1
|
Kumar P, Kumar V, Sharma S, Sharma R, Warghat AR. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: insights from network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03502-z. [PMID: 39382678 DOI: 10.1007/s00210-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids. This review synthesizes comprehensive literature from 1985 to 2024, revealing the potential of these compounds in addressing respiratory diseases, inflammation, and cancer. The integration of traditional Chinese medicine (TCM) with modern pharmacological techniques underscores the relevance of these compounds in next-generation drug discovery. While initial findings are promising, further empirical validation is necessary to fully harness the therapeutic potential of Fritillaria steroidal alkaloids.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vinay Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shagun Sharma
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ashish R Warghat
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
2
|
Hou Y, Bai Y, Lu C, Wang Q, Wang Z, Gao J, Xu H. Applying molecular docking to pesticides. PEST MANAGEMENT SCIENCE 2023; 79:4140-4152. [PMID: 37547967 DOI: 10.1002/ps.7700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/08/2023]
Abstract
Pesticide creation is related to the development of sustainable agricultural and ecological safety, and molecular docking technology can effectively help in pesticide innovation. This paper introduces the basic theory behind molecular docking, pesticide databases, and docking software. It also summarizes the application of molecular docking in the pesticide field, including the virtual screening of lead compounds, detection of pesticides and their metabolites in the environment, reverse screening of pesticide targets, and the study of resistance mechanisms. Finally, problems with the use of molecular docking technology in pesticide creation are discussed, and prospects for the future use of molecular docking technology in new pesticide development are discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Hou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuqian Bai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Chang Lu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qiuchan Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jinsheng Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
3
|
Roy S, Roy S, Mahata B, Pramanik J, Hennrich ML, Gavin AC, Teichmann SA. CLICK-chemoproteomics and molecular dynamics simulation reveals pregnenolone targets and their binding conformations in Th2 cells. Front Immunol 2023; 14:1229703. [PMID: 38022565 PMCID: PMC10644475 DOI: 10.3389/fimmu.2023.1229703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.
Collapse
Affiliation(s)
- Sougata Roy
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Bidesh Mahata
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jhuma Pramanik
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco L. Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
- Cellzome, a GlaxoSmithKline (GSK) company, Genomic Sciences, Pharma R&D, Heidelberg, Germany
| | - Anne-Claude Gavin
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah A. Teichmann
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
4
|
Shamsian S, Sokouti B, Dastmalchi S. Benchmarking different docking protocols for predicting the binding poses of ligands complexed with cyclooxygenase enzymes and screening chemical libraries. BIOIMPACTS : BI 2023; 14:29955. [PMID: 38505677 PMCID: PMC10945300 DOI: 10.34172/bi.2023.29955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 03/21/2024]
Abstract
Introduction Non-steroidal anti-inflammatory drugs (NSAIDs) constitute an important class of pharmaceuticals acting on cyclooxygenase COX-1 and COX-2 enzymes. Due to their numerous severe side effects, it is necessary to search for new selective, safe, and effective anti-inflammatory drugs. In silico design of novel therapeutics plays an important role in nowadays drug discovery pipelines. In most cases, the design strategies require the use of molecular docking calculations. The docking procedure may require case-specific condition for a successful result. Additionally, many different docking programs are available, which highlights the importance of identifying the most proper docking method and condition for a given problem. Methods In the current work, the performances of five popular molecular docking programs, namely, GOLD, AutoDock, FlexX, Molegro Virtual Docker (MVD) and Glide to predict the binding mode of co- crystallized inhibitors in the structures of known complexes available for cyclooxygenases were evaluated. Furthermore, the best performers, Glide, AutoDock, GOLD and FlexX, were further evaluated in docking-based virtual screening of libraries consisted of active ligands and decoy molecules for cyclooxygenase enzymes and the obtained docking scores were assessed by receiver operating characteristics (ROC) analysis. Results The results of docking experiments indicated that Glide program outperformed other docking programs by correctly predicting the binding poses (RMSD less than 2 Å) of all studied co-crystallized ligands of COX-1 and COX-2 enzymes (i.e., the performance was 100%). However, the performances of the other studied docking methods for correctly predicting the binding poses of the ligands were between 59% to 82%. Virtual screening results treated by ROC analysis revealed that all tested methods are useful tools for classification and enrichment of molecules targeting COX enzymes. The obtained AUCs range between 0.61-0.92 with enrichment factors of 8 - 40 folds. Conclusion The obtained results support the importance of choosing appropriate docking method for predicting ligand-receptor binding modes, and provide specific information about docking calculations on COXs ligands.
Collapse
Affiliation(s)
- Sara Shamsian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
| | - Siavoush Dastmalchi
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665813, Iran
- Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
5
|
Ghorayshian A, Danesh M, Mostashari-Rad T, fassihi A. Discovery of novel RARα agonists using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulation studies. PLoS One 2023; 18:e0289046. [PMID: 37616260 PMCID: PMC10449137 DOI: 10.1371/journal.pone.0289046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nuclear retinoic acid receptors (RARs) are ligand-dependent transcription factors involved in various biological processes, such as embryogenesis, cell proliferation, differentiation, reproduction, and apoptosis. These receptors are regulated by retinoids, i.e., retinoic acid (RA) and its analogs, as receptor agonists. RAR agonists are promising therapeutic agents for the treatment of serious dermatological disorders, including some malignant conditions. By inducing apoptosis, they are able to inhibit the proliferation of diverse cancer cell lines. Also, RAR agonists have recently been identified as therapeutic options for some neurodegenerative diseases. These features make retinoids very attractive molecules for medical purposes. Synthetic selective RAR agonists have several advantages over endogenous ones, but they suffer poor pharmacokinetic properties. These compounds are normally lipophilic acids with unfavorable drug-like features such as poor oral bioavailability. Recently, highly selective, potent, and less toxic RAR agonists with proper lipophilicity, thus, good oral bioavailability have been developed for some therapeutic applications. In the present study, ligand and structure-based virtual screening technique was exploited to introduce some novel RARα agonists. Pharmacokinetic assessment was also performed in silico to suggest those compounds which have optimized drug-like features. Finally, two compounds with the best in silico pharmacological features are proposed as lead molecules for future development of RARα agonists.
Collapse
Affiliation(s)
- Atefeh Ghorayshian
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahshid Danesh
- Functional Genomics & System Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany
| | - Tahereh Mostashari-Rad
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Afshin fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Biswas S, Barman D, Gogoi G, Hoque N, Devi A, Purkayastha SK, Guha AK, Nath JK, Bania KK. Heterogeneous iron catalyst for C(1)-H functionalization of 2-naphthols with primary aromatic alcohols. Org Biomol Chem 2023; 21:1657-1661. [PMID: 36727302 DOI: 10.1039/d3ob00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An iron oxide nanocatalyst supported on a potassium exchanged zeolite-Y (Fe2O3-KY) is an efficient and reusable catalyst that promotes the selective α-H functionalization of 2-naphthols with various aromatic primary alcohols. The reaction occurs at 110 °C in dichloroethane and requires 6 h for completion. The product yields were found to vary with respect to the nature of the substituents. Benzyl alcohols with electron-donating groups gave the highest yields of up to 90%.
Collapse
Affiliation(s)
- Subir Biswas
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | - Dipankar Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gautam Gogoi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | - Nazimul Hoque
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | - Arpita Devi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | | | | | - Jayanta K Nath
- Department of Chemistry, S.B. Deorah College, Ulubari, Guwahati, Assam, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| |
Collapse
|
7
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|
8
|
Rahman F, Nguyen TM, Adekoya OA, Campestre C, Tortorella P, Sylte I, Winberg JO. Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catechol-containing compounds. J Enzyme Inhib Med Chem 2021; 36:819-830. [PMID: 33757387 PMCID: PMC7993378 DOI: 10.1080/14756366.2021.1901088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Compounds containg catechol or bisphosphonate were tested as inhibitors of the zinc metalloproteases, thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) which are bacterial virulence factors, and the human matrix metalloproteases MMP-9 and -14. Inhibition of virulence is a putative strategy in the development of antibacterial drugs, but the inhibitors should not interfere with human enzymes. Docking indicated that the inhibitors bound MMP-9 and MMP-14 with the phenyl, biphenyl, chlorophenyl, nitrophenyl or methoxyphenyl ringsystem in the S1'-subpocket, while these ringsystems entered the S2'- or S1 -subpockets or a region involving amino acids in the S1'- and S2'-subpockets of the bacterial enzymes. An arginine conserved among the bacterial enzymes seemed to hinder entrance deeply into the S1'-subpocket. Only the bisphosphonate containing compound RC2 bound stronger to PLN and TLN than to MMP-9 and MMP-14. Docking indicated that the reason was that the conserved arginine (R203 in TLN and R198 in PLN) interacts with phosphate groups of RC2.
Collapse
Affiliation(s)
- Fatema Rahman
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Tra-Mi Nguyen
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Olayiwola A Adekoya
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Cristina Campestre
- Department of Pharmacy, University of "G. d'Annunzio" Chieti, Chieti, Italy
| | - Paolo Tortorella
- Department of Pharmacy, Science of Pharmacy, University "A. Moro" Bari, Bari, Italy
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Elghoneimy LK, Ismail MI, Boeckler FM, Azzazy HME, Ibrahim TM. Facilitating SARS CoV-2 RNA-Dependent RNA polymerase (RdRp) drug discovery by the aid of HCV NS5B palm subdomain binders: In silico approaches and benchmarking. Comput Biol Med 2021; 134:104468. [PMID: 34015671 PMCID: PMC8111889 DOI: 10.1016/j.compbiomed.2021.104468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023]
Abstract
Corona Virus 2019 Disease (COVID-19) is a rapidly emerging pandemic caused by a newly discovered beta coronavirus, called Sever Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2). SARS CoV-2 is an enveloped, single stranded RNA virus that depends on RNA-dependent RNA polymerase (RdRp) to replicate. Therefore, SARS CoV-2 RdRp is considered as a promising target to cease virus replication. SARS CoV-2 polymerase shows high structural similarity to Hepatitis C Virus-1b genotype (HCV-1b) polymerase. Arising from the high similarity between SARS CoV-2 RdRp and HCV NS5B, we utilized the reported small-molecule binders to the palm subdomain of HCV NS5B (genotype 1b) to generate a high-quality DEKOIS 2.0 benchmark set and conducted a benchmarking analysis against HCV NS5B. The three highly cited and publicly available docking tools AutoDock Vina, FRED and PLANTS were benchmarked. Based on the benchmarking results and analysis via pROC-Chemotype plot, PLANTS showed the best screening performance and can recognize potent binders at the early enrichment. Accordingly, we used PLANTS in a prospective virtual screening to repurpose both the FDA-approved drugs (DrugBank) and the HCV-NS5B palm subdomain binders (BindingDB) for SARS CoV-2 RdRp palm subdomain. Further assessment by molecular dynamics simulations for 50 ns recommended diosmin (from DrugBank) and compound 3 (from BindingDB) to be the best potential binders to SARS CoV-2 RdRp palm subdomain. The best predicted compounds are recommended to be biologically investigated against COVID-19. In conclusion, this work provides in-silico analysis to propose possible SARS CoV-2 RdRp palm subdomain binders recommended as a remedy for COVID-19. Up-to-our knowledge, this study is the first to propose binders at the palm subdomain of SARS CoV2 RdRp. Furthermore, this study delivers an example of how to make use of a high quality custom-made DEKOIS 2.0 benchmark set as a procedure to elevate the virtual screening success rate against a vital target of the rapidly emerging pandemic.
Collapse
Affiliation(s)
- Laila K Elghoneimy
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Muhammad I Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837, Cairo, Egypt
| | - Frank M Boeckler
- Department of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
10
|
Sulimov VB, Kutov DC, Taschilova AS, Ilin IS, Tyrtyshnikov EE, Sulimov AV. Docking Paradigm in Drug Design. Curr Top Med Chem 2021; 21:507-546. [PMID: 33292135 DOI: 10.2174/1568026620666201207095626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described. They include docking of non-covalent small ligands, protein-protein docking, supercomputer docking, quantum docking, the new generation of docking programs and the application of docking for covalent inhibitors discovery. Taking into account the threat of COVID-19, we present here a short review of docking applications to the discovery of inhibitors of SARS-CoV and SARS-CoV-2 target proteins, including our own result of the search for inhibitors of SARS-CoV-2 main protease using docking and quantum chemical post-processing. The conclusion is made that docking is extremely important in the fight against COVID-19 during the process of development of antivirus drugs having a direct action on SARS-CoV-2 target proteins.
Collapse
Affiliation(s)
- Vladimir B Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danil C Kutov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna S Taschilova
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan S Ilin
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene E Tyrtyshnikov
- Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
11
|
Ismail MI, Ragab HM, Bekhit AA, Ibrahim TM. Targeting multiple conformations of SARS-CoV2 Papain-Like Protease for drug repositioning: An in-silico study. Comput Biol Med 2021; 131:104295. [PMID: 33662683 PMCID: PMC7902231 DOI: 10.1016/j.compbiomed.2021.104295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Papain-Like Protease (PLpro) is a key protein for SARS-CoV-2 viral replication which is the cause of the emerging COVID-19 pandemic. Targeting PLpro can suppress viral replication and provide treatment options for COVID-19. Due to the dynamic nature of its binding site loop, PLpro multiple conformations were generated through a long-range 1 micro-second molecular dynamics (MD) simulation. Clustering the MD trajectory enabled us to extract representative structures for the conformational space generated. Adding to the MD representative structures, X-ray structures were involved in an ensemble docking approach to screen the FDA approved drugs for a drug repositioning endeavor. Guided by our recent benchmarking study of SARS-CoV-2 PLpro, FRED docking software was selected for such a virtual screening task. The results highlighted potential consensus binders to many of the MD clusters as well as the newly introduced X-ray structure of PLpro complexed with a small molecule. For instance, three drugs Benserazide, Dobutamine and Masoprocol showed a superior consensus enrichment against the PLpro conformations. Further MD simulations for these drugs complexed with PLpro suggested the superior stability and binding of dobutamine and masoprocol inside the binding site compared to Benserazide. Generally, this approach can facilitate identifying drugs for repositioning via targeting multiple conformations of a crucial target for the rapidly emerging COVID-19 pandemic.
Collapse
Affiliation(s)
- Muhammad I Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837, Cairo, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
12
|
Negative Image-Based Screening: Rigid Docking Using Cavity Information. Methods Mol Biol 2021; 2266:125-140. [PMID: 33759124 DOI: 10.1007/978-1-0716-1209-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rational drug discovery relies heavily on molecular docking-based virtual screening, which samples flexibly the ligand binding poses against the target protein's structure. The upside of flexible docking is that the geometries of the generated docking poses are adjusted to match the residue alignment inside the target protein's ligand-binding pocket. The downside is that the flexible docking requires plenty of computing resources and, regardless, acquiring a decent level of enrichment typically demands further rescoring or post-processing. Negative image-based screening is a rigid docking technique that is ultrafast and computationally light but also effective as proven by vast benchmarking and screening experiments. In the NIB screening, the target protein cavity's shape/electrostatics is aligned and compared against ab initio-generated ligand 3D conformers. In this chapter, the NIB methodology is explained at the practical level and both its weaknesses and strengths are discussed candidly.
Collapse
|
13
|
Ibrahim TM, Ismail MI, Bauer MR, Bekhit AA, Boeckler FM. Supporting SARS-CoV-2 Papain-Like Protease Drug Discovery: In silico Methods and Benchmarking. Front Chem 2020; 8:592289. [PMID: 33251185 PMCID: PMC7674952 DOI: 10.3389/fchem.2020.592289] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is a rapidly growing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its papain-like protease (SARS-CoV-2 PLpro) is a crucial target to halt virus replication. SARS-CoV PLpro and SARS-CoV-2 PLpro share an 82.9% sequence identity and a 100% sequence identity for the binding site reported to accommodate small molecules in SARS-CoV. The flexible key binding site residues Tyr269 and Gln270 for small-molecule recognition in SARS-CoV PLpro exist also in SARS-CoV-2 PLpro. This inspired us to use the reported small-molecule binders to SARS-CoV PLpro to generate a high-quality DEKOIS 2.0 benchmark set. Accordingly, we used them in a cross-benchmarking study against SARS-CoV-2 PLpro. As there is no SARS-CoV-2 PLpro structure complexed with a small-molecule ligand publicly available at the time of manuscript submission, we built a homology model based on the ligand-bound SARS-CoV structure for benchmarking and docking purposes. Three publicly available docking tools FRED, AutoDock Vina, and PLANTS were benchmarked. All showed better-than-random performances, with FRED performing best against the built model. Detailed performance analysis via pROC-Chemotype plots showed a strong enrichment of the most potent bioactives in the early docking ranks. Cross-benchmarking against the X-ray structure complexed with a peptide-like inhibitor confirmed that FRED is the best-performing tool. Furthermore, we performed cross-benchmarking against the newly introduced X-ray structure complexed with a small-molecule ligand. Interestingly, its benchmarking profile and chemotype enrichment were comparable to the built model. Accordingly, we used FRED in a prospective virtual screen of the DrugBank database. In conclusion, this study provides an example of how to harness a custom-made DEKOIS 2.0 benchmark set as an approach to enhance the virtual screening success rate against a vital target of the rapidly emerging pandemic.
Collapse
Affiliation(s)
- Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Muhammad I. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Matthias R. Bauer
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Pharmacy, Eberhard-Karls University, Tuebingen, Germany
| | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Bahrain
| | - Frank M. Boeckler
- Department of Pharmacy, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
14
|
Wang X, Zhang R, Song C, Crump D. Computational evaluation of interactions between organophosphate esters and nuclear hormone receptors. ENVIRONMENTAL RESEARCH 2020; 182:108982. [PMID: 31821984 DOI: 10.1016/j.envres.2019.108982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) have gained considerable interest from many environmental chemists and toxicologists due to their frequent detection in the environment and potential adverse effects on health. Nuclear hormone receptors (NHRs) were found to mediate many of their adverse effects. However, our knowledge regarding the direct binding and interaction between OPEs and NHRs is limited. In this study, Endocrine Disruptome, an online computational tool based on the technique of inverse docking, was used to calculate the binding affinity score of 25 individual OPEs with 12 different human NHRs. Results showed that 20% of potential binding interactions between the OPEs and NHRs had medium-to-high probabilities. The accuracy, sensitivity and specificity of the predictions were 78.8, 60.0 and 80.9%, respectively. OPEs with a benzene ring were more active than those without, among which, tri-o-tolyl phosphate and tri-m-tolyl phosphate displayed the highest activities, suggesting that they might pose the greatest potential risks for interference with endocrine functions. In addition, the antagonistic conformations of androgen receptor and estrogen receptor β were found to be the two most vulnerable NHR conformations. Our findings can further the understanding about the health risk(s) of OPEs.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agricultural and Rural affairs, Beijing, 100000, PR China.
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, K1A 0H3, Ottawa, Canada
| |
Collapse
|
15
|
Sulimov VB, Kutov DC, Sulimov AV. Advances in Docking. Curr Med Chem 2020; 26:7555-7580. [PMID: 30182836 DOI: 10.2174/0929867325666180904115000] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Design of small molecules which are able to bind to the protein responsible for a disease is the key step of the entire process of the new medicine discovery. Atomistic computer modeling can significantly improve effectiveness of such design. The accurate calculation of the free energy of binding a small molecule (a ligand) to the target protein is the most important problem of such modeling. Docking is one of the most popular molecular modeling methods for finding ligand binding poses in the target protein and calculating the protein-ligand binding energy. This energy is used for finding the most active compounds for the given target protein. This short review aims to give a concise description of distinctive features of docking programs focusing on computation methods and approximations influencing their accuracy. METHODS This review is based on the peer-reviewed research literature including author's own publications. The main features of several representative docking programs are briefly described focusing on their characteristics influencing docking accuracy: force fields, energy calculations, solvent models, algorithms of the best ligand pose search, global and local optimizations, ligand and target protein flexibility, and the simplifications made for the docking accelerating. Apart from other recent reviews focused mainly on the performance of different docking programs, in this work, an attempt is made to extract the most important functional characteristics defining the docking accuracy. Also a roadmap for increasing the docking accuracy is proposed. This is based on the new generation of docking programs which have been realized recently. These programs and respective new global optimization algorithms are described shortly. RESULTS Several popular conventional docking programs are considered. Their search of the best ligand pose is based explicitly or implicitly on the global optimization problem. Several algorithms are used to solve this problem, and among them, the heuristic genetic algorithm is distinguished by its popularity and an elaborate design. All conventional docking programs for their acceleration use the preliminary calculated grids of protein-ligand interaction potentials or preferable points of protein and ligand conjugation. These approaches and commonly used fitting parameters restrict strongly the docking accuracy. Solvent is considered in exceedingly simplified approaches in the course of the global optimization and the search for the best ligand poses. More accurate approaches on the base of implicit solvent models are used frequently for more careful binding energy calculations after docking. The new generation of docking programs are developed recently. They find the spectrum of low energy minima of a protein-ligand complex including the global minimum. These programs should be more accurate because they do not use a preliminary calculated grid of protein-ligand interaction potentials and other simplifications, the energy of any conformation of the molecular system is calculated in the frame of a given force field and there are no fitting parameters. A new docking algorithm is developed and fulfilled specially for the new docking programs. This algorithm allows docking a flexible ligand into a flexible protein with several dozen mobile atoms on the base of the global energy minimum search. Such docking results in improving the accuracy of ligand positioning in the docking process. The adequate choice of the method of molecular energy calculations also results in the better docking positioning accuracy. An advancement in the application of quantum chemistry methods to docking and scoring is revealed. CONCLUSION The findings of this review confirm the great demand in docking programs for discovery of new medicine substances with the help of molecular modeling. New trends in docking programs design are revealed. These trends are focused on the increase of the docking accuracy at the expense of more accurate molecular energy calculations without any fitting parameters, including quantum-chemical methods and implicit solvent models, and by using new global optimization algorithms which make it possible to treat flexibility of ligands and mobility of protein atoms simultaneously. Finally, it is shown that all the necessary prerequisites for increasing the docking accuracy can be accomplished in practice.
Collapse
Affiliation(s)
- Vladimir B Sulimov
- Dimonta, Ltd., Nagornaya Street 15, Building 8, 117186 Moscow, Russian Federation.,Research Computer Center, Moscow State University, Leninskie Gory 1, Building 4, 119991 Moscow, Russian Federation
| | - Danil C Kutov
- Dimonta, Ltd., Nagornaya Street 15, Building 8, 117186 Moscow, Russian Federation.,Research Computer Center, Moscow State University, Leninskie Gory 1, Building 4, 119991 Moscow, Russian Federation
| | - Alexey V Sulimov
- Dimonta, Ltd., Nagornaya Street 15, Building 8, 117186 Moscow, Russian Federation.,Research Computer Center, Moscow State University, Leninskie Gory 1, Building 4, 119991 Moscow, Russian Federation
| |
Collapse
|
16
|
Ganeshpurkar A, Singh R, Gore PG, Kumar D, Gutti G, Kumar A, Singh SK. Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1682572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pravin Gangaram Gore
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
17
|
Tao X, Huang Y, Wang C, Chen F, Yang L, Ling L, Che Z, Chen X. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14325] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuan Tao
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Yukun Huang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| | - Chong Wang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Fang Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Lingling Yang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Li Ling
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Zhenming Che
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Xianggui Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| |
Collapse
|
18
|
Kurkinen ST, Lätti S, Pentikäinen OT, Postila PA. Getting Docking into Shape Using Negative Image-Based Rescoring. J Chem Inf Model 2019; 59:3584-3599. [PMID: 31290660 PMCID: PMC6750746 DOI: 10.1021/acs.jcim.9b00383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The failure of default scoring functions to ensure virtual screening enrichment is a persistent problem for the molecular docking algorithms used in structure-based drug discovery. To remedy this problem, elaborate rescoring and postprocessing schemes have been developed with a varying degree of success, specificity, and cost. The negative image-based rescoring (R-NiB) has been shown to improve the flexible docking performance markedly with a variety of drug targets. The yield improvement is achieved by comparing the alternative docking poses against the negative image of the target protein's ligand-binding cavity. In other words, the shape and electrostatics of the binding pocket is directly used in the similarity comparison to rank the explicit docking poses. Here, the PANTHER/ShaEP-based R-NiB methodology is tested with six popular docking softwares, including GLIDE, PLANTS, GOLD, DOCK, AUTODOCK, and AUTODOCK VINA, using five validated benchmark sets. Overall, the results indicate that R-NiB outperforms the default docking scoring consistently and inexpensively, demonstrating that the methodology is ready for wide-scale virtual screening usage.
Collapse
Affiliation(s)
- Sami T Kurkinen
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy , University of Turku , FI-20520 Turku , Finland
| | - Sakari Lätti
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy , University of Turku , FI-20520 Turku , Finland
| | - Olli T Pentikäinen
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy , University of Turku , FI-20520 Turku , Finland.,Aurlide Ltd. , FI-21420 Lieto , Finland
| | - Pekka A Postila
- Department of Biological and Environmental Science , University of Jyvaskyla , P.O. Box 35, FI-40014 Jyvaskyla , Finland
| |
Collapse
|
19
|
Arnesen H, Haj-Yasein NN, Tungen JE, Soedling H, Matthews J, Paulsen SM, Nebb HI, Sylte I, Hansen TV, Sæther T. Molecular modelling, synthesis, and biological evaluations of a 3,5-disubstituted isoxazole fatty acid analogue as a PPARα-selective agonist. Bioorg Med Chem 2019; 27:4059-4068. [PMID: 31351846 DOI: 10.1016/j.bmc.2019.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
The peroxisome proliferator activated receptors (PPARs) are important drug targets in treatment of metabolic and inflammatory disorders. Fibrates, acting as PPARα agonists, have been widely used lipid-lowering agents for decades. However, the currently available PPARα targeting agents show low subtype-specificity and consequently a search for more potent agonists have emerged. In this study, previously isolated oxohexadecenoic acids from the marine algae Chaetoceros karianus were used to design a PPARα-specific analogue. Herein we report the design, synthesis, molecular modelling studies and biological evaluations of the novel 3,5-disubstituted isoxazole analogue 6-(5-heptyl-1,2-oxazol-3-yl)hexanoic acid (1), named ADAM. ADAM shows a clear receptor preference and significant dose-dependent activation of PPARα (EC50 = 47 µM) through its ligand-binding domain (LBD). Moreover, ADAM induces expression of important PPARα target genes, such as CPT1A, in the Huh7 cell line and primary mouse hepatocytes. In addition, ADAM exhibits a moderate ability to regulate PPARγ target genes and drive adipogenesis. Molecular modelling studies indicated that ADAM docks its carboxyl group into opposite ends of the PPARα and -γ LBD. ADAM interacts with the receptor-activating polar network of amino acids (Tyr501, His447 and Ser317) in PPARα, but not in PPARγ LBD. This may explain the lack of PPARγ agonism, and argues for a PPARα-dependent adipogenic function. Such compounds are of interest towards developing new lipid-lowering remedies.
Collapse
Affiliation(s)
- Henriette Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Nadia Nabil Haj-Yasein
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Jørn E Tungen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Helen Soedling
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Steinar M Paulsen
- MabCent-SFI, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hilde I Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trond Vidar Hansen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Thomas Sæther
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway.
| |
Collapse
|
20
|
Lee HS, Im W. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design. J Comput Chem 2019; 40:1622-1632. [PMID: 30829435 DOI: 10.1002/jcc.25813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
Proteins interact with small molecules through specific molecular recognition, which is central to essential biological functions in living systems. Therefore, understanding such interactions is crucial for basic sciences and drug discovery. Here, we present Structure template-based ab initio ligand design solution (Stalis), a knowledge-based approach that uses structure templates from the Protein Data Bank libraries of whole ligands and their fragments and generates a set of molecules (virtual ligands) whose structures represent the pocket shape and chemical features of a given target binding site. Our benchmark performance evaluation shows that ligand structure-based virtual screening using virtual ligands from Stalis outperforms a receptor structure-based virtual screening using AutoDock Vina, demonstrating reliable overall screening performance applicable to computational high-throughput screening. However, virtual ligands from Stalis are worse in recognizing active compounds at the small fraction of a rank-ordered list of screened library compounds than crystal ligands, due to the low resolution of the virtual ligand structures. In conclusion, Stalis can facilitate drug discovery research by designing virtual ligands that can be used for fast ligand structure-based virtual screening. Moreover, Stalis provides actual three-dimensional ligand structures that likely bind to a target protein, enabling to gain structural insight into potential ligands. Stalis can be an efficient computational platform for high-throughput ligand design for fundamental biological study and drug discovery research at the proteomic level. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015
| |
Collapse
|
21
|
Morfa CJ, Bassoni D, Szabo A, McAnally D, Sharir H, Hood BL, Vasile S, Wehrman T, Lamerdin J, Smith LH. A Pharmacochaperone-Based High-Throughput Screening Assay for the Discovery of Chemical Probes of Orphan Receptors. Assay Drug Dev Technol 2018; 16:384-396. [PMID: 30251873 DOI: 10.1089/adt.2018.868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) have varying and diverse physiological roles, transmitting signals from a range of stimuli, including light, chemicals, peptides, and mechanical forces. More than 130 GPCRs are orphan receptors (i.e., their endogenous ligands are unknown), representing a large untapped reservoir of potential therapeutic targets for pharmaceutical intervention in a variety of diseases. Current deorphanization approaches are slow, laborious, and usually require some in-depth knowledge about the receptor pharmacology. In this study we describe a cell-based assay to identify small molecule probes of orphan receptors that requires no a priori knowledge of receptor pharmacology. Built upon the concept of pharmacochaperones, where cell-permeable small molecules facilitate the trafficking of mutant receptors to the plasma membrane, the simple and robust technology is readily accessible by most laboratories and is amenable to high-throughput screening. The assay consists of a target harboring a synthetic point mutation that causes retention of the target in the endoplasmic reticulum. Coupled with a beta-galactosidase enzyme-fragment complementation reporter system, the assay identifies compounds that act as pharmacochaperones causing forward trafficking of the mutant GPCR. The assay can identify compounds with varying mechanisms of action including agonists and antagonists. A universal positive control compound circumvents the need for a target-specific ligand. The veracity of the approach is demonstrated using the beta-2-adrenergic receptor. Together with other existing assay technologies to validate the signaling pathways and the specificity of ligands identified, this pharmacochaperone-based approach can accelerate the identification of ligands for these potentially therapeutically useful receptors.
Collapse
Affiliation(s)
- Camilo J Morfa
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | | | - Andras Szabo
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Danielle McAnally
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Haleli Sharir
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Becky L Hood
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Stefan Vasile
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Tom Wehrman
- 2 Eurofins DiscoverX Corporation , Fremont, California
| | - Jane Lamerdin
- 2 Eurofins DiscoverX Corporation , Fremont, California
| | - Layton H Smith
- 1 Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| |
Collapse
|
22
|
Kurkinen ST, Niinivehmas S, Ahinko M, Lätti S, Pentikäinen OT, Postila PA. Improving Docking Performance Using Negative Image-Based Rescoring. Front Pharmacol 2018; 9:260. [PMID: 29632488 PMCID: PMC5879118 DOI: 10.3389/fphar.2018.00260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/08/2018] [Indexed: 12/05/2022] Open
Abstract
Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein's cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein's ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.
Collapse
Affiliation(s)
- Sami T Kurkinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Sanna Niinivehmas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Mira Ahinko
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Sakari Lätti
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Olli T Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland.,Institute of Biomedicine, Integrative Physiology and Pharmacy, University of Turku, Turku, Finland
| | - Pekka A Postila
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
23
|
Jasper JB, Humbeck L, Brinkjost T, Koch O. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. J Cheminform 2018; 10:15. [PMID: 29549526 PMCID: PMC5856854 DOI: 10.1186/s13321-018-0264-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/17/2018] [Indexed: 01/28/2023] Open
Abstract
Protein ligand interaction fingerprints are a powerful approach for the analysis and assessment of docking poses to improve docking performance in virtual screening. In this study, a novel interaction fingerprint approach (PADIF, protein per atom score contributions derived interaction fingerprint) is presented which was specifically designed for utilising the GOLD scoring functions’ atom contributions together with a specific scoring scheme. This allows the incorporation of known protein–ligand complex structures for a target-specific scoring. Unlike many other methods, this approach uses weighting factors reflecting the relative frequency of a specific interaction in the references and penalizes destabilizing interactions. In addition, and for the first time, an exhaustive validation study was performed that assesses the performance of PADIF and two other interaction fingerprints in virtual screening. Here, PADIF shows superior results, and some rules of thumb for a successful use of interaction fingerprints could be identified.![]()
Collapse
Affiliation(s)
- Julia B Jasper
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Lina Humbeck
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Tobias Brinkjost
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany.,Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 14, 44227, Dortmund, Germany
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany.
| |
Collapse
|
24
|
Discovery of new GPCR ligands to illuminate new biology. Nat Chem Biol 2017; 13:1143-1151. [PMID: 29045379 DOI: 10.1038/nchembio.2490] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Although a plurality of drugs target G-protein-coupled receptors (GPCRs), most have emerged from classical medicinal chemistry and pharmacology programs and resemble one another structurally and functionally. Though effective, these drugs are often promiscuous. With the realization that GPCRs signal via multiple pathways, and with the emergence of crystal structures for this family of proteins, there is an opportunity to target GPCRs with new chemotypes and confer new signaling modalities. We consider structure-based and physical screening methods that have led to the discovery of new reagents, focusing particularly on the former. We illustrate their use against previously untargeted or orphan GPCRs, against allosteric sites, and against classical orthosteric sites that selectively activate one downstream pathway over others. The ligands that emerge are often chemically novel, which can lead to new biological effects.
Collapse
|
25
|
Uehara S, Tanaka S. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations. J Chem Inf Model 2017; 57:742-756. [PMID: 28388074 DOI: 10.1021/acs.jcim.6b00791] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.
Collapse
Affiliation(s)
- Shota Uehara
- Department of Computational Science, Graduate School of System Informatics, Kobe University , 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University , 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
26
|
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev 2017; 9:91-102. [PMID: 28510083 DOI: 10.1007/s12551-016-0247-1] [Citation(s) in RCA: 660] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/27/2016] [Indexed: 11/26/2022] Open
Abstract
Molecular docking methodology explores the behavior of small molecules in the binding site of a target protein. As more protein structures are determined experimentally using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, molecular docking is increasingly used as a tool in drug discovery. Docking against homology-modeled targets also becomes possible for proteins whose structures are not known. With the docking strategies, the druggability of the compounds and their specificity against a particular target can be calculated for further lead optimization processes. Molecular docking programs perform a search algorithm in which the conformation of the ligand is evaluated recursively until the convergence to the minimum energy is reached. Finally, an affinity scoring function, ΔG [U total in kcal/mol], is employed to rank the candidate poses as the sum of the electrostatic and van der Waals energies. The driving forces for these specific interactions in biological systems aim toward complementarities between the shape and electrostatics of the binding site surfaces and the ligand or substrate.
Collapse
Affiliation(s)
- Nataraj S Pagadala
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Khajamohiddin Syed
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9300, Free State, South Africa
| | - Jack Tuszynski
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Zheng L, Lin VC, Mu Y. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics. PLoS One 2016; 11:e0165824. [PMID: 27824891 PMCID: PMC5100906 DOI: 10.1371/journal.pone.0165824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022] Open
Abstract
Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Valerie Chunling Lin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- * E-mail:
| |
Collapse
|
28
|
Lagarde N, Delahaye S, Zagury JF, Montes M. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores. J Cheminform 2016; 8:43. [PMID: 27602059 PMCID: PMC5011875 DOI: 10.1186/s13321-016-0154-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023] Open
Abstract
Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated.
Collapse
Affiliation(s)
- Nathalie Lagarde
- Laboratoire Génomique Bioinformatique et Applications, Équipe d’accueil EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Solenne Delahaye
- Laboratoire Génomique Bioinformatique et Applications, Équipe d’accueil EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Jean-François Zagury
- Laboratoire Génomique Bioinformatique et Applications, Équipe d’accueil EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Matthieu Montes
- Laboratoire Génomique Bioinformatique et Applications, Équipe d’accueil EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| |
Collapse
|
29
|
Wardman JH, Gomes I, Bobeck EN, Stockert JA, Kapoor A, Bisignano P, Gupta A, Mezei M, Kumar S, Filizola M, Devi LA. Identification of a small-molecule ligand that activates the neuropeptide receptor GPR171 and increases food intake. Sci Signal 2016; 9:ra55. [PMID: 27245612 DOI: 10.1126/scisignal.aac8035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several neuropeptide systems in the hypothalamus, including neuropeptide Y and agouti-related protein (AgRP), control food intake. Peptides derived from proSAAS, a precursor implicated in the regulation of body weight, also control food intake. GPR171 is a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) for BigLEN (b-LEN), a peptide derived from proSAAS. To facilitate studies exploring the physiological role of GPR171, we sought to identify small-molecule ligands for this receptor by performing a virtual screen of a compound library for interaction with a homology model of GPR171. We identified MS0015203 as an agonist of GPR171 and demonstrated the selectivity of MS0015203 for GPR171 by testing the binding of this compound to 80 other membrane proteins, including family A GPCRs. Reducing the expression of GPR171 by shRNA (short hairpin RNA)-mediated knockdown blunted the cellular and tissue response to MS0015203. Peripheral injection of MS0015203 into mice increased food intake and body weight, and these responses were significantly attenuated in mice with decreased expression of GPR171 in the hypothalamus. Together, these results suggest that MS0015203 is a useful tool to probe the pharmacological and functional properties of GPR171 and that ligands targeting GPR171 may eventually lead to therapeutics for food-related disorders.
Collapse
Affiliation(s)
- Jonathan H Wardman
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin N Bobeck
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer A Stockert
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abhijeet Kapoor
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paola Bisignano
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanjai Kumar
- Department of Chemistry and Biochemistry, Queens College, Flushing, NY 11367, USA
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
30
|
Wu X, Chen X, Dan J, Cao Y, Gao S, Guo Z, Zerbe P, Chai Y, Diao Y, Zhang L. Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification. Sci Rep 2016; 6:25491. [PMID: 27150638 PMCID: PMC4858665 DOI: 10.1038/srep25491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines.
Collapse
Affiliation(s)
- Xunxun Wu
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaofei Chen
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Jia Dan
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yan Cao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Shouhong Gao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Zhiying Guo
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yifeng Chai
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yong Diao
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Lei Zhang
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
31
|
Empereur-Mot C, Guillemain H, Latouche A, Zagury JF, Viallon V, Montes M. Predictiveness curves in virtual screening. J Cheminform 2015; 7:52. [PMID: 26539250 PMCID: PMC4631717 DOI: 10.1186/s13321-015-0100-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 11/12/2022] Open
Abstract
Background In the present work, we aim to transfer to the field of virtual screening the predictiveness curve, a metric that has been advocated in clinical epidemiology. The literature describes the use of predictiveness curves to evaluate the performances of biological markers to formulate diagnoses, prognoses and assess disease risks, assess the fit of risk models, and estimate the clinical utility of a model when applied to a population. Similarly, we use logistic regression models to calculate activity probabilities related to the scores that the compounds obtained in virtual screening experiments. The predictiveness curve can provide an intuitive and graphical tool to compare the predictive power of virtual screening methods. Results Similarly to ROC curves, predictiveness curves are functions of the distribution of the scores and provide a common scale for the evaluation of virtual screening methods. Contrarily to ROC curves, the dispersion of the scores is well described by predictiveness curves. This property allows the quantification of the predictive performance of virtual screening methods on a fraction of a given molecular dataset and makes the predictiveness curve an efficient tool to address the early recognition problem. To this last end, we introduce the use of the total gain and partial total gain to quantify recognition and early recognition of active compounds attributed to the variations of the scores obtained with virtual screening methods. Additionally to its usefulness in the evaluation of virtual screening methods, predictiveness curves can be used to define optimal score thresholds for the selection of compounds to be tested experimentally in a drug discovery program. We illustrate the use of predictiveness curves as a complement to ROC on the results of a virtual screening of the Directory of Useful Decoys datasets using three different methods (Surflex-dock, ICM, Autodock Vina). Conclusion The predictiveness curves cover different aspects of the predictive power of the scores, allowing a detailed evaluation of the performance of virtual screening methods. We believe predictiveness curves efficiently complete the set of tools available for the analysis of virtual screening results. Electronic supplementary material The online version of this article (doi:10.1186/s13321-015-0100-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charly Empereur-Mot
- Laboratoire Génomique Bioinformatique et Applications, EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Hélène Guillemain
- Laboratoire Génomique Bioinformatique et Applications, EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Aurélien Latouche
- Equipe MSDMA, Laboratoire CEDRIC, EA 4629, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Jean-François Zagury
- Laboratoire Génomique Bioinformatique et Applications, EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Vivian Viallon
- Université de Lyon, 69622 Lyon, France ; UMRESTTE, Université Lyon 1, 69373 Lyon, France ; UMRESTTE, IFSTTAR, 69675 Bron, France
| | - Matthieu Montes
- Laboratoire Génomique Bioinformatique et Applications, EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| |
Collapse
|
32
|
Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem 2015; 7:1921-36. [PMID: 26440057 DOI: 10.4155/fmc.15.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The ethical and practical limitation of animal testing has recently promoted computational methods for the fast screening of huge collections of chemicals. RESULTS The authors derived 24 reliable docking-based classification models able to predict the estrogenic potential of a large collection of chemicals provided by the US Environmental Protection Agency. Model performances were challenged by considering AUC, EF1% (EFmax = 7.1), -LR (at sensitivity = 0.75); +LR (at sensitivity = 0.25) and 37 reference compounds comprised within the training set. Moreover, external predictions were made successfully on ten representative known estrogenic chemicals and on a set consisting of >32,000 chemicals. CONCLUSION The authors demonstrate that structure-based methods, widely applied to drug discovery programs, can be fairly adapted to exploratory toxicology studies.
Collapse
|
33
|
Ibrahim TM, Bauer MR, Boeckler FM. Applying DEKOIS 2.0 in structure-based virtual screening to probe the impact of preparation procedures and score normalization. J Cheminform 2015; 7:21. [PMID: 26034510 PMCID: PMC4450982 DOI: 10.1186/s13321-015-0074-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/06/2015] [Indexed: 11/29/2022] Open
Abstract
Background Structure-based virtual screening techniques can help to identify new lead structures and complement other screening approaches in drug discovery. Prior to docking, the data (protein crystal structures and ligands) should be prepared with great attention to molecular and chemical details. Results Using a subset of 18 diverse targets from the recently introduced DEKOIS 2.0 benchmark set library, we found differences in the virtual screening performance of two popular docking tools (GOLD and Glide) when employing two different commercial packages (e.g. MOE and Maestro) for preparing input data. We systematically investigated the possible factors that can be responsible for the found differences in selected sets. For the Angiotensin-I-converting enzyme dataset, preparation of the bioactive molecules clearly exerted the highest influence on VS performance compared to preparation of the decoys or the target structure. The major contributing factors were different protonation states, molecular flexibility, and differences in the input conformation (particularly for cyclic moieties) of bioactives. In addition, score normalization strategies eliminated the biased docking scores shown by GOLD (ChemPLP) for the larger bioactives and produced a better performance. Generalizing these normalization strategies on the 18 DEKOIS 2.0 sets, improved the performances for the majority of GOLD (ChemPLP) docking, while it showed detrimental performances for the majority of Glide (SP) docking. Conclusions In conclusion, we exemplify herein possible issues particularly during the preparation stage of molecular data and demonstrate to which extent these issues can cause perturbations in the virtual screening performance. We provide insights into what problems can occur and should be avoided, when generating benchmarks to characterize the virtual screening performance. Particularly, careful selection of an appropriate molecular preparation setup for the bioactive set and the use of score normalization for docking with GOLD (ChemPLP) appear to have a great importance for the screening performance. For virtual screening campaigns, we recommend to invest time and effort into including alternative preparation workflows into the generation of the master library, even at the cost of including multiple representations of each molecule. Using DEKOIS 2.0 benchmark sets in structure-based virtual screening to probe the impact of molecular preparation and score normalization. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s13321-015-0074-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamer M Ibrahim
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany ; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835 Egypt
| | - Matthias R Bauer
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Frank M Boeckler
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
34
|
Choudhury C, Priyakumar UD, Sastry GN. Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase. J Chem Inf Model 2015; 55:848-60. [PMID: 25751016 DOI: 10.1021/ci500737b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The therapeutic challenges in the treatment of tuberculosis demand multidisciplinary approaches for the identification of potential drug targets as well as fast and accurate techniques to screen huge chemical libraries. Mycobacterial cyclopropane synthase (CmaA1) has been shown to be essential for the survival of the bacteria due to its critical role in the synthesis of mycolic acids. The present study proposes pharmacophore models based on the structure of CmaA1 taking into account its various states in the cyclopropanation process, and their dynamic nature as assessed using molecular dynamics (MD) simulations. The qualities of these pharmacophore models were validated by mapping 23 molecules that have been previously reported to exhibit inhibitory activities on CmaA1. Additionally, 1398 compounds that have been shown to be inactive for tuberculosis were collected from the ChEMBL database and were screened against the models for validation. The models were further validated by comparing the results from pharmacophore mapping with the results obtained from docking these molecules with the respective protein structures. The best models are suggested by validating all the models based on their screening abilities and by comparing with docking results. The models generated from the MD trajectories were found to perform better than the one generated based on the crystal structure demonstrating the importance of incorporating receptor flexibility in drug design.
Collapse
Affiliation(s)
- Chinmayee Choudhury
- †Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information and Technology, Hyderabad 500032, India
- ‡Centre for Molecular Modeling, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - U Deva Priyakumar
- †Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information and Technology, Hyderabad 500032, India
| | - G Narahari Sastry
- ‡Centre for Molecular Modeling, Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
35
|
Fan F, Hu R, Munzli A, Chen Y, Dunn RT, Weikl K, Strauch S, Schwandner R, Afshari CA, Hamadeh H, Nioi P. Utilization of human nuclear receptors as an early counter screen for off-target activity: a case study with a compendium of 615 known drugs. Toxicol Sci 2015; 145:283-95. [PMID: 25752796 DOI: 10.1093/toxsci/kfv052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Off-target effects of drugs on nuclear hormone receptors (NHRs) may result in adverse effects in multiple organs/physiological processes. Reliable assessments of the NHR activities for drug candidates are therefore crucial for drug development. However, the highly permissive structures of NHRs for vastly different ligands make it challenging to predict interactions by examining the chemical structures of the ligands. Here, we report a detailed investigation on the agonistic and antagonistic activities of 615 known drugs or drug candidates against a panel of 6 NHRs: androgen, progesterone, estrogen α/β, and thyroid hormone α/β receptors. Our study revealed that 4.7 and 12.4% compounds have agonistic and antagonistic activities, respectively, against this panel of NHRs. Nonetheless, potent, unintended NHR hits are relatively rare among the known drugs, indicating that such interactions are perhaps not tolerated during drug development. However, we uncovered examples of compounds that unintentionally agonize or antagonize NHRs. In addition, a number of compounds showed multi-NHR activities, suggesting that the cross-talk between multiple NHRs co-operate to elicit in vivo effects. These data highlight the merits of counter screening drug candidate against NHRs during drug discovery/development.
Collapse
Affiliation(s)
- Fan Fan
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Rong Hu
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Anke Munzli
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Yuan Chen
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Robert T Dunn
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Kerstin Weikl
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Simone Strauch
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Ralf Schwandner
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Cynthia A Afshari
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Hisham Hamadeh
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| | - Paul Nioi
- *Amgen Inc., Comparative Biology and Safety Sciences, Department of Discovery Toxicology, Thousand Oaks, California 91320 and Amgen Research GmbH, 93053 Regensburg, Germany
| |
Collapse
|
36
|
Abstract
Reverse or inverse docking is proving to be a powerful tool for drug repositioning and drug rescue. It involves docking a small-molecule drug/ligand in the potential binding cavities of a set of clinically relevant macromolecular targets. Detailed analyses of the binding characteristics lead to ranking of the targets according to the tightness of binding. This process can potentially identify novel molecular targets for the drug/ligand which may be relevant for its mechanism of action and/or side effect profile. Another potential application of reverse docking is during the lead discovery and optimization stages of the drug-discovery cycle. This review summarizes the state-of-the-art and future prospects of the reverse docking with particular emphasis on computational molecular design.
Collapse
|
37
|
Ng HW, Zhang W, Shu M, Luo H, Ge W, Perkins R, Tong W, Hong H. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC Bioinformatics 2014; 15 Suppl 11:S4. [PMID: 25349983 PMCID: PMC4251048 DOI: 10.1186/1471-2105-15-s11-s4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Endocrine disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system of vertebrates, often through direct or indirect interactions with nuclear receptor proteins. Estrogen receptors (ERs) are particularly important protein targets and many EDCs are ER binders, capable of altering normal homeostatic transcription and signaling pathways. An estrogenic xenobiotic can bind ER as either an agonist or antagonist to increase or inhibit transcription, respectively. The receptor conformations in the complexes of ER bound with agonists and antagonists are different and dependent on interactions with co-regulator proteins that vary across tissue type. Assessment of chemical endocrine disruption potential depends not only on binding affinity to ERs, but also on changes that may alter the receptor conformation and its ability to subsequently bind DNA response elements and initiate transcription. Using both agonist and antagonist conformations of the ERα, we developed an in silico approach that can be used to differentiate agonist versus antagonist status of potential binders. Methods The approach combined separate molecular docking models for ER agonist and antagonist conformations. The ability of this approach to differentiate agonists and antagonists was first evaluated using true agonists and antagonists extracted from the crystal structures available in the protein data bank (PDB), and then further validated using a larger set of ligands from the literature. The usefulness of the approach was demonstrated with enrichment analysis in data sets with a large number of decoy ligands. Results The performance of individual agonist and antagonist docking models was found comparable to similar models in the literature. When combined in a competitive docking approach, they provided the ability to discriminate agonists from antagonists with good accuracy, as well as the ability to efficiently select true agonists and antagonists from decoys during enrichment analysis. Conclusion This approach enables evaluation of potential ER biological function changes caused by chemicals bound to the receptor which, in turn, allows the assessment of a chemical's endocrine disrupting potential. The approach can be used not only by regulatory authorities to perform risk assessments on potential EDCs but also by the industry in drug discovery projects to screen for potential agonists and antagonists.
Collapse
|
38
|
Ellingson SR, Miao Y, Baudry J, Smith JC. Multi-conformer ensemble docking to difficult protein targets. J Phys Chem B 2014; 119:1026-34. [PMID: 25198248 DOI: 10.1021/jp506511p] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Large-scale ensemble docking is investigated using five proteins from the Directory of Useful Decoys (DUD, dud.docking.org ) for which docking to crystal structures has proven difficult. Molecular dynamics trajectories are produced for each protein and an ensemble of representative conformational structures extracted from the trajectories. Docking calculations are performed on these selected simulation structures and ensemble-based enrichment factors compared with those obtained using docking in crystal structures of the same protein targets or random selection of compounds. Simulation-derived snapshots are found with improved enrichment factors that increase the chemical diversity of docking hits for four of the five selected proteins. A combination of all the docking results obtained from molecular dynamics simulation followed by selection of top-ranking compounds appears to be an effective strategy for increasing the number and diversity of hits when using docking to screen large libraries of chemicals against difficult protein targets.
Collapse
Affiliation(s)
- Sally R Ellingson
- Genome Science and Technology, University of Tennessee , Knoxville, Tennessee, United States
| | | | | | | |
Collapse
|
39
|
Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods. Toxicol Appl Pharmacol 2014; 280:177-89. [PMID: 25058446 DOI: 10.1016/j.taap.2014.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R(2)=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R(2)=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern.
Collapse
|
40
|
Harris JB, Eldridge ML, Sayler G, Menn FM, Layton AC, Baudry J. A computational approach predicting CYP450 metabolism and estrogenic activity of an endocrine disrupting compound (PCB-30). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1615-1623. [PMID: 24687371 DOI: 10.1002/etc.2595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/28/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Endocrine disrupting chemicals influence growth and development through interactions with the hormone system, often through binding to hormone receptors such as the estrogen receptor. Computational methods can predict endocrine disrupting chemical activity of unmodified compounds, but approaches predicting activity following metabolism are lacking. The present study uses a well-known environmental contaminant, PCB-30 (2,4,6-trichlorobiphenyl), as a prototype endocrine disrupting chemical and integrates predictive (computational) and experimental methods to determine its metabolic transformation by cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6) into estrogenic byproducts. Computational predictions suggest that hydroxylation of PCB-30 occurs at the 3- or 4-phenol positions and leads to metabolites that bind more strongly than the parent molecule to the human estrogen receptor alpha (hER-α). Gas chromatography-mass spectrometry experiments confirmed that the primary metabolite for CYP3A4 and CYP2D6 is 4-hydroxy-PCB-30, and the secondary metabolite is 3-hydroxy-PCB-30. Cell-based bioassays (bioluminescent yeast expressing hER-α) confirmed that hydroxylated metabolites are more estrogenic than PCB-30. These experimental results support the applied model's ability to predict the metabolic and estrogenic fate of PCB-30, which could be used to identify other endocrine disrupting chemicals involved in similar pathways.
Collapse
Affiliation(s)
- Jason B Harris
- Genome Science and Technology Graduate School, University of Tennessee, Knoxville, Tennessee, USA; Center for Molecular Biophysics, University of Tennessee/Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
41
|
Teske K, Nandhikonda P, Bogart JW, Feleke B, Sidhu P, Yuan N, Preston J, Goy R, Han L, Silvaggi NR, Singh RK, Bikle DD, Cook JM, Arnold LA. IDENTIFICATION OF VDR ANTAGONISTS AMONG NUCLEAR RECEPTOR LIGANDS USING VIRTUAL SCREENING. NUCLEAR RECEPTOR RESEARCH 2014; 1. [PMID: 25419525 DOI: 10.11131/2014/101076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR) antagonists among nuclear receptor (NR) ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available "Binding Database". Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2)D3 and 25(OH2)D3. The first virtual screen identified 32 NR ligands with a calculate free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA) are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 µM. The second screen identified 162 NR ligands with a calculate free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%), TRα/β ligands (7%) and LxRα/β ligands (7%). The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.
Collapse
Affiliation(s)
- Kelly Teske
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | | | - Jonathan W Bogart
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Belaynesh Feleke
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Preetpal Sidhu
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Nina Yuan
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Joshua Preston
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Robin Goy
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Nicholas R Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Rakesh K Singh
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Woman and Infant's Hospital of Rhode Island, Alpert Medical School of, Brown University, Provence, RI 02903, USA
| | - Daniel D Bikle
- Endocrine Research Unit, Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
42
|
Schlessinger A, Khuri N, Giacomini KM, Sali A. Molecular modeling and ligand docking for solute carrier (SLC) transporters. Curr Top Med Chem 2014; 13:843-56. [PMID: 23578028 DOI: 10.2174/1568026611313070007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 12/21/2022]
Abstract
Solute Carrier (SLC) transporters are membrane proteins that transport solutes, such as ions, metabolites, peptides, and drugs, across biological membranes, using diverse energy coupling mechanisms. In human, there are 386 SLC transporters, many of which contribute to the absorption, distribution, metabolism, and excretion of drugs and/or can be targeted directly by therapeutics. Recent atomic structures of SLC transporters determined by X-ray crystallography and NMR spectroscopy have significantly expanded the applicability of structure-based prediction of SLC transporter ligands, by enabling both comparative modeling of additional SLC transporters and virtual screening of small molecules libraries against experimental structures as well as comparative models. In this review, we begin by describing computational tools, including sequence analysis, comparative modeling, and virtual screening, that are used to predict the structures and functions of membrane proteins such as SLC transporters. We then illustrate the applications of these tools to predicting ligand specificities of select SLC transporters, followed by experimental validation using uptake kinetic measurements and other assays. We conclude by discussing future directions in the discovery of the SLC transporter ligands.
Collapse
Affiliation(s)
- Avner Schlessinger
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
43
|
Teske K, Nandhikonda P, Bogart JW, Feleke B, Sidhu P, Yuan N, Preston J, Goy R, Arnold LA. Modulation of Transcription mediated by the Vitamin D Receptor and the Peroxisome Proliferator-Activated Receptor δ in the presence of GW0742 analogs. ACTA ACUST UNITED AC 2014; 3. [PMID: 25485183 DOI: 10.4172/2167-7956.1000111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein we describe the evaluation of GW0742 analogs in respect to their ability to modulate transcription mediated by the vitamin D receptor (VDR) and the peroxisome proliferator activated receptor (PPAR) δ. The GW0742 analog bearing a carboxylic ester functionality in place of the carboxylic acid was partially activating both nuclear receptors at low concentration and inhibited transcription at higher compound concentrations. The GW0742 alcohol derivative was more active than the ester in respect to VDR but less active in regard to PPARδ. Importantly, the alcohol derivative was significantly more toxic than the corresponding acid and ester.
Collapse
Affiliation(s)
- Kelly Teske
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | | | - Jonathan W Bogart
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Belaynesh Feleke
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Preetpal Sidhu
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Nina Yuan
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Joshua Preston
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Robin Goy
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
44
|
Webb B, Eswar N, Fan H, Khuri N, Pieper U, Dong G, Sali A. Comparative Modeling of Drug Target Proteins☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2014. [PMCID: PMC7157477 DOI: 10.1016/b978-0-12-409547-2.11133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this perspective, we begin by describing the comparative protein structure modeling technique and the accuracy of the corresponding models. We then discuss the significant role that comparative prediction plays in drug discovery. We focus on virtual ligand screening against comparative models and illustrate the state-of-the-art by a number of specific examples.
Collapse
|
45
|
Bhogireddy N, Veeramachaneni GK, Ambatipudi NVK, Mathi P, Ippaguntla J, Ganta UR, Adusumalli SG, Bokka VR. Inferences from the ADMET analysis of predicted inhibitors to Follicle Stimulating Hormone in the context of infertility. Bioinformation 2013; 9:788-91. [PMID: 24023422 PMCID: PMC3766312 DOI: 10.6026/97320630009788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/01/2023] Open
Abstract
Follicle stimulating hormone (FSH) is a glycoprotein secreted by gonadotrophs of the anterior pituitary gland that regulates
reproduction in mammals. FSH targets its receptor (FSHR) expressed only on grannulosa cells and induce the maturation of
ovarian follicles in females. The levels of both FSH and FSHR rise until the middle of estrus cycle and then falls on level at the time
of ovulation. It is associated with stimulated sertoli cell proliferation in testes and supports spermatogenesis in males. The
interaction between the polypeptide FSH hormone and its corresponding receptor is highly selective. Therefore, it is of interest to
inhibit FSH in the context of infertility. The structure of FSH (PDB ID: 1XWD) is screened using molecular docking techniques
against the ZINC database (a database of 2.7 million compounds) with reference to known standard compounds. This exercise
identifies compounds with better binding and ADMET (Absorption, Digestion, Metabolism, Excretion and Toxicity) properties
compared to known standard compounds. These observations find application for the consideration of such compounds for further
validation towards inhibiting the FSH.
Collapse
Affiliation(s)
- Narasimharao Bhogireddy
- Department of Biotechnology, Centre for Biomedical Research, KLUniversity, Vaddeswaram, Guntur district-522 502
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiang M, Lei K, Fan W, Lin Y, He G, Yang M, Chen L, Mo Y. In silico identification of EGFR-T790M inhibitors with novel scaffolds: start with extraction of common features. Drug Des Devel Ther 2013; 7:789-839. [PMID: 23990708 PMCID: PMC3748928 DOI: 10.2147/dddt.s41305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Epidermal growth factor receptor (EGFR) is an attractive therapeutic target for a number of human tumors including non-small cell lung cancer (NSCLC). Most patients with NSCLC and somatic mutations have shown a dramatic initial clinical response to reversible EGFR inhibitors. The clinical efficacy of reversible inhibitors is, however, ultimately limited due to the emergence of drug resistance, which is usually conferred by the EGFR T790M mutation. Importantly, irreversible, synthetic small molecule inhibitors are currently evaluated and some of them have been shown to overcome the acquired resistance that is oftentimes observed in these patients. Thus far, irreversible EGFR inhibitors as a drug class have not received regulatory approval due in part to their poor effectiveness at clinically achievable concentrations. Therefore, there is an urgent need to discover and develop novel, potent irreversible inhibitors against the EGFR T790M mutation. Material and methods In the following study, we report a novel “hybrid strategy” to identify irreversible EGFR inhibitors with active scaffolds starting with the identification and extraction of a common chemical reactive feature and a pharmacophore feature. The chemical reactive feature was elucidated by investigating 138 currently known irreversible inhibitors at B3LYP/6-31G(d) level using the density function theory method. The pharmacophore feature was extracted from the same inhibitors using pharmacophore modeling. Based on these unique features, two constraints were set while calibrating the protocols of in silico screening. Compounds bearing these specific features were obtained from the National Cancer Institute diversity database to form our subsequent library. Finally, a structure based virtual screening against the library was conducted using standard protocols validated in our lab. Results Twenty-eight candidate compounds that demonstrated antitumor activity and that had novel scaffolds different from commonly known quinazoline/quinoline analogs were obtained. The interaction modes between three representative candidates and our model system are similar to that between the model system and the reference compound T-001, which has previously been reported to be one of the most potent of the 138 irreversible inhibitors. Conclusion The hybrid strategy starting with the extraction of common features is an effective approach to design potential irreversible inhibitors with novel scaffolds and therefore to obtain lead molecules in the selection process. These candidates possessing unique scaffolds have a strong likelihood to act as further starting points in the preclinical development of potent irreversible T790M EGFR inhibitors.
Collapse
Affiliation(s)
- Mingli Xiang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road 4, Chengdu, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chan FY, Sun N, Neves MAC, Lam PCH, Chung WH, Wong LK, Chow HY, Ma DL, Chan PH, Leung YC, Chan TH, Abagyan R, Wong KY. Identification of a new class of FtsZ inhibitors by structure-based design and in vitro screening. J Chem Inf Model 2013; 53:2131-40. [PMID: 23848971 DOI: 10.1021/ci400203f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Filamenting temperature-sensitive mutant Z (FtsZ), an essential GTPase in bacterial cell division, is highly conserved among Gram-positive and Gram-negative bacteria and thus considered an attractive target to treat antibiotic-resistant bacterial infections. In this study, a new class of FtsZ inhibitors bearing the pyrimidine-quinuclidine scaffold was identified from structure-based virtual screening of natural product libraries. Iterative rounds of in silico studies and biological evaluation established the preliminary structure-activity relationships of the new compounds. Potent FtsZ inhibitors with low micromolar IC₅₀ and antibacterial activity against S. aureus and E. coli were found. These findings support the use of virtual screening and structure-based design for the rational development of new antibacterial agents with innovative mechanisms of action.
Collapse
Affiliation(s)
- Fung-Yi Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Baglo Y, Gabrielsen M, Sylte I, Gederaas OA. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy. PLoS One 2013; 8:e65200. [PMID: 23762315 PMCID: PMC3676387 DOI: 10.1371/journal.pone.0065200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/23/2013] [Indexed: 12/28/2022] Open
Abstract
Photodynamic therapy (PDT) is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA), or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX). Activation of PpIX by light causes the formation of reactive oxygen species (ROS) and toxic responses. Studies have indicated that ALA and its methyl ester (MAL) are taken up into the cells via γ-butyric acid (GABA) transporters (GATs). Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT) as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs) of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations). Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain.
Collapse
Affiliation(s)
- Yan Baglo
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | |
Collapse
|
49
|
Gabrielsen M, Wołosewicz K, Zawadzka A, Kossakowski J, Nowak G, Wolak M, Stachowicz K, Siwek A, Ravna AW, Kufareva I, Kozerski L, Bednarek E, Sitkowski J, Bocian W, Abagyan R, Bojarski AJ, Sylte I, Chilmonczyk Z. Synthesis, antidepressant evaluation and docking studies of long-chain alkylnitroquipazines as serotonin transporter inhibitors. Chem Biol Drug Des 2013; 81:695-706. [PMID: 23574807 DOI: 10.1111/cbdd.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/19/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Twelve alkyl analogues (1-12) of the high-affinity serotonin transporter (SERT) inhibitor 6-nitroquipazine (6-NQ) were synthesized and studied using in vitro radioligand competition binding assays to determine their binding affinity (Ki ). The putative antidepressant activity of five of the binders with the highest SERT binding affinities was studied by the forced swim and locomotor activity mouse tests. The three-dimensional (3D) structures of 8 and 9 were determined using NOE NMR technique. Flexible docking of the compounds was undertaken to illustrate the binding of the compounds in the SERT model. Our results showed that several of the 6-NQ analogues are high-affinity SERT inhibitors and indicated that the octyl (8), decyl (10) and dodecyl (12) 6-NQ analogues exhibit moderate antidepressant activity.
Collapse
Affiliation(s)
- Mari Gabrielsen
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ben Nasr N, Guillemain H, Lagarde N, Zagury JF, Montes M. Multiple structures for virtual ligand screening: defining binding site properties-based criteria to optimize the selection of the query. J Chem Inf Model 2013; 53:293-311. [PMID: 23312043 DOI: 10.1021/ci3004557] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structure based virtual ligand screening (SBVLS) methods are widely used in drug discovery programs. When several structures of the target are available, protocols based either on single structure docking or on ensemble docking can be used. The performance of the methods depends on the structure(s) used as a reference, whose choice requires retrospective enrichment studies on benchmarking databases which consume additional resources. In the present study, we have identified several trends in the properties of the binding sites of the structures that led to the optimal performance in retrospective SBVLS tests whatever the docking program used (Surflex-dock or ICM). By assessing their hydrophobicity and comparing their volume and opening, we show that the selection of optimal structures should be possible with no requirement of prior retrospective enrichment studies. If the mean binding site volume is lower than 350 A(3), the structure with the smaller volume should be preferred. In the other cases, the structure with the largest binding site should be preferred. These optimal structures may be either selected for a single structure docking strategy or an ensemble docking strategy. When constructing an ensemble, the opening of the site might be an interesting criterion additionaly to its volume as the most closed structures should not be preferred in the large systems. These "binding site properties-based" guidelines could be helpful to optimize future prospective drug discovery protocols when several structures of the target are available.
Collapse
Affiliation(s)
- Nesrine Ben Nasr
- Laboratoire Génomique Bioinformatique et Applications, Équipe d'accueil EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | | | | | | | | |
Collapse
|