1
|
Rivara-Espasandín M, Palumbo MC, Sosa EJ, Radío S, Turjanski AG, Sotelo-Silveira J, Fernandez Do Porto D, Smircich P. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections. Front Pharmacol 2023; 14:1136321. [PMID: 37089958 PMCID: PMC10115950 DOI: 10.3389/fphar.2023.1136321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction:Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development.Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.
Collapse
Affiliation(s)
- Martin Rivara-Espasandín
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miranda Clara Palumbo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J. Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Santiago Radío
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Dario Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| |
Collapse
|
2
|
Li XH, Gong JF, Song MP. Microwave-Assisted Ruthenium- and Rhodium-Catalyzed Couplings of α-Amino Acid Ester-Derived Phosphinamides with Alkynes. Chem Asian J 2021; 17:e202101158. [PMID: 34846096 DOI: 10.1002/asia.202101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Two different types of new phosphinamide α-amino ester derivatives have been prepared in moderate to high yields via ruthenium(II) and rhodium(III)-catalyzed ortho-C-H functionalization under microwave irradiation. Specifically, the ortho-alkenylated phosphinamides were produced through coupling of phosphinamides containing an α-substituted or α,α-disubstituted α-amino ester with internal alkynes under ruthenium catalysis. In contrast, Ru and the more effective Rh-catalyzed coupling of the α-unsubstituted glycine ester phosphinamide with alkynes resulted in formation of oxidative annulation products, phosphaisoquinolin-1-ones. The developed methods feature the use of easily accessible starting materials, short reaction time, exclusive E-stereoselectivity (for ortho-alkenylation) and good functional group tolerance. The alkenylation reaction was readily scaled up to gram scale. Furthermore, the obtained alkenylated phosphinamide could be transformed into P-containing dipeptides through hydrolysis of the ester group in the catalysis product and subsequent condensation with an α-amino ester.
Collapse
Affiliation(s)
- Xue-Hong Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Fang Gong
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Guan J, Spry C, Tjhin ET, Yang P, Kittikool T, Howieson VM, Ling H, Starrs L, Duncan D, Burgio G, Saliba KJ, Auclair K. Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides. J Med Chem 2021; 64:4478-4497. [PMID: 33792339 DOI: 10.1021/acs.jmedchem.0c01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malaria-causing Plasmodium parasites are developing resistance to antimalarial drugs, providing the impetus for new antiplasmodials. Although pantothenamides show potent antiplasmodial activity, hydrolysis by pantetheinases/vanins present in blood rapidly inactivates them. We herein report the facile synthesis and biological activity of a small library of pantothenamide analogues in which the labile amide group is replaced with a heteroaromatic ring. Several of these analogues display nanomolar antiplasmodial activity against Plasmodium falciparum and/or Plasmodium knowlesi, and are stable in the presence of pantetheinase. Both a known triazole and a novel isoxazole derivative were further characterized and found to possess high selectivity indices, medium or high Caco-2 permeability, and medium or low microsomal clearance in vitro. Although they fail to suppress Plasmodium berghei proliferation in vivo, the pharmacokinetic and contact time data presented provide a benchmark for the compound profile likely required to achieve antiplasmodial activity in mice and should facilitate lead optimization.
Collapse
Affiliation(s)
- Jinming Guan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Christina Spry
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Erick T Tjhin
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Penghui Yang
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.,College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Tanakorn Kittikool
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Vanessa M Howieson
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Harriet Ling
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Lora Starrs
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Dustin Duncan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Gaetan Burgio
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.,Medical School, The Australian National University, Acton, ACT 2601, Australia
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
4
|
|
5
|
Santa Maria KC, Chan AN, O'Neill EM, Li B. Targeted Rediscovery and Biosynthesis of the Farnesyl-Transferase Inhibitor Pepticinnamin E. Chembiochem 2019; 20:1387-1393. [PMID: 30694017 PMCID: PMC6750724 DOI: 10.1002/cbic.201900025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 11/08/2022]
Abstract
The natural product pepticinnamin E potently inhibits protein farnesyl transferases and has potential applications in treating cancer and malaria. Pepticinnamin E contains a rare N-terminal cinnamoyl moiety as well as several nonproteinogenic amino acids, including the unusual 2-chloro-3-hydroxy-4-methoxy-N-methyl-L-phenylalanine. The biosynthesis of pepticinnamin E has remained uncharacterized because its original producing strain is no longer available. Here we identified a gene cluster (pcm) for this natural product in a new producer, Actinobacteria bacterium OK006, by means of a targeted rediscovery strategy. We demonstrated that the pcm cluster is responsible for the biosynthesis of pepticinnamin E, a nonribosomal peptide/polyketide hybrid. We also characterized a key O-methyltransferase that modifies 3,4-dihydroxy-l-phenylalanine. Our work has identified the gene cluster for pepticinnamins for the first time and sets the stage for elucidating the unique chemistry required for biosynthesis.
Collapse
Affiliation(s)
- Kevin C Santa Maria
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Andrew N Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Erinn M O'Neill
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| |
Collapse
|
6
|
Holota S, Kryshchyshyn A, Derkach H, Trufin Y, Demchuk I, Gzella A, Grellier P, Lesyk R. Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorg Chem 2019; 86:126-136. [PMID: 30690336 DOI: 10.1016/j.bioorg.2019.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 11/29/2022]
Abstract
A series of novel 2-(5-aminomethylene-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl esters has been synthesized. Target compounds were evaluated for their trypanocidal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Several hit-compounds (8, 10, 12) inhibited growth of the parasites at sub-micromolar concentrations (IC50 0.027-1.936 µM) and showed significant selectivity indices (SI = 108-1396.2) being non-toxic towards the human primary fibroblasts. The screening of anticancer activity in vitro within NCI DTP protocol allowed to identify active 2-(5-{[5-(2,4-dichlorobenzyl)-thiazol-2-ylamino]-methylene}-4-oxo-2-thioxothiazolidin-3-yl)-3-phenylpropionic acid ethyl ester 14 that demonstrated inhibition against all 59 human tumor cell lines with the average GI50 value of 2.57 μM. It was established that the activity type (antitrypanosomal or anticancer) as well as its level depends on the character of enamine fragment in the C5 position of thiazolidinone core.
Collapse
Affiliation(s)
- Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine; Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, Volya Avenue 13, 43025 Lutsk, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Halyna Derkach
- Department of Chemistry, Ivano-Frankivsk National Medical University, 2 Halytska, Ivano-Frankivsk 76018, Ukraine
| | - Yaroslava Trufin
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Inna Demchuk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team APE, CP 52, 57 Rue Cuvier, Paris 75005, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
7
|
Tikhomirova TV, Peledina AA, Maizlish VE, Vashurin AS, Shaposhnikov GP. Synthesis and Properties of Tetra-4-{[(1,1'-biphenyl)-4-yl]oxy}phthalocyanines and Their Sulfonic Acid Derivatives. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218040199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Moorthy NSHN, Sousa SF, Ramos MJ, Fernandes PA. Binding mode of conformations and structure-based pharmacophore development for farnesyltransferase inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Moorthy NSHN, Sousa SF, Ramos MJ, Fernandes PA. Molecular dynamic simulations and structure-based pharmacophore development for farnesyltransferase inhibitors discovery. J Enzyme Inhib Med Chem 2016; 31:1428-42. [PMID: 26887913 DOI: 10.3109/14756366.2016.1144593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Farnesyltransferase is one of the enzyme targets for the development of drugs for diseases, including cancer, malaria, progeria, etc. In the present study, the structure-based pharmacophore models have been developed from five complex structures (1LD7, 1NI1, 2IEJ, 2ZIR and 2ZIS) obtained from the protein data bank. Initially, molecular dynamic (MD) simulations were performed for the complexes for 10 ns using AMBER 12 software. The conformers of the complexes (75) generated from the equilibrated protein were undergone protein-ligand interaction fingerprint (PLIF) analysis. The results showed that some important residues, such as LeuB96, TrpB102, TrpB106, ArgB202, TyrB300, AspB359 and TyrB361, are predominantly present in most of the complexes for interactions. These residues form side chain acceptor and surface (hydrophobic or π-π) kind of interactions with the ligands present in the complexes. The structure-based pharmacophore models were generated from the fingerprint bits obtained from PLIF analysis. The pharmacophore models have 3-4 pharmacophore contours consist of acceptor and metal ligation (Acc & ML), hydrophobic (HydA) and extended acceptor (Acc2) features with the radius ranging between 1-3 Å for Acc & ML and 1-2 Å for HydA. The excluded volumes of the pharmacophore contours radius are between 1-2 Å. Further, the distance between the interacting groups, root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radial distribution function (RDF) analysis were performed for the MD-simulated proteins using PTRAJ module. The generated pharmacophore models were used to screen a set of natural compounds and database compounds to select significant HITs. We conclude that the developed pharmacophore model can be a significant model for the identification of HITs as FTase inhibitors.
Collapse
Affiliation(s)
- N S Hari Narayana Moorthy
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Sergio F Sousa
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Maria J Ramos
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| | - Pedro A Fernandes
- a UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Universidade do Porto , 687, Rua do Campo Alegre , Porto , Portugal
| |
Collapse
|
11
|
Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors. Eur J Med Chem 2016; 109:173-86. [DOI: 10.1016/j.ejmech.2015.12.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022]
|
12
|
Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev 2014; 114:11242-71. [PMID: 25337991 PMCID: PMC4254036 DOI: 10.1021/cr5003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Jun Yong Choi
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, and Department of
Pathology, University of California—San
Francisco, San Francisco, California 94158, United States
| | - William R. Roush
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Peptide chemistry applied to a new family of phenothiazine-containing inhibitors of human farnesyltransferase. Bioorg Med Chem Lett 2014; 24:3180-5. [DOI: 10.1016/j.bmcl.2014.04.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 02/02/2023]
|
14
|
Straniero V, Pallavicini M, Chiodini G, Ruggeri P, Fumagalli L, Bolchi C, Corsini A, Ferri N, Ricci C, Valoti E. Farnesyltransferase inhibitors: CAAX mimetics based on different biaryl scaffolds. Bioorg Med Chem Lett 2014; 24:2924-7. [PMID: 24821376 DOI: 10.1016/j.bmcl.2014.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Mimetics of the C-terminal CAAX tetrapeptide of Ras protein were designed as farnesyltransferase (FTase) inhibitors (FTIs) by replacing AA with o-aryl or o-heteroaryl substituted p-hydroxy- or p-aminobenzoic acid, while maintaining the replacement of C with 1,4-benzodioxan-2-ylmethyl or 2-amino-4-thiazolylacetyl residue as in previous CAAX mimetics. Both FTase inhibition and antiproliferative effect were showed by two thiazole derivatives, namely those with 1-naphthyl (10 and 10a) or 3-furanyl (15 and 15a) in the central spacer, and by the benzodioxane derivative with 2-thienyl (6 and 6a) in the same position. Accumulation of unprenylated RAS was demonstrated in cells incubated with 15a. Consistently with FTIs literature, such results delineate the biaryl scaffold not only as a spacer but also as a sensible area of these mimetic molecules, where modifications at the branching aromatic ring are not indifferent and should be matter of further investigation.
Collapse
Affiliation(s)
- Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Giuseppe Chiodini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Paola Ruggeri
- Dipartimento di Scienze Farmaceutiche, Università di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università di Milano, via Mangiagalli 25, I-20133 Milano, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, via Balzaretti 9, I-20133 Milano, Italy
| | - Nicola Ferri
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, via Balzaretti 9, I-20133 Milano, Italy; Multimedica IRCCS, Milano, Italy
| | - Chiara Ricci
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, via Balzaretti 9, I-20133 Milano, Italy
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche, Università di Milano, via Mangiagalli 25, I-20133 Milano, Italy.
| |
Collapse
|
15
|
Misal Castro LC, Chatani N. Palladium(II)-Catalyzedortho-CH Arylation/Alkylation ofN-Benzoyl α-Amino Ester Derivatives. Chemistry 2014; 20:4548-53. [DOI: 10.1002/chem.201304978] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 01/06/2023]
|
16
|
Abstract
SIGNIFICANCE Cysteine residues of proteins participate in the catalysis of biochemical reactions, are crucial for redox reactions, and influence protein structure by the formation of disulfide bonds. Covalent posttranslational modifications (PTMs) of cysteine residues are important mediators of redox regulation and signaling by coupling protein activity to the cellular redox state, and moreover influence stability, function, and localization of proteins. A diverse group of protozoan and metazoan parasites are a major cause of diseases in humans, such as malaria, African trypanosomiasis, leishmaniasis, toxoplasmosis, filariasis, and schistosomiasis. RECENT ADVANCES Human parasites undergo dramatic morphological and metabolic changes while they pass complex life cycles and adapt to changing environments in host and vector. These processes are in part regulated by PTMs of parasitic proteins. In human parasites, posttranslational cysteine modifications are involved in crucial cellular events such as signal transduction (S-glutathionylation and S-nitrosylation), redox regulation of proteins (S-glutathionylation and S-nitrosylation), protein trafficking and subcellular localization (palmitoylation and prenylation), as well as invasion into and egress from host cells (palmitoylation). This review focuses on the occurrence and mechanisms of these cysteine modifications in parasites. CRITICAL ISSUES Studies on cysteine modifications in human parasites are so far largely based on in vitro experiments. FUTURE DIRECTIONS The in vivo regulation of cysteine modifications and their role in parasite development will be of great interest in order to understand redox signaling in parasites.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | |
Collapse
|
17
|
Fytas C, Zoidis G, Tzoutzas N, Taylor MC, Fytas G, Kelly JM. Novel lipophilic acetohydroxamic acid derivatives based on conformationally constrained spiro carbocyclic 2,6-diketopiperazine scaffolds with potent trypanocidal activity. J Med Chem 2011; 54:5250-4. [PMID: 21542562 PMCID: PMC3140774 DOI: 10.1021/jm200217m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Indexed: 11/30/2022]
Abstract
We describe novel acetohydroxamic acid derivatives with potent activity against cultured bloodstream-form Trypanosoma brucei and selectivity indices of >1000. These analogues were derived from conformationally constrained, lipophilic, spiro carbocyclic 2,6-diketopiperazine (2,6-DKP) scaffolds by attaching acetohydroxamic acid moieties to the imidic nitrogen. Optimal activity was achieved by placing benzyl groups adjacent to the basic nitrogen of the 2,6-DKP core. S-Enantiomer 7d was the most active derivative against T. brucei (IC(50) = 6.8 nM) and T. cruzi (IC(50) = 0.21 μM).
Collapse
Affiliation(s)
- Christos Fytas
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupoli-Zografou, GR-15771, Athens, Greece
| | | | | | | | | | | |
Collapse
|
18
|
Judd WR, Slattum PM, Hoang KC, Bhoite L, Valppu L, Alberts G, Brown B, Roth B, Ostanin K, Huang L, Wettstein D, Richards B, Willardsen JA. Discovery and SAR of methylated tetrahydropyranyl derivatives as inhibitors of isoprenylcysteine carboxyl methyltransferase (ICMT). J Med Chem 2011; 54:5031-47. [PMID: 21661760 DOI: 10.1021/jm200249a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of tetrahydropyranyl (THP) derivatives has been developed as potent inhibitors of isoprenylcysteine carboxyl methyltransferase (ICMT) for use as anticancer agents. Structural modification of the submicromolar hit compound 3 led to the potent 3-methoxy substituted analogue 27. Further SAR development around the THP ring resulted in an additional 10-fold increase in potency, exemplified by analogue 75 with an IC(50) of 1.3 nM. Active and potent compounds demonstrated a dose-dependent increase in Ras cytosolic protein. Potent ICMT inhibitors also reduced cell viability in several cancer cell lines with growth inhibition (GI(50)) values ranging from 0.3 to >100 μM. However, none of the cellular effects observed using ICMT inhibitors were as pronounced as those resulting from a farnesyltransferase inhibitor.
Collapse
Affiliation(s)
- Weston R Judd
- Department of Medicinal Chemistry, Myrexis, Inc., 305 Chipeta Way, Salt Lake City, Utah 84108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hari Narayana Moorthy NS, Sousa SF, Ramos MJ, Fernandes PA. Structural feature study of benzofuran derivatives as farnesyltransferase inhibitors. J Enzyme Inhib Med Chem 2011; 26:777-91. [DOI: 10.3109/14756366.2011.552885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- N. S. Hari Narayana Moorthy
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Sergio F. Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| |
Collapse
|
20
|
Sverdrup FM, Yates MP, Vickery LE, Klover JA, Song LRH, Anglin CP, Misko TP. Protein geranylgeranylation controls collagenase expression in osteoarthritic cartilage. Osteoarthritis Cartilage 2010; 18:948-55. [PMID: 20417291 DOI: 10.1016/j.joca.2010.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/15/2010] [Accepted: 03/22/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Statins possess anti-inflammatory properties. This study was undertaken to characterize the mechanism of action of statin drugs on collagenase expression in primary human osteoarthritic cartilage tissue. METHOD Human articular chondrocytes and cartilage explants from osteoarthritic donors were exposed to simvastatin in the presence or absence of interleukin-1 beta (IL-1beta). Collagenase expression was determined by quantifying levels of matrix metalloproteinase 13 (MMP-13) and MMP-1 mRNA and MMP-13 protein. The mechanism of statin action was tested by addition of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) or by using inhibitors of farnesyl transferase (FT) and geranylgeranyl transferase (GGT-1). RESULTS Treatment of osteoarthritic chondrocytes with simvastatin decreased mRNA levels of MMP-13 and MMP-1 whether under basal conditions or during stimulation with IL-1beta. MMP-13 protein secreted into the culture media was also decreased. Genes involved in cartilage synthesis (type II collagen and aggrecan) were not down-regulated by simvastatin. Exogenous addition of GGPP completely reversed the statin-mediated decrease in MMP-13 mRNA and protein levels whereas FPP partially reversed the statin-mediated effect. An inhibitor of GGT-1 mimicked the simvastatin-mediated reduction in MMP-13 expression by chondrocytes. Finally, consistent with impacts on MMP-13 and MMP-1 expression, simvastatin as well as the GGT-1 inhibitor both blocked type II collagen degradation in primary human articular cartilage explants. CONCLUSION These results suggest that statins modulate chondrocyte metabolism by reducing prenylation of key signaling molecules that control the expression of collagen-degrading enzymes. Our results strongly support the hypothesis that protein prenyltransferases including geranylgeranyl transferase regulate chondrocyte collagenase expression in osteoarthritis.
Collapse
|
21
|
DeGraw AJ, Keiser MJ, Ochocki JD, Shoichet BK, Distefano MD. Prediction and evaluation of protein farnesyltransferase inhibition by commercial drugs. J Med Chem 2010; 53:2464-71. [PMID: 20180535 DOI: 10.1021/jm901613f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The similarity ensemble approach (SEA) relates proteins based on the set-wise chemical similarity among their ligands. It can be used to rapidly search large compound databases and to build cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships one might not recognize based on sequence or structural similarities alone. SEA has previously revealed cross talk between drugs acting primarily on G-protein coupled receptors (GPCRs). Here we used SEA to look for potential off-target inhibition of the enzyme protein farnesyltransferase (PFTase) by commercially available drugs. The inhibition of PFTase has profound consequences for oncogenesis, as well as a number of other diseases. In the present study, two commercial drugs, Loratadine and Miconazole, were identified as potential ligands for PFTase and subsequently confirmed as such experimentally. These results point toward the applicability of SEA for the prediction of not only GPCR-GPCR drug cross talk but also GPCR-enzyme and enzyme-enzyme drug cross talk.
Collapse
Affiliation(s)
- Amanda J DeGraw
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
22
|
Sousa SF, Fernandes PA, Ramos MJ. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme. Bioorg Med Chem 2009; 17:3369-78. [DOI: 10.1016/j.bmc.2009.03.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
|
23
|
Sousa SF, Fernandes PA, Ramos MJ. Enzyme Flexibility and the Catalytic Mechanism of Farnesyltransferase: Targeting the Relation. J Phys Chem B 2008; 112:8681-91. [DOI: 10.1021/jp711214j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sérgio F. Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria João Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
24
|
Birkholtz L, van Brummelen A, Clark K, Niemand J, Maréchal E, Llinás M, Louw A. Exploring functional genomics for drug target and therapeutics discovery in Plasmodia. Acta Trop 2008; 105:113-23. [PMID: 18083131 DOI: 10.1016/j.actatropica.2007.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 02/04/2023]
Abstract
Functional genomics approaches are indispensable tools in the drug discovery arena and have recently attained increased attention in antibacterial drug discovery research. However, the application of functional genomics to post-genomics research of Plasmodia is still in comparatively early stages. Nonetheless, with this genus having the most species sequenced of any eukaryotic organism so far, the Plasmodia could provide unique opportunities for the study of intracellular eukaryotic pathogens. This review presents the status quo of functional genomics of the malaria parasite including descriptions of the transcriptome, proteome and interactome. We provide examples for the in silico mining of the X-ome data sets and illustrate how X-omic data from drug challenged parasites might be used in elucidating amongst others, the mode-of-action of inhibitory compounds, validate potential targets and discover novel targets/therapeutics.
Collapse
|
25
|
Angibaud P, Mevellec L, Meyer C, Bourdrez X, Lezouret P, Pilatte I, Poncelet V, Roux B, Merillon S, End DW, Van Dun J, Wouters W, Venet M. Impact on farnesyltransferase inhibition of 4-chlorophenyl moiety replacement in the Zarnestra® series. Eur J Med Chem 2007; 42:702-14. [PMID: 17316920 DOI: 10.1016/j.ejmech.2006.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 12/03/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Based on the structure of R115777 (tipifarnib, Zarnestra), a series of farnesyltransferase inhibitors have been synthesized by modification of the 2-quinolinone motif and transposition of the 4-chlorophenyl ring to the imidazole or its replacement by 5-membered rings. This has yielded a novel series of potent farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Patrick Angibaud
- Medicinal Chemistry Department, Johnson & Johnson Pharmaceutical Research and Development (J&JPRD), Campus de Maigremont BP615, Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tagore DM, Sprinz KI, Hamilton AD. Duplex DNA as a Self-Assembling Template for the Identification of Bidentate Protein-Binding Agents. Supramol Chem 2007. [DOI: 10.1080/10610270600990253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - K. Ingrid Sprinz
- b Department of Molecular Biophysics and Biochemistry , Yale University , New Haven, CT, 06520, USA
| | - Andrew D. Hamilton
- b Department of Molecular Biophysics and Biochemistry , Yale University , New Haven, CT, 06520, USA
| |
Collapse
|
27
|
Sousa SF, Fernandes PA, Ramos MJ. Theoretical studies on farnesyl transferase: Evidence for thioether product coordination to the active-site zinc sphere. J Comput Chem 2007; 28:1160-8. [PMID: 17342704 DOI: 10.1002/jcc.20577] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Farnesyltransferase (FTase), an interesting zinc metaloenzyme, has been the subject of great attention in anticancer research over the last decade. However, despite the major accomplishments in the field, some very pungent questions on the farnesylation mechanism still persist. In this study, the authors have analyzed a mechanistic paradox that arises from the existence of several contradicting and inconclusive experimental evidence regarding the existence of direct coordination between the active-site zinc cation and the thioether from the farnesylated peptide product, which include UV-vis spectroscopy data on a Co(2+)-substituted FTase, two X-ray crystallographic structures of the FTase-product complex, and extended X-ray absorption fine structure results. Using high-level theoretical calculations on two models of different sizes, and QM/MM calculations on the full enzyme, the authors have shown that the farnesylated product is Zn coordinated, and that a subsequent step where this Zn bond is broken is coherent with the available kinetic results. Furthermore, an explanation for the contradicting experimental evidence is suggested.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
28
|
Eastman RT, White J, Hucke O, Yokoyama K, Verlinde CLMJ, Hast MA, Beese LS, Gelb MH, Rathod PK, Van Voorhis WC. Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase. Mol Biochem Parasitol 2006; 152:66-71. [PMID: 17208314 PMCID: PMC2875941 DOI: 10.1016/j.molbiopara.2006.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 11/23/2022]
Abstract
The post-translational farnesylation of proteins serves to anchor a subset of intracellular proteins to membranes in eukaryotic organisms and also promotes protein-protein interactions. This enzymatic reaction is carried out by protein farnesyltransferase (PFT), which catalyzes the transfer of a 15-carbon isoprenoid lipid unit, a farnesyl group, from farnesyl pyrophosphate to the C-termini of proteins containing a CaaX motif. Inhibition of PFT is lethal to the pathogenic protozoa Plasmodium falciparum. Previously, we have shown that parasites resistant to a tetrahydroquinoline (THQ)-based PFT inhibitor BMS-388891 have mutations leading to amino acid substitutions in PFT that map to the peptide substrate binding domain. We now report the selection of parasites resistant to another THQ PFT inhibitor BMS-339941. In whole cell assays sensitivity to BMS-339941 was reduced by 33-fold in a resistant clone, and biochemical analysis demonstrated a corresponding 33-fold increase in the BMS-339941 K(i) for the mutant PFT enzyme. More detailed kinetic analysis revealed that the mutant enzyme required higher concentration of peptide and farnesyl pyrophosphate substrates for optimum catalysis. Unlike previously characterized parasites resistant to BMS-388891, the resistant parasites have a mutation which is predicted to be in a distinct location of the enzymatic pocket, near the farnesyl pyrophosphate binding pocket. This is the first description of a mutation from any species affecting the farnesyl pyrophosphate binding pocket with reduced efficacy of PFT inhibitors. These data provide further support that PFT is the target of THQ inhibitors in P. falciparum and suggest that PFT inhibitors should be combined with other antimalarial agents to minimize the development of resistant parasites.
Collapse
Affiliation(s)
| | - John White
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | - Oliver Hucke
- Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | - Michael A. Hast
- Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Lorena S. Beese
- Biochemistry, Duke University Medical Center, Durham, NC, USA
| | | | - Pradipsinh K. Rathod
- Department of Pathobiology, University of Washington, Seattle, WA, USA
- Chemistry, University of Washington, Seattle, WA, USA
| | - Wesley C. Van Voorhis
- Department of Pathobiology, University of Washington, Seattle, WA, USA
- Medicine, University of Washington, Seattle, WA, USA
- Corresponding author: Wesley C. Van Voorhis, Dept. of Medicine, University of Washington, Box 357185, 1959 N.E. Pacific, Seattle, WA 98195-7185, Tel.: + 1-206-543-2447; fax: + 1-206-685-8681, E. mail addresses:
| |
Collapse
|
29
|
Sousa SF, Fernandes PA, Ramos MJ. Theoretical studies on farnesyltransferase: The distances paradox explained. Proteins 2006; 66:205-18. [PMID: 17068802 DOI: 10.1002/prot.21219] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In spite of the enormous interest that has been devoted to its study, the mechanism of the enzyme farnesyltransferase (FTase) remains the subject of several crucial doubts. In this article, we shed a new light in one of the most fundamental dilemmas that characterize the mechanism of this puzzling enzyme commonly referred to as the "distances paradox", which arises from the existence of a large 8-A distance between the two reactive atoms in the reaction catalyzed by this enzyme: a Zn-bound cysteine sulphur atom from a peptidic substrate and the farnesyldiphosphate (FPP) carbon 1. This distance must be overcome for the reaction to occur. In this study, the two possible alternatives were evaluated by combining molecular mechanics (AMBER) and quantum chemical calculations (B3LYP). Basically, our results have shown that an activation of the Zn-bound cysteine thiolate with subsequent displacement from the zinc coordination sphere towards the FPP carbon 1 is not a realistic hypothesis of overcoming the large distance reported in the crystallographic structures of the ternary complexes between the two reactive atoms, but that a rotation involving the FPP molecule can bring the two atoms closer with moderate energetic cost, coherent with previous experimental data. This conclusion opens the door to an understanding of the chemical step in the farnesylation reaction.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
30
|
Sousa SF, Fernandes PA, Ramos MJ. Effective tailor-made force field parameterization of the several Zn coordination environments in the puzzling FTase enzyme: opening the door to the full understanding of its elusive catalytic mechanism. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0170-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Panethymitaki C, Bowyer P, Price H, Leatherbarrow R, Brown K, Smith D. Characterization and selective inhibition of myristoyl-CoA:protein N-myristoyltransferase from Trypanosoma brucei and Leishmania major. Biochem J 2006; 396:277-85. [PMID: 16480339 PMCID: PMC1462705 DOI: 10.1042/bj20051886] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 microM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16-66 microM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.
Collapse
Affiliation(s)
- Chrysoula Panethymitaki
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
| | - Paul W. Bowyer
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- ‡Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Helen P. Price
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- §Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, U.K
| | | | - Katherine A. Brown
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
| | - Deborah F. Smith
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- §Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, U.K
- To whom correspondence should be addressed, at Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York (email )
| |
Collapse
|
32
|
Gilleron P, Millet R, Houssin R, Wlodarczyk N, Farce A, Lemoine A, Goossens JF, Chavatte P, Pommery N, Hénichart JP. Solid-phase synthesis and pharmacological evaluation of a library of peptidomimetics as potential farnesyltransferase inhibitors: an approach to new lead compounds. Eur J Med Chem 2006; 41:745-55. [PMID: 16647166 DOI: 10.1016/j.ejmech.2006.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/16/2006] [Accepted: 03/20/2006] [Indexed: 11/30/2022]
Abstract
Oncogenic Ras proteins whose activation is farnesylation by farnesyltransferase have been seen as important targets for novel anticancer drugs. Inhibitors of this enzyme have already been developed as potential anti-cancer drugs, particularly by rational design based on the structure of the CA(1)A(2)X carboxyl terminus of Ras. Synthesis of a peptidomimetics library via solid-phase synthesis using the Multipin method is described here. The most active hits on cellular assays were resynthesized and enzymatic activity was measured. Compounds A1, A5 and A7 present significant activity on the isolated enzyme (IC(50)=117, 57.3 and 28.5 nM) and their molecular docking in the active site of the enzyme provides details on key interactions with the protein.
Collapse
Affiliation(s)
- P Gilleron
- Institut de chimie pharmaceutique Albert-Lespagnol, EA 2692, université de Lille-II, rue du professeur-Laguesse, BP 83, 59006 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Trypanosomes are the causative agents of Chagas' disease in Central and South America and sleeping sickness in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which were developed > 30 years ago. In addition, these drugs display undesirable toxic side effects and the emergence of drug-resistant trypanosomes has been reported. Therefore, the development of new drugs in the treatment of Chagas' disease and sleeping sickness is urgently required. This article summarises the recent progress in identifying novel lead compounds for antitrypanosomal chemotherapy. Particular emphasis is placed on those agents showing promising, selective antitrypanosomal activity.
Collapse
Affiliation(s)
- Dietmar Steverding
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 TJ7, UK.
| | | |
Collapse
|
34
|
Esteva MI, Kettler K, Maidana C, Fichera L, Ruiz AM, Bontempi EJ, Andersson B, Dahse HM, Haebel P, Ortmann R, Klebe G, Schlitzer M. Benzophenone-based farnesyltransferase inhibitors with high activity against Trypanosoma cruzi. J Med Chem 2006; 48:7186-91. [PMID: 16279776 DOI: 10.1021/jm050456x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Less toxic drugs are needed to combat the human parasite Trypanosoma cruzi (Chagas's disease). One novel target for antitrypanosomal drug design is farnesyltransferase. Several farnesyltransferase inhibitors based on the benzophenone scaffold were assayed in vitro and in vivo with the parasite. The common structural feature of all inhibitors is an amino function which can be protonated. Best in vitro activity (LC50 values 1 and 10 nM, respectively) was recorded for the R-phenylalanine derivative 4a and for the N-propylpiperazinyl derivative 2f. These inhibitors showed no cytotoxicity to cells. When tested in vivo, the survival rates of infected animals receiving the inhibitors at 7 mg/kg body weight/day were 80 and 60% at day 115 postinfection, respectively.
Collapse
Affiliation(s)
- Mónica I Esteva
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, A.N.L.I.S., Dr. Carlos G. Malbrán, 1063 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Klupsch F, Houssin R, Humbert L, Imbenotte M, Hénichart JP, Lhermitte M. Major Metabolites of Zolpidem: Expeditious Synthesis and Mass Spectra. Chem Pharm Bull (Tokyo) 2006; 54:1318-21. [PMID: 16946544 DOI: 10.1248/cpb.54.1318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An expeditious route to the two major metabolites of Zolpidem-and readily applicable to the synthesis of the drug-was established via a cyclization reaction between a 2-aminopyridine and a suitable alpha-bromoacetophenone. The structures of the target compounds were confirmed from a 2D (1)H-(15)N NMR correlation. Their mass spectra contribute to a reliable toxicological identification of the drug in the case of drug-facilitated crimes.
Collapse
Affiliation(s)
- Frédérique Klupsch
- Institut de Chimie Pharmaceutique Albert Lespagnol, EA 2692, Université de Lille 2, 3 rue du Professeur J. Laquesse, BP 83, 59006 Lille, France
| | | | | | | | | | | |
Collapse
|
36
|
Ohkanda J, Strickland CL, Blaskovich MA, Carrico D, Lockman JW, Vogt A, Bucher CJ, Sun J, Qian Y, Knowles D, Pusateri EE, Sebti SM, Hamilton AD. Structure-based design of imidazole-containing peptidomimetic inhibitors of protein farnesyltransferase. Org Biomol Chem 2006; 4:482-92. [PMID: 16446806 DOI: 10.1039/b508184j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of imidazole-containing peptidomimetic PFTase inhibitors and their co-crystal structures bound to PFTase and FPP are reported. The structures reveal that the peptidomimetics adopt a similar conformation to that of the extended CVIM tetrapeptide, with the imidazole group coordinating to the catalytic zinc ion. Both mono- and bis-imidazole-containing derivatives, 13 and 16, showed remarkably high enzyme inhibition activity against PFTase in vitro with IC50 values of 0.86 and 1.7 nM, respectively. The peptidomimetics were also highly selective for PFTase over PGGTase-I both in vitro and in intact cells. In addition, peptidomimetics and were found to suppress tumor growth in nude mouse xenograft models with no gross toxicity at a daily dose of 25 mg kg(-1).
Collapse
Affiliation(s)
- Junko Ohkanda
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Eastman RT, Buckner FS, Yokoyama K, Gelb MH, Van Voorhis WC. Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J Lipid Res 2005; 47:233-40. [PMID: 16339110 DOI: 10.1194/jlr.r500016-jlr200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein farnesylation is a form of posttranslational modification that occurs in most, if not all, eukaryotic cells. Inhibitors of protein farnesyltransferase (PFTIs) have been developed as anticancer chemotherapeutic agents. Using the knowledge gained from the development of PFTIs for the treatment of cancer, researchers are currently investigating the use of PFTIs for the treatment of eukaryotic pathogens. This "piggy-back" approach not only accelerates the development of a chemotherapeutic agent for protozoan pathogens but is also a means of mitigating the costs associated with de novo drug design. PFTIs have already been shown to be efficacious in the treatment of eukaryotic pathogens in animal models, including both Trypanosoma brucei, the causative agent of African sleeping sickness, and Plasmodium falciparum, one of the causative agents of malaria. Here, current evidence and progress are summarized that support the targeting of protein farnesyltransferase for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Richard T Eastman
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
38
|
Pink R, Hudson A, Mouriès MA, Bendig M. Opportunities and Challenges in Antiparasitic Drug Discovery. Nat Rev Drug Discov 2005; 4:727-40. [PMID: 16138106 DOI: 10.1038/nrd1824] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New antiparasitic drugs are urgently needed to treat and control diseases such as malaria, leishmaniasis, sleeping sickness and filariasis, which affect millions of people each year. However, because the majority of those infected live in countries in which the prospects of any financial return on investment are too low to support market-driven drug discovery and development, alternative approaches are needed. In this article, challenges and opportunities for antiparasitic drug discovery are considered, highlighting some of the progress that has been made in recent years, partly through scientific advances, but also by more effective partnership between the public and private sectors.
Collapse
Affiliation(s)
- Richard Pink
- TDR (the UNICEF/UNDP/World Bank/WHO/Special Programme for Research and Training in Tropical Diseases), Geneva 1211, Switzerland
| | | | | | | |
Collapse
|
39
|
Farnesyltransferase: Theoretical studies on peptide substrate entrance—thiol or thiolate coordination? ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Nallan L, Bauer KD, Bendale P, Rivas K, Yokoyama K, Hornéy CP, Pendyala PR, Floyd D, Lombardo LJ, Williams DK, Hamilton A, Sebti S, Windsor WT, Weber PC, Buckner FS, Chakrabarti D, Gelb MH, Van Voorhis WC. Protein Farnesyltransferase Inhibitors Exhibit Potent Antimalarial Activity. J Med Chem 2005; 48:3704-13. [PMID: 15916422 DOI: 10.1021/jm0491039] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New therapeutics to combat malaria are desperately needed. Here we show that the enzyme protein farnesyltransferase (PFT) from the malaria parasite Plasmodium falciparum (P. falciparum) is an ideal drug target. PFT inhibitors (PFTIs) are well tolerated in man, but are highly cytotoxic to P. falciparum. Because of their anticancer properties, PFTIs comprise a highly developed class of compounds. PFTIs are ideal for the rapid development of antimalarials, allowing "piggy-backing" on previously garnered information. Low nanomolar concentrations of tetrahydroquinoline (THQ)-based PFTIs inhibit P. falciparum PFT and are cytotoxic to cultured parasites. Biochemical studies suggest inhibition of parasite PFT as the mode of THQ cytotoxicity. Studies with malaria-infected mice show that THQ PFTIs dramatically reduce parasitemia and lead to parasite eradication in the majority of animals. These studies validate P. falciparum PFT as a target for the development of antimalarials and describe a potent new class of THQ PFTIs with antimalaria activity.
Collapse
Affiliation(s)
- Laxman Nallan
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Eastman RT, White J, Hucke O, Bauer K, Yokoyama K, Nallan L, Chakrabarti D, Verlinde CLMJ, Gelb MH, Rathod PK, Van Voorhis WC. Resistance to a Protein Farnesyltransferase Inhibitor in Plasmodium falciparum. J Biol Chem 2005; 280:13554-9. [PMID: 15661734 DOI: 10.1074/jbc.m413556200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-translational farnesylation of proteins serves to anchor a subset of intracellular proteins to membranes in eukaryotic organisms and also promotes protein-protein interactions. Inhibition of protein farnesyltransferase (PFT) is lethal to the pathogenic protozoa Plasmodium falciparum. Parasites were isolated that were resistant to BMS-388891, a tetrahydroquinoline (THQ) PFT inhibitor. Resistance was associated with a 12-fold decrease in drug susceptibility. Genotypic analysis revealed a single point mutation in the beta subunit in resistant parasites. The resultant tyrosine 837 to cysteine alteration in the beta subunit corresponded to the binding site for the THQ and peptide substrate. Biochemical analysis of Y837C-PFT demonstrated a 13-fold increase in BMS-388891 concentration necessary for inhibiting 50% of the enzyme activity. These data are consistent with PFT as the target of BMS-388891 in P. falciparum and suggest that PFT inhibitors should be combined with other antimalarial agents for effective therapy.
Collapse
Affiliation(s)
- Richard T Eastman
- Department of Pathobiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sousa SF, Fernandes PA, Ramos MJ. Unraveling the mechanism of the farnesyltransferase enzyme. J Biol Inorg Chem 2004; 10:3-10. [PMID: 15611883 DOI: 10.1007/s00775-004-0612-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 11/05/2004] [Indexed: 12/18/2022]
Abstract
Farnesyltransferase enzyme (FTase) is currently one of the most fascinating targets in cancer research. Studies in other areas, namely in the fight against parasites and viruses, have also led to very promising results. However, in spite of the thrilling achievements in the development of farnesyltransferase inhibitors (FTIs) over the past few years, the farnesylation mechanism remains, to some degree, a mystery. This review tries to shed some light on this puzzling enzyme by analyzing seven key mechanistic dilemmas, based on recent studies that have dramatically changed the way this enzyme is currently perceived.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
43
|
Sousa SF, Fernandes PA, Ramos MJ. Farnesyltransferase--new insights into the zinc-coordination sphere paradigm: evidence for a carboxylate-shift mechanism. Biophys J 2004; 88:483-94. [PMID: 15501930 PMCID: PMC1305025 DOI: 10.1529/biophysj.104.048207] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the enormous interest that has been devoted to the study of farnesyltransferase, many questions concerning its catalytic mechanism remain unanswered. In particular, several doubts exist on the structure of the active-site zinc coordination sphere, more precisely on the nature of the fourth ligand, which is displaced during the catalytic reaction by a peptide thiolate. From available crystallographic structures, and mainly from x-ray absorption fine structure data, two possible alternatives emerge: a tightly zinc-bound water molecule or an almost symmetrical bidentate aspartate residue (Asp-297beta). In this study, high-level theoretical calculations, with different-sized active site models, were used to elucidate this aspect. Our results demonstrate that both coordination alternatives lie in a notably close energetic proximity, even though the bidentate hypothesis has a somewhat lower energy. The Gibbs reaction and activation energies for the mono-bidentate conversion, as well as the structure for the corresponding transition state, were also determined. Globally, these results indicate that at room temperature the mono-bidentate conversion is reversible and very fast, and that probably both states exist in equilibrium, which suggests that a carboxylate-shift mechanism may have a key role in the farnesylation process by assisting the coordination/displacement of ligands to the zinc ion, thereby controlling the enzyme activity. Based on this equilibrium hypothesis, an explanation for the existing contradictions between the crystallographic and x-ray absorption fine structure results is proposed.
Collapse
Affiliation(s)
- Sérgio F Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | | |
Collapse
|