j.rgmxen.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
19
|
Manjuraj T, Krishnamurthy G, Bodke YD, Naik HB, Anil Kumar H. Synthesis, XRD, thermal, spectroscopic studies and biological evaluation of Co(II), Ni(II) Cu(II) metal complexes derived from 2-benzimidazole. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Corti A, Milani M, Lecis D, Seneci P, Rosa M, Mastrangelo E, Cossu F. Structure‐based design and molecular profiling of Smac‐mimetics selective for cellular
IAP
s. FEBS J 2018; 285:3286-3298. [DOI: 10.1111/febs.14616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Alessandro Corti
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori Milano Italy
| | - Mario Milani
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| | - Daniele Lecis
- Fondazione IRCCS Istituto Nazionale dei Tumori Milano Italy
| | - Pierfausto Seneci
- Dipartimento di Chimica Organica e Industriale Università di Milano Italy
| | - Matteo Rosa
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| | - Eloise Mastrangelo
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| | - Federica Cossu
- CNR‐IBF Consiglio Nazionale delle Ricerche – Istituto di Biofisica Milan Italy
- Dipartimento di Bioscienze Università di Milano Italy
| |
Collapse
|
21
|
Rohand T, Sopbué Fondjo E. Synthesis of Novel Structurally Diverse N
-Mono- and N
,N
′-Disubstituted Benzimidazol-2-one Derivatives by the Alkylations of 1,3-Dihydro-2H
-benzimidazol-2-one with Some Alkyl Halides under Transfer Catalysis Conditions. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Taoufik Rohand
- Laboratory of Analytical and Molecular Chemistry, Faculty Polydisciplinaire of Safi; University Cadi ayyad Marrakech; Route Sidi Bouzid BP 4162 Safi 46000 Morocco
| | - Emmanuel Sopbué Fondjo
- Laboratory of Applied Synthetic Organic Chemistry, Faculty of Sciences; University of Dschang; P.O. Box 067 Dschang Cameroon
| |
Collapse
|
22
|
Roberts J, McNaughtan ML, MacLachlan J, Hunter C, Pahl O. Identification of the acid-induced degradation products of omeprazole and 5-hydroxyomeprazole by high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:929-941. [PMID: 29569771 DOI: 10.1002/rcm.8120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Omeprazole is used to treat gastric disorders and is one of the most commonly consumed drugs in the western world. It forms several metabolites but is mostly excreted unchanged and as 5-hydroxyomeprazole. Since omeprazole is widely prescribed, its excretion from the body has a potential environmental effect. After excretion it will enter the wastewater system and if not adequately removed during wastewater treatment will be discharged into rivers in the wastewater effluent. It is important to consider not only the parent drug, but also the main metabolite (5-hydroxyomeprazole) and their degradation products to fully understand the fate of this drug during wastewater treatment. In order to do this potential degradation products need to be determined. METHODS Acid was used to artificially accelerate the degradation of omeprazole and 5-hydroxyomeprazole. A Q-Exactive Orbitrap mass spectrometer with an electrospray ionisation source was used to determine precursor and product ion data for the degradation products. RESULTS Both starting materials quickly degrade under acidic conditions and the main degradation product formed in each case was a re-arranged monomer. Other species identified were doubly and singly charged dimers with varying numbers of sulphur atoms in the dimer bridge. Careful inspection of the accurate mass, isotope pattern, isotope abundance and product ion spectra was used to interpret the data. CONCLUSIONS The resultant degradants from omeprazole and 5-hydroxyomeprazole were analogous to each other, differing only by an oxygen atom. This investigation determined the degradation products of omeprazole and 5-hydroxyomeprazole and proposed structures based on the accurate mass and isotope information. The product ions from the degradation products are also reported.
Collapse
Affiliation(s)
- Joanne Roberts
- School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Moyra L McNaughtan
- School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - John MacLachlan
- School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Colin Hunter
- School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Ole Pahl
- School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| |
Collapse
|
23
|
Donnelly DP, Dowgiallo MG, Salisbury JP, Aluri KC, Iyengar S, Chaudhari M, Mathew M, Miele I, Auclair JR, Lopez SA, Manetsch R, Agar JN. Cyclic Thiosulfinates and Cyclic Disulfides Selectively Cross-Link Thiols While Avoiding Modification of Lone Thiols. J Am Chem Soc 2018; 140:7377-7380. [PMID: 29851341 DOI: 10.1021/jacs.8b01136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work addresses the need for chemical tools that can selectively form cross-links. Contemporary thiol-selective cross-linkers, for example, modify all accessible thiols, but only form cross-links between a subset. The resulting terminal "dead-end" modifications of lone thiols are toxic, confound cross-linking-based studies of macromolecular structure, and are an undesired, and currently unavoidable, byproduct in polymer synthesis. Using the thiol pair of Cu/Zn-superoxide dismutase (SOD1), we demonstrated that cyclic disulfides, including the drug/nutritional supplement lipoic acid, efficiently cross-linked thiol pairs but avoided dead-end modifications. Thiolate-directed nucleophilic attack upon the cyclic disulfide resulted in thiol-disulfide exchange and ring cleavage. The resulting disulfide-tethered terminal thiolate moiety either directed the reverse reaction, releasing the cyclic disulfide, or participated in oxidative disulfide (cross-link) formation. We hypothesized, and confirmed with density functional theory (DFT) calculations, that mono- S-oxo derivatives of cyclic disulfides formed a terminal sulfenic acid upon ring cleavage that obviated the previously rate-limiting step, thiol oxidation, and accelerated the new rate-determining step, ring cleavage. Our calculations suggest that the origin of accelerated ring cleavage is improved frontier molecular orbital overlap in the thiolate-disulfide interchange transition. Five- to seven-membered cyclic thiosulfinates were synthesized and efficiently cross-linked up to 104-fold faster than their cyclic disulfide precursors; functioned in the presence of biological concentrations of glutathione; and acted as cell-permeable, potent, tolerable, intracellular cross-linkers. This new class of thiol cross-linkers exhibited click-like attributes including, high yields driven by the enthalpies of disulfide and water formation, orthogonality with common functional groups, water-compatibility, and ring strain-dependence.
Collapse
Affiliation(s)
- Daniel P Donnelly
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Barnett Institute of Chemical and Biological Analysis , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Matthew G Dowgiallo
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Joseph P Salisbury
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Barnett Institute of Chemical and Biological Analysis , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Krishna C Aluri
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Barnett Institute of Chemical and Biological Analysis , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Suhasini Iyengar
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Meenal Chaudhari
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Barnett Institute of Chemical and Biological Analysis , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Merlit Mathew
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Isabella Miele
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Jared R Auclair
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Barnett Institute of Chemical and Biological Analysis , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Department of Pharmaceutical Sciences , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Barnett Institute of Chemical and Biological Analysis , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States.,Department of Pharmaceutical Sciences , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
24
|
Nikoofar K, Haghighi M, Lashanizadegan M, Ahmadvand Z. ZnO nanorods: Efficient and reusable catalysts for the synthesis of substituted imidazoles in water. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2014.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kobra Nikoofar
- Department of Chemistry, Faculty of Science, Alzahra UniversityVanak, PO Box 1993893973TehranIran
| | - Maryam Haghighi
- Department of Chemistry, Faculty of Science, Alzahra UniversityVanak, PO Box 1993893973TehranIran
| | - Maryam Lashanizadegan
- Department of Chemistry, Faculty of Science, Alzahra UniversityVanak, PO Box 1993893973TehranIran
| | - Zeinab Ahmadvand
- Department of Chemistry, Faculty of Science, Alzahra UniversityVanak, PO Box 1993893973TehranIran
| |
Collapse
|
25
|
Zhao Q, Zuo W, Zhang S, Zhang Y, Li C, Li SJ. Proton pump inhibitors have pH-dependent effects on the thermostability of the carboxyl-terminal domain of voltage-gated proton channel Hv1. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:237-247. [PMID: 28889176 DOI: 10.1007/s00249-017-1253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
The voltage-gated proton channel Hv1 is highly selective for H+ and is activated by membrane depolarization and pH gradient. An increased external and decreased internal pH opens the Hv1 channel. The intracellular C-terminal domain of Hv1 is responsible for channel dimerization, cooperative, and thermosensitive gating. Here, we found that proton pump inhibitors (PPIs) interact with the C-terminal domain of human Hv1. The interaction between PPIs and the C-terminal domain, which is pH-dependent, lowered the thermal and structural stability of the protein at pH 4, but enhanced the thermal and structural stability at pH 8. Furthermore, we investigated in vitro the interaction of PPIs with the C-terminal domain of Hv1 by fluorescence and micro-Raman spectra. Fluorescence quenching measurements revealed that the interaction between the C-terminal domain and PPIs is a mainly hydrophobic interaction. The micro-Raman spectra showed that PPIs did not form stable disulfide bonds with the unique thiol group within this domain (Cys249 residue). The preferential interaction of PPIs with the inactive form of Hv1 stabilizes the high pH inactive state of the C-terminal domain, indicating a mechanism by which PPIs might act explicitly on the stabilization of a closed state of the proton channel.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Weiyan Zuo
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shangrong Zhang
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Yongqiang Zhang
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Chuanyong Li
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shu Jie Li
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
26
|
Ohishi T, Masuda T, Abe H, Hayashi C, Adachi H, Ohba SI, Igarashi M, Watanabe T, Mimuro H, Amalia E, Inaoka DK, Mochizuki K, Kita K, Shibasaki M, Kawada M. Monotherapy with a novel intervenolin derivative, AS-1934, is an effective treatment for Helicobacter pylori infection. Helicobacter 2018; 23:e12470. [PMID: 29488678 DOI: 10.1111/hel.12470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection causes various gastrointestinal diseases including gastric cancer. Hence, eradication of this infection could prevent these diseases. The most popular first-line treatment protocol to eradicate H. pylori is termed "triple therapy" and consists of a proton pump inhibitor (PPI), clarithromycin, and amoxicillin or metronidazole. However, the antibiotics used to treat H. pylori infection are hindered by the antibiotics-resistant bacteria and by their antimicrobial activity against intestinal bacteria, leading to side effects. Therefore, an alternative treatment with fewer adverse side effects is urgently required to improve the overall eradication rate of H. pylori. OBJECTIVE The aim of this study was to assess the effectiveness and mechanism of action of an antitumor agent, intervenolin, and its derivatives as an agent for the treatment of H. pylori infection. RESULTS We demonstrate that intervenolin, and its derivatives showed selective anti-H. pylori activity, including antibiotic-resistant strains, without any effect on intestinal bacteria. We showed that dihydroorotate dehydrogenase, a key enzyme for de novo pyrimidine biosynthesis, is a target and treatment with intervenolin or its derivatives decreased the protein and mRNA levels of H. pylori urease, which protects H. pylori against acidic conditions in the stomach. Using a mouse model of H. pylori infection, oral monotherapy with the intervenolin derivative AS-1934 had a stronger anti-H. pylori effect than the triple therapy commonly used worldwide to eradicate H. pylori. CONCLUSION AS-1934 has potential advantages over current treatment options for H. pylori infection.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Tohru Masuda
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Hikaru Abe
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Synthetic Organic Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| | - Chigusa Hayashi
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Microbiology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Shun-Ichi Ohba
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Microbiology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| | - Takumi Watanabe
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Synthetic Organic Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Division of Infectious Disease, Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Eri Amalia
- Department of Biomedical Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki-shi, Nagasaki, Japan
| | - Kota Mochizuki
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki-shi, Nagasaki, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki-shi, Nagasaki, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Synthetic Organic Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan.,Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
27
|
Manjuraj T, Krishnamurthy G, Bodke YD, Bhojya Naik H. Metal complexes of quinolin-8-yl [(5-methoxy-1H-benzimidazol-2-yl)sulfanyl]acetate: Spectral, XRD, thermal, cytotoxic, molecular docking and biological evaluation. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Nikoofar K, Dizgarani SM. HNO 3 @nano SiO 2 : An efficient catalytic system for the synthesis of multi-substituted imidazoles under solvent-free conditions. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2015.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Synthesis, pH dependent, plasma and enzymatic stability of bergenin prodrugs for potential use against rheumatoid arthritis. Bioorg Med Chem 2017; 25:5513-5521. [DOI: 10.1016/j.bmc.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 01/11/2023]
|
30
|
Noor A, Qazi NG, Nadeem H, Khan AU, Paracha RZ, Ali F, Saeed A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem Cent J 2017; 11:85. [PMID: 29086868 PMCID: PMC5581743 DOI: 10.1186/s13065-017-0314-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/20/2017] [Indexed: 11/28/2022] Open
Abstract
A series of six novel benzimidazole-pyrazole hybrid molecules was synthesized and characterized using elemental analysis (CHN) and spectroscopic methods (1HNMR, FT-IR). All the synthesized compounds were evaluated for their in vivo anti ulcerogenic activity using Albino rats (weighing 180-220 g). The interactions between the compounds and active site residues of H+/K+ ATPase were investigated by molecular docking studies using autodock vina 4.0. SCH28080 was used to validate the docking results. Also the drug likeliness of these compounds was predicted using Molinspiration server in light of Lipinski's rule of five. All the six synthesized compounds exhibited higher anti-ulcer activity as compared to omeprazole. These novel hybrid compounds showed comparable anti-ulcer potential of 72-83% at dose level of 500 µg/kg, whereas omeprazole showed 83% anti-ulcer activity at dose level of 30 mg/kg. The results clearly indicate that these novel benzimidazole-pyrazole hybrids can present a new class of potential anti ulcer agents and can serve as new anti-ulcer drugs after further investigation. Graphical abstract An overveiw of synthesis, in silico and in vivo antiulcer screening of benzimidazole pyrazole hybrids.
Collapse
Affiliation(s)
- Abida Noor
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Adil Saeed
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
31
|
T M, Krishnamurthy G, Bodke YD, Shafeeulla M. Synthesis, Cytotoxicity and Molecular Docking Study of Complexes Containing Thiazole Moiety. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.309261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Paresi CJ, Liu Q, Li YM. Benzimidazole covalent probes and the gastric H(+)/K(+)-ATPase as a model system for protein labeling in a copper-free setting. MOLECULAR BIOSYSTEMS 2017; 12:1772-80. [PMID: 26952080 DOI: 10.1039/c6mb00024j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Affinity probes are useful tools for determining molecular targets and elucidating mechanism of action for novel, bioactive compounds. In the case of covalent inhibitors, activity based probes are particularly valuable for ensuring acceptable selectivity margins. However, there is a variety of bioorthogonal chemistry reactions available for modifying compounds of interest with clickable tags. Here, we describe a direct comparison of tetrazine ligation and strain promoted azide-alkyne cycloaddition using benzimidazole based probes to bind their known target, the gastric proton pump, ATP4A. This study validates the use of chemical probes for target identification and illustrates the superior efficiency of tetrazine ligation for copper-free click systems. In addition, we have identified several novel binding partners of benzimidazole probes: Isoform 2 of deleted in malignant brain tumors 1 protein (DMBT1) and three uncharacterized proteins.
Collapse
Affiliation(s)
- Chelsea J Paresi
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. and Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Qi Liu
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. and Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| |
Collapse
|
33
|
Abstract
In the history of therapeutics, covalent drugs occupy a very distinct category. While representing a significant fraction of the drugs on the market, very few have been deliberately designed to interact covalently with their biological target. In this review, the prevalence of covalent drugs will first be briefly covered, followed by an introduction to their mechanisms of action and more detailed discussions of their discovery and the development of safe and efficient covalent enzyme inhibitors. All stages of a drug discovery program will be covered, from target considerations to lead optimization, strategies to tune reactivity and computational methods. The goal of this article is to provide an overview of the field and to outline good practices that are needed for the proper assessment and development of covalent inhibitors as well as a good understanding of the potential and limitations of current computational methods for the design of covalent drugs.
Collapse
Affiliation(s)
- Stephane De Cesco
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada
| | - Jerry Kurian
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada
| | - Caroline Dufresne
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec H3A 0B8, Canada.
| |
Collapse
|
34
|
Synthesis of benzimidazoles from o -phenylenediamines and DMF derivatives in the presence of PhSiH 3. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Kitay AM, Geibel JP. Stomach and Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:97-131. [DOI: 10.1007/978-3-319-66653-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Synthesis, cytotoxic and antimicrobial activities of novel cobalt and zinc complexes of benzimidazole derivatives. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Glycerol as a green solvent for efficient, one-pot and catalyst free synthesis of 2,4,5-triaryl and 1,2,4,5-tetraaryl imidazole derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2013.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Nemati F, Elhampour A, Natanzi MB. Synthesis and characterization of nano-copper ferrite as a magnetically separable catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles under solvent-free condition. INORG NANO-MET CHEM 2016. [DOI: 10.1080/15533174.2016.1212223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Ali Elhampour
- Department of Chemistry, Semnan University, Semnan, Iran
| | | |
Collapse
|
39
|
Inatomi N, Matsukawa J, Sakurai Y, Otake K. Potassium-competitive acid blockers: Advanced therapeutic option for acid-related diseases. Pharmacol Ther 2016; 168:12-22. [PMID: 27514776 DOI: 10.1016/j.pharmthera.2016.08.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023]
Abstract
Acid-related diseases (ARDs), such as peptic ulcers and gastroesophageal reflux disease, represent a major health-care concern. Some major milestones in our understanding of gastric acid secretion and ARD treatment reached during the last 50years include 1) discovery of histamine H2-receptors and development of H2-receptor antagonists, 2) identification of H+,K+-ATPase as the parietal cell proton pump and development of proton pump inhibitors (PPIs), and 3) identification of Helicobacter pylori (H. pylori) as the major cause of peptic ulcers and development of effective eradication regimens. Although PPI treatments have been effective and successful, there are limitations to their efficacy and usage, i.e. short half-life, insufficient acid suppression, slow onset of action, and large variation in efficacy among patients due to CYP2C19 metabolism. Potassium-competitive acid blockers (P-CABs) inhibit H+,K+-ATPase in a reversible and K+-competitive manner, and exhibit almost complete inhibition of gastric acid secretion from the first dose. Many pharmaceutical companies have tried to develop P-CABs, but most of their clinical development has been discontinued due to safety concerns or a similar efficacy to PPIs. Revaprazan was developed in Korea and was the first P-CAB approved for sale. Vonoprazan, approved in 2014 in Japan, has a completely different chemical structure and higher pKa value compared to other P-CABs, and exhibits rapid onset of action and prolonged control of intragastric acidity. Vonoprazan is an effective treatment for ARDs that is especially effective in healing reflux esophagitis and for H. pylori eradication. P-CABs, such as vonoprazan, promise to further improve the management of ARDs.
Collapse
Affiliation(s)
- Nobuhiro Inatomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Jun Matsukawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yuuichi Sakurai
- Japan Development Center, Takeda Pharmaceutical Company Limited, Chuo-ku, Osaka 540-8645, Japan
| | - Kazuyoshi Otake
- Global Medical Affairs Japan Department, Takeda Pharmaceutical Company Limited, Chuo-ku, Tokyo 103-8668, Japan
| |
Collapse
|
40
|
Scaringi L, Cornacchione P, Ayroldi E, Corazzi L, Capodicasa E, Rossi R, Marconi P. Omeprazole Induces Apoptosis in Jurkat Cells. Int J Immunopathol Pharmacol 2016; 17:331-42. [PMID: 15461867 DOI: 10.1177/039463200401700313] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report for the first time a potent apoptotic effect of omeprazole (OM). Apoptosis was induced in Jurkat cells in a time and concentration-dependent mode. Caspase 3 and PARP were rapidly cleaved in response to OM, but apoptosis was only partially inhibited by the caspase 3 inhibitor DEVD-CHO. OM also induced an early lysosomal destabilization which increased progressively and was correlated with a parallel increase in apoptotic cells. The cysteine protease inhibitor E64d gave strong protection against apoptosis thus proving the involvement of lysosomal enzymes in OM-induced apoptosis whereas, it did not impede the caspase 3 cleavage. Instead ZVAD-fmk, a general caspase inhibitor, also able to inhibit cathepsin activity, protected cells completely from OM-induced apoptosis. It therefore seems that both caspases and cysteine cathepsins are involved in the execution stage of OM-induced apoptosis.
Collapse
Affiliation(s)
- L Scaringi
- Department of Clinical and Experimental Medicine, General Pathology and Immunology Section, General Hospital, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hati S, Kumar Dutta P, Dutta S, Munshi P, Sen S. Accessing Benzimidazoles via a Ring Distortion Strategy: An Oxone Mediated Tandem Reaction of 2-Aminobenzylamines. Org Lett 2016; 18:3090-3. [PMID: 27331245 DOI: 10.1021/acs.orglett.6b01217] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An exceptional oxone mediated tandem transformation of 2-aminobenzylamines to 2-substituted benzimidazoles is reported. It occurs at room temperature with aromatic, heteroaromatic, and aliphatic aldehydes. In this reaction initial condensation of 2-aminobenzylamine with appropriate aldehydes afforded a tetrahydroquinazoline intermediate which underwent oxone-mediated ring distortion to afford the desired compounds in moderate to excellent yields.
Collapse
Affiliation(s)
- Santanu Hati
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University , Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India
| | - Pratip Kumar Dutta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University , Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India
| | - Sanjay Dutta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University , Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India
| | - Parthapratim Munshi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University , Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University , Chithera, Dadri, Gautam Buddha Nagar, UP 201314, India
| |
Collapse
|
42
|
Abstract
Proton pump inhibitors (PPIs) are among the most widely used drugs worldwide. They are used to treat a number of gastroesophageal disorders and are usually prescribed as a long-term medication or even taken without a prescription. There are a number of clinical studies that associate PPI use with an increased cardiovascular risk. In this article, we review the clinical evidence for adverse cardiovascular effects of PPIs, and we discuss possible biological mechanisms by which PPIs can impair cardiovascular health.
Collapse
|
43
|
|
44
|
Crystallization of Esomeprazole Magnesium Water/Butanol Solvate. Molecules 2016; 21:544. [PMID: 27120591 PMCID: PMC6273358 DOI: 10.3390/molecules21040544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/08/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022] Open
Abstract
The molecular structure of esomeprazole magnesium derivative in the solid-state is reported for the first time, along with a simplified crystallization pathway. The structure was determined using the single crystal X-ray diffraction technique to reveal the bonding relationships between esomeprazole heteroatoms and magnesium. The esomeprazole crystallization process was carried out in 1-butanol and water was utilized as anti-solvent. The product proved to be esomeprazole magnesium tetrahydrate with two 1-butanol molecules that crystallized in P63 space group, in a hexagonal unit cell. Complete characterization of a sample after drying was conducted by the use of powder X-ray diffraction (PXRD), 1H-nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (IR), and dynamic vapor sorption (DVS). Investigation by 1H-NMR and TGA has shown that the solvent content in the dried sample consists of two water molecules and 0.3 butanol molecules per esomeprazole magnesium molecule. This is different from the single crystal X-ray diffraction results and can be attributed to the loss of some water and 1-butanol molecules stabilized by intermolecular interactions. The title compound, after drying, is a true solvate in terms of water; conversely, 1-butanol fills the voids of the crystal lattice in non-stoichiometric amounts.
Collapse
|
45
|
Target identification of covalently binding drugs by activity-based protein profiling (ABPP). Bioorg Med Chem 2016; 24:3291-303. [PMID: 27085673 DOI: 10.1016/j.bmc.2016.03.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 12/12/2022]
Abstract
The characterization of the target proteins of drug molecules has become an important goal in understanding its mode of action and origin of side effects due to off-target binding. This is especially important for covalently binding drugs usually containing electrophilic moieties, which potentially can react with nucleophilic residues found in many proteins. This review gives a comprehensive overview of the use of activity-based protein profiling (ABPP) as an efficient tool for the target identification of covalently binding drugs.
Collapse
|
46
|
Jeremic N, Petkovic A, Srejovic I, Zivkovic V, Djuric D, Jakovljevic V. Effects of ischemia and omeprazole preconditioning on functional recovery of isolated rat heart. Braz J Cardiovasc Surg 2016; 30:266-75. [PMID: 26107460 PMCID: PMC4462974 DOI: 10.5935/1678-9741.20150020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/09/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The aim of this study was to compare protective effects of ischemic and potential protective effects of pharmacological preconditioning with omeprazole on isolated rat heart subjected to ischemia/reperfusion. METHODS The hearts of male Wistar albino rats were excised and perfused on a Langendorff apparatus. In control group (CG) after stabilization period, hearts were subjected to global ischemia (perfusion was totally stopped) for 20 minutes and 30 minutes of reperfusion. Hearts of group II (IPC) were submitted to ischemic preconditioning lasting 5 minutes before 20 minutes of ischemia and 30 minutes of reperfusion. In third group (OPC) hearts first underwent preconditioning lasting 5 minutes with 100 μM omeprazole, and then submitted 20 minutes of ischemia and 30 minutes of reperfusion. RESULTS Administration of omeprazole before ischemia induction had protective effect on myocardium function recovery especially regarding to values of systolic left ventricular pressure and dp/dt max. Also our findings are that values of coronary flow did not change between OPC and IPC groups in last point of reperfusion. CONCLUSION Based on our results it seems that ischemic preconditioning could be used as first window of protection after ischemic injury especially because all investigated parameters showed continuous trend of recovery of myocardial function. On the other hand, preconditioning with omeprazole induced sudden trend of recovery with positive myocardium protection, although less effective than results obtained with ischemic preconditioning not withstand, we must consider that omeprazole may be used in many clinical circumstances where direct coronary clamping for ischemic preconditioning is not possible.
Collapse
Affiliation(s)
- Nevena Jeremic
- Department of Pharmaceutical chemistry, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Anica Petkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| |
Collapse
|
47
|
Polepally AR, Dutta S, Hu B, Podsadecki TJ, Awni WM, Menon RM. Drug-Drug Interaction of Omeprazole With the HCV Direct-Acting Antiviral Agents Paritaprevir/Ritonavir and Ombitasvir With and Without Dasabuvir. Clin Pharmacol Drug Dev 2016; 5:269-77. [PMID: 27310328 DOI: 10.1002/cpdd.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
Abstract
Paritaprevir (administered with low-dose ritonavir), ombitasvir, and dasabuvir are direct-acting antiviral agents administered as combination regimens for the treatment of chronic hepatitis C virus infection. Drug-drug interactions between 2D (ombitasvir/paritaprevir/ritonavir) or 3D (ombitasvir/paritaprevir/ritonavir and dasabuvir) regimens and omeprazole, a CYP2C19 substrate and acid-reducing agent, were evaluated in 24 healthy volunteers. Subjects received omeprazole (40 mg once daily) on day 1 and days 20-24 and the 2D or 3D regimen (ombitasvir/paritaprevir/ritonavir 25/150/100 mg once daily ± dasabuvir 250 mg twice daily) on days 6-24. Compared with omeprazole alone, coadministration with the 2D or 3D regimen decreased omeprazole geometric mean Cmax and AUCt values by 40% to 50%. Ombitasvir, dasabuvir, and ritonavir mean exposures showed <10% change, and paritaprevir mean exposures showed <20% change when the 2D or 3D regimen was administered with omeprazole compared with administration without omeprazole. Although no a priori dose adjustment is needed, a higher omeprazole dose should be considered if clinically indicated when coadministered with the 2D or 3D regimen. No dose adjustment is required for the 2D or 3D regimen when administered with omeprazole, other acid-reducing agents, or CYP2C19 inhibitors.
Collapse
|
48
|
Mamedov VA. Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es. RSC Adv 2016. [DOI: 10.1039/c6ra03907c] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The review describes all the quinoxaline-benzimidazole rearrangements as a whole and the new quinoxalinone-benzimidazol(on)e rearrangements in particular when exposed to nucleophilic rearrangements which can be used for the synthesis of various biheterocyclic motifs.
Collapse
Affiliation(s)
- Vakhid A. Mamedov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center of the Russian Academy of Sciences
- Kazan
- Russian Federation
| |
Collapse
|
49
|
|
50
|
Abstract
The development of pharmaceutical agents such as sucralfate, histamine 2 (H2) receptor blockers and proton pump inhibitors (PPIs) reducing gastric acidity has been a mile stone for treatment of dyspeptic disorders. However, due to current prescription habits resulting in overuse of these potent drugs as well as over-the-counter (OTC) availability associated with self-medication, substantial health concern is related to the mechanisms of drug action as well as known side effects influencing gastrointestinal physiology. More than a decade ago the first study appeared reporting an association between anti-ulcer drug intake and food allergy development. Ever since this first report several experimental as well as human studies verified this correlation, demonstrating that acid suppressive drugs not only influence the sensitization capacity of orally ingested proteins, but also represent a risk factor for food allergy patients. Additionally, gastric acid suppression was reported to increase the risk for development of drug hypersensitivity reactions. These consequences of anti-ulcer drug intake might on the one hand be associated with direct influence of these drugs on immune responses. On the other hand reduction of gastric acidity leads to impaired gastrointestinal protein degradation. Nevertheless, also disruption of the gastrointestinal barrier function, changes in microbiome or lack of tolerogenic peptic digests might contribute to the connection between anti-ulcer drug intake and allergic reaction. Therefore, these drugs should only be prescribed based on a precise gastroenterological diagnosis taking into consideration allergological mechanisms to ensure patients' safety.
Collapse
|