1
|
Khandazhinskaya AL, Alexandrova LA, Matyugina ES, Solyev PN, Efremenkova OV, Buckheit KW, Wilkinson M, Buckheit RW, Chernousova LN, Smirnova TG, Andreevskaya SN, Leonova OG, Popenko VI, Kochetkov SN, Seley-Radtke KL. Novel 5'-Norcarbocyclic Pyrimidine Derivatives as Antibacterial Agents. Molecules 2018; 23:E3069. [PMID: 30477147 PMCID: PMC6321083 DOI: 10.3390/molecules23123069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
Abstract
A series of novel 5'-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 μg/mL (mc²155) and a MIC99 of 6.7⁻67 μg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28⁻61 μg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50⁻60 μg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20⁻50 μg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20⁻50 μg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.
Collapse
Affiliation(s)
- Anastasia L Khandazhinskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Liudmila A Alexandrova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Elena S Matyugina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., Moscow 119021, Russia.
| | - Karen W Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Maggie Wilkinson
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Robert W Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Larisa N Chernousova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Tatiana G Smirnova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Sofya N Andreevskaya
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
2
|
Dual-targeted anti-TB/anti-HIV heterodimers. Antiviral Res 2017; 145:175-183. [PMID: 28743447 DOI: 10.1016/j.antiviral.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
Abstract
HIV and M. tuberculosis are two intersecting epidemics making the search for new dual action drugs against both pathogens extremely important. Here, we report on the synthesis and suppressive activities of five dual-targeted HIV/TB compounds. These compounds are heterodimers of AZT, as anti-HIV molecules, and 5-substituted uracil derivatives, as anti-TB molecules. We found that these compounds inhibit the growth of M. tuberculosis and suppress the replication of HIV in human cell cultures and human lymphoid tissues ex vivo. We identified one particular heterodimer that inhibited both HIV and the drug-resistant TB strain MS-115 most potently. This compound demonstrated low toxicity and had no cytostatic effect on cells in culture, constituting an ideal candidate for future development and further in vivo testing.
Collapse
|
3
|
|
4
|
Krishna P, Srinivasulu D, Kotakadi VS. Synthesis, Characterization, and Antibacterial Activity of New Linezolid-Based Phosphoramidate Derivatives. PHOSPHORUS SULFUR 2014. [DOI: 10.1080/10426507.2014.902835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- P. Krishna
- Department of Chemistry, Sri Venkateswara University, Tirupati -517502, Andhra Pradesh, India
| | - D. Srinivasulu
- Department of Chemistry, Sri Venkateswara University, Tirupati -517502, Andhra Pradesh, India
| | - Venkata S Kotakadi
- DST-PURSE Centre, Sri Venkateswara University, Tirupati -517502, Andhra Pradesh, India
| |
Collapse
|
5
|
Downey AM, Cairo CW. Synthesis of α-brominated phosphonates and their application as phosphate bioisosteres. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00255e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of the synthesis and biological activity of α-bromo-phosphonate groups as phosphate bioisosteres.
Collapse
Affiliation(s)
- A. Michael Downey
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton, Canada
| |
Collapse
|
6
|
Ravendra Babu K, Koteswara Rao V, Nanda Kumar Y, Polireddy K, Venkata Subbaiah K, Bhaskar M, Lokanatha V, Naga Raju C. Identification of substituted [3, 2-a] pyrimidines as selective antiviral agents: Molecular modeling study. Antiviral Res 2012; 95:118-27. [DOI: 10.1016/j.antiviral.2012.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 05/20/2012] [Accepted: 05/22/2012] [Indexed: 01/04/2023]
|
7
|
Kim E, Liu LJ, Lee W, Hong JH. Design and synthesis of novel 1',3'-dioxolane 5'-deoxyphosphonic acid purine analogues as potent antiviral agents. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:85-96. [PMID: 22303989 DOI: 10.1080/15257770.2011.643849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Electronic parameters of 1',3 '-oxygen play significant roles in steering the conformation of nucleoside phosphonic acid analogues. To investigate the relationship of two oxygen atoms with antiviral enhancement, novel 1',3 '-dioxolane 5 '-deoxyphosphonic acid purine analogues were synthesized via de novo acyclic stereoselective route from acrolein and glycolic acid. The synthesized nucleoside phosphonic acid analogues 14 and 19 were subjected to antiviral screening against several viruses, such as HIV-1, HSV-1, HSV-2, and HCMV. The guanine analogue 19 exhibits in vitro anti-HIV-1 activity similar to that of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) in MT-4 cells.
Collapse
Affiliation(s)
- Eunae Kim
- College of Pharmacy, Chosun University, Dong-gu, Kwangju, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Development of O–H insertion for the attachment of phosphonates to nucleosides; synthesis of α-carboxy phosphononucleosides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Debarge S, Balzarini J, Maguire AR. Design and synthesis of α-carboxy phosphononucleosides. J Org Chem 2010; 76:105-26. [PMID: 21121618 DOI: 10.1021/jo101738e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodium catalyzed O-H insertion reactions employing α-diazophosphonate 20 with appropriately protected thymidine, uridine, cytosine, adenosine and guanosine derivatives leads to novel 5'-phosphononucleoside derivatives. Deprotection led to a novel series of phosphono derivatives bearing a carboxylic acid moiety adjacent to the phosphonate group with potential antiviral and/or anticancer activity. The phosphononucleosides bearing an α-carboxylic acid group are envisaged as potential diphosphate mimics. Conversion to mono- and diphosphorylated phosphononucleosides has been effected for evaluation as nucleoside triphosphate mimics. Most of the novel phosphononucleosides proved to be inactive against a variety of DNA and RNA viruses. Only the phosphono AZT derivatives 56-59 showed weak activity against HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Sebastien Debarge
- Department of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Ireland
| | | | | |
Collapse
|
10
|
Use of substituted N,N'-acylbisazoles for the synthesis of ribonucleoside-5'-polyphosphates. Pharm Chem J 2010. [DOI: 10.1007/s11094-010-0457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Synthesis, spectral characterization and biological evaluation of phosphorylated derivatives of galanthamine. Eur J Med Chem 2010; 45:203-9. [DOI: 10.1016/j.ejmech.2009.09.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 11/16/2022]
|
12
|
Boojamra CG, Parrish JP, Sperandio D, Gao Y, Petrakovsky OV, Lee SK, Markevitch DY, Vela JE, Laflamme G, Chen JM, Ray AS, Barron AC, Sparacino ML, Desai MC, Kim CU, Cihlar T, Mackman RL. Design, synthesis, and anti-HIV activity of 4′-modified carbocyclic nucleoside phosphonate reverse transcriptase inhibitors. Bioorg Med Chem 2009; 17:1739-46. [DOI: 10.1016/j.bmc.2008.12.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 11/27/2022]
|
13
|
Doláková P, Dračínský M, Fanfrlík J, Holý A. Synthesis of Analogues of Acyclic Nucleoside Diphosphates Containing a (Phosphonomethyl)phosphanyl Moiety and Studies of Their Phosphorylation. European J Org Chem 2009. [DOI: 10.1002/ejoc.200800911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Cihlar T, Ray AS, Boojamra CG, Zhang L, Hui H, Laflamme G, Vela JE, Grant D, Chen J, Myrick F, White KL, Gao Y, Lin KY, Douglas JL, Parkin NT, Carey A, Pakdaman R, Mackman RL. Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob Agents Chemother 2008; 52:655-65. [PMID: 18056282 PMCID: PMC2224772 DOI: 10.1128/aac.01215-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/09/2007] [Accepted: 11/19/2007] [Indexed: 12/21/2022] Open
Abstract
GS-9148 [(5-(6-amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl)phosphonic acid] is a novel ribose-modified human immunodeficiency virus type 1 (HIV-1) nucleotide reverse transcriptase (RT) inhibitor (NRTI) selected from a series of nucleoside phosphonate analogs for its favorable in vitro biological properties including (i) a low potential for mitochondrial toxicity, (ii) a minimal cytotoxicity in renal proximal tubule cells and other cell types, (iii) synergy in combination with other antiretrovirals, and (iv) a unique resistance profile against multiple NRTI-resistant HIV-1 strains. Notably, antiviral resistance analysis indicated that neither the K65R, L74V, or M184V RT mutation nor their combinations had any effect on the antiretroviral activity of GS-9148. Viruses carrying four or more thymidine analog mutations showed a substantially smaller change in GS-9148 activity relative to that observed with most marketed NRTIs. GS-9131, an ethylalaninyl phosphonoamidate prodrug designed to maximize the intracellular delivery of GS-9148, is a potent inhibitor of multiple subtypes of HIV-1 clinical isolates, with a mean 50% effective concentration of 37 nM. Inside cells, GS-9131 is readily hydrolyzed to GS-9148, which is further phosphorylated to its active diphosphate metabolite (A. S. Ray, J. E. Vela, C. G. Boojamra, L. Zhang, H. Hui, C. Callebaut, K. Stray, K.-Y. Lin, Y. Gao, R. L. Mackman, and T. Cihlar, Antimicrob. Agents Chemother. 52:648-654, 2008). GS-9148 diphosphate acts as a competitive inhibitor of RT with respect to dATP (K(i) = 0.8 muM) and exhibits low inhibitory potency against host polymerases including DNA polymerase gamma. Oral administration of GS-9131 to beagle dogs at a dose of 3 mg/kg of body weight resulted in high and persistent levels of GS-9148 diphosphate in peripheral blood mononuclear cells (with a maximum intracellular concentration of >9 microM and a half-life of >24 h). This favorable preclinical profile makes GS-9131 an attractive clinical development candidate for the treatment of patients infected with NRTI-resistant HIV.
Collapse
Affiliation(s)
- Tomas Cihlar
- Gilead Sciences, 333 Lakeside Dr., Foster City, CA 94404, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Skoblov AI, Semeniuk AN, Murabuldaev AM, Sosunov VV, Viktorova LS, Skoblov IS. [Isosteric triphosphonate analogues of dNTP: synthesis and substrate properties toward various DNA polymerases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 33:527-37. [PMID: 18050658 DOI: 10.1134/s1068162007050056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isosteric triphosphonate derivatives of 2',3'-dideoxy-2',3'-didehydroadenosine and 3'-deoxy-2',3'-didehydrothymidine and their beta,gamma-substituted analogues were synthesized. Their substrate properties toward a number of reverse transcriptases of the human immunodeficiency and bird myeloblastosis viruses, human DNA polymerases alpha and beta, and the Klenow fragment of Escherichia coli DNA polymerase I were studied.
Collapse
|
16
|
Mackman RL, Boojamra CG, Prasad V, Zhang L, Lin KY, Petrakovsky O, Babusis D, Chen J, Douglas J, Grant D, Hui HC, Kim CU, Markevitch DY, Vela J, Ray A, Cihlar T. Synthesis, anti-HIV activity, and resistance profiles of ribose modified nucleoside phosphonates. Bioorg Med Chem Lett 2007; 17:6785-9. [DOI: 10.1016/j.bmcl.2007.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/11/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
|
17
|
Skoblov AI, Ias'ko MV, Murabuldaev AM, Kukhanova MK, Skoblov IS. [Enzymatic synthesis of bis(5'-nucleosidyl) tetra- or triphosphates]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 31:623-6. [PMID: 16363135 DOI: 10.1007/s11171-005-0077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total fraction of aminoacyl-tRNA synthases from Escherichia coli has been shown to catalyze the synthesis of the bis(5'-nucleosidyl) oligophosphates Ap4AZT, Ap4d4T, Ap43TC, and Ap4ACV, as well as Ap3AZT and Ap3d4T, from [alpha-32P]ATP and the corresponding nucleoside-5'-tri(or di)phosphate. The resulting compounds, characterized by HPLC, are resistant to alkaline phosphatase. Ap4AZT, Ap4d4T, and Ap43TC are formed with approximately equal efficiency, whereas the efficiencies of the synthesis of Ap4ACV, Ap3AZT, and Ap3d4T are three- to fivefold lower. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 6; see also http://www.maik.ru.
Collapse
|
18
|
Marma MS, Khawli LA, Harutunian V, Kashemirov BA, McKenna CE. Synthesis of α-fluorinated phosphonoacetate derivatives using electrophilic fluorine reagents: Perchloryl fluoride versus 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor®). J Fluor Chem 2005. [DOI: 10.1016/j.jfluchem.2005.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Koh YH, Shim JH, Wu JZ, Zhong W, Hong Z, Girardet JL. Design, synthesis, and antiviral activity of adenosine 5'-phosphonate analogues as chain terminators against hepatitis C virus. J Med Chem 2005; 48:2867-75. [PMID: 15828825 DOI: 10.1021/jm049029u] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of adenosine 5'-phosphonate analogues were designed to mimic naturally occurring adenosine monophosphate. These compounds (1-5) were synthesized and evaluated in a cellular hepatitis C virus (HCV) replication assay. To improve cellular permeability and enhance the anti-HCV activity of these phosphonates, a bis(S-acyl-2-thioethyl) prodrug for compound 5 was prepared, and its cellular activity was determined. To elucidate the mechanism of action of these novel adenosine phosphonates, their diphosphate derivatives (1a-5a) were synthesized. Further nucleotide incorporation assays by HCV NS5B RNA-dependent RNA polymerase revealed that 2a and 3a can serve as chain terminators, whereas compounds 1a, 4a, and 5a are competitive inhibitors with ATP. Additional steady-state kinetic analysis determined the incorporation efficiency of 2a and 3a as well as the inhibition constants for 1a, 4a, and 5a. The structure-activity relationships among these compounds were analyzed, and the implication for nucleoside phosphonate drug design was discussed.
Collapse
Affiliation(s)
- Yung-hyo Koh
- Drug Discovery, R&D, Valeant Pharmaceuticals International, 3300 Hyland Avenue, Costa Mesa, California 92626, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wang G, Boyle N, Chen F, Rajappan V, Fagan P, Brooks JL, Hurd T, Leeds JM, Rajwanshi VK, Jin Y, Prhavc M, Bruice TW, Cook PD. Synthesis of AZT 5'-triphosphate mimics and their inhibitory effects on HIV-1 reverse transcriptase. J Med Chem 2005; 47:6902-13. [PMID: 15615539 DOI: 10.1021/jm040116w] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In search of active nucleoside 5'-triphosphate mimics, we have synthesized a series of AZT triphosphate mimics (AZT P3Ms) and evaluated their inhibitory effects on HIV-1 reverse transcriptase as well as their stability in fetal calf serum and in CEM cell extracts. Reaction of AZT with 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one, followed by treatment of the phosphite intermediate 2 with pyrophosphate analogues, yielded the cyclic triphosphate intermediates 4b-4f, which were subjected to boronation and subsequent hydrolysis to give AZT 5'-alpha-borano-beta,gamma-bridge-modified triphosphates 6b-6f in moderate to good yields. Reaction of the cyclic intermediate 4d with iodine, followed by treatment with a series of nucleophiles, afforded the AZT 5'-beta,gamma-difluoromethylene-gamma-substituted triphosphates (7b-7i). Several different types of AZT P3Ms containing alpha-P-thio (or dithio) and beta,gamma-difluoromethylene (13,14), alpha,beta-difluoromethylene and gamma-P-methyl(or phenyl) (15,16), and alpha-borano-beta,gamma-difluoromethylene and gamma-O-methyl/phenyl (11,12) were also synthesized. The effectiveness of the compounds as inhibitors of HIV-1 reverse transcriptase was determined using a fluorometric assay and a poly(A) homopolymer as a template. A number of AZT P3Ms exhibited very potent inhibition of HIV-1 reverse transcriptase. Modifications at the beta,gamma-bridge of triphosphate rendered the AZT P3Ms 6b-6f with varied activities (K(i) from 9.5 to >>500 nM) while modification at the alpha,beta-bridge of triphosphate led to weak AZT P3M inhibitors. The results imply that the AZT P3Ms were substrate inhibitors, as is AZT triphosphate. The most active compound, AZT 5'-alpha-R(p)()-borano-beta,gamma-(difluoromethylene)triphosphate (AZT 5'-alphaB-betagammaCF(2)TP) (6d-I), is as potent as AZT triphosphate with a K(i)() value of 9.5 nM and at least 20-fold more stable than AZT triphosphate in the serum and cell extracts. Therefore, for the first time, a highly active and stable nucleoside triphosphate mimic has been identified, which is potentially useful as a new type of antiviral drug. The promising triphosphate mimic, 5'-alpha-borano-beta,gamma-(difluoromethylene)triphosphate, is expected to be valuable to the discovery of nucleotide mimic antiviral drugs.
Collapse
Affiliation(s)
- Guangyi Wang
- Research Laboratories, Biota, Inc., 2232 Rutherford Road, Carlsbad, CA 92008, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|