1
|
Papay RS, Macdonald JD, Stauffer SR, Perez DM. Characterization of a novel positive allosteric modulator of the α 1A-Adrenergic receptor. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100142. [PMID: 36544813 PMCID: PMC9762201 DOI: 10.1016/j.crphar.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
α1-Adrenergic Receptors (ARs) are G-protein Coupled Receptors (GPCRs) that regulate the sympathetic nervous system via the binding and activation of norepinephrine (NE) and epinephrine (Epi). α1-ARs control various aspects of neurotransmission, cognition, cardiovascular functions as well as other organ systems. However, therapeutic drug development for these receptors, particularly agonists, has been stagnant due to unwanted effects on blood pressure regulation. We report the synthesis and characterization of the first positive allosteric modulator (PAM) for the α1-AR based upon the derivation of the α1A-AR selective imidazoline agonist, cirazoline. Compound 3 (Cmpd-3) binds the α1A-AR with high and low affinity sites (0.13pM; 54 nM) typical of GPCR agonists, and reverts to a single low affinity site of 100 nM upon the addition of GTP. Comparison of Cmpd-3 versus other orthosteric α1A-AR-selective imidazoline ligands reveal unique properties that are consistent with a type I PAM. Cmpd-3 is both conformationally and ligand-selective for the α1A-AR subtype. In competition binding studies, Cmpd-3 potentiates NE-binding at the α1A-AR only on the high affinity state of NE with no effect on the Epi-bound α1A-AR. Moreover, Cmpd-3 demonstrates signaling-bias and potentiates the NE-mediated cAMP response of the α1A-AR at nM concentrations with no effects on the NE-mediated inositol phosphate response. There are no effects of Cmpd-3 on the signaling at the α1B- or α1D-AR subtypes. Cmpd-3 displays characteristics of a pure PAM with no intrinsic agonist properties. Specific derivation of Cmpd-3 at the R1 ortho-position recapitulated PAM characteristics. Our results characterize the first PAM for the α1-AR and holds promise for a first-in-class therapeutic to treat various diseases without the side effect of increasing blood pressure intrinsic to classical orthosteric agonists.
Collapse
Affiliation(s)
- Robert S. Papay
- The Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jonathan D. Macdonald
- Center for Therapeutics Discovery, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Dianne M. Perez
- The Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| |
Collapse
|
2
|
Wada Y, Nakano S, Morimoto A, Kasahara KI, Hayashi T, Takada Y, Suzuki H, Niwa-Sakai M, Ohashi S, Mori M, Hirokawa T, Shuto S. Discovery of Novel Indazole Derivatives as Orally Available β 3-Adrenergic Receptor Agonists Lacking Off-Target-Based Cardiovascular Side Effects. J Med Chem 2017; 60:3252-3265. [PMID: 28355078 DOI: 10.1021/acs.jmedchem.6b01197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously discovered that indazole derivative 8 was a highly selective β3-adrenergic receptor (β3-AR) agonist, but it appeared to be metabolically unstable. To improve metabolic stability, further optimization of this scaffold was carried out. We focused on the sulfonamide moiety of this scaffold, which resulted in the discovery of compound 15 as a highly potent β3-AR agonist (EC50 = 18 nM) being inactive to β1-, β2-, and α1A-AR (β1/β3, β2/β3, and α1A/β3 > 556-fold). Compound 15 showed dose-dependent β3-AR-mediated responses in marmoset urinary bladder smooth muscle, had a desirable metabolic stability and pharmacokinetic profile (Cmax and AUC), and did not obviously affect heart rate or mean blood pressure when administered intravenously (3 mg/kg) to anesthetized rats. Thus, compound 15 is a highly potent, selective, and orally available β3-AR agonist, which may serve as a candidate drug for the treatment of overactive bladder without off-target-based cardiovascular side effects.
Collapse
Affiliation(s)
- Yasuhiro Wada
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Seiji Nakano
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Akifumi Morimoto
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Ken-Ichi Kasahara
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Takahiko Hayashi
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Yoshio Takada
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Hiroko Suzuki
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Michiko Niwa-Sakai
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Shigeki Ohashi
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Mutsuhiro Mori
- Pharmaceutical Research Center, Asahi Kasei Pharma Corporation , 632-1, Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | |
Collapse
|
3
|
Montgomery MD, Chan T, Swigart PM, Myagmar BE, Dash R, Simpson PC. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice. PLoS One 2017; 12:e0168409. [PMID: 28081170 PMCID: PMC5231318 DOI: 10.1371/journal.pone.0168409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023] Open
Abstract
Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35-40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies.
Collapse
Affiliation(s)
- Megan D. Montgomery
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Trevor Chan
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Philip M. Swigart
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Bat-erdene Myagmar
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Rajesh Dash
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Paul C. Simpson
- Department of Medicine, Cardiology Division, VA Medical Center, San Francisco, CA, United States of America
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
4
|
Jain KS, Bariwal JB, Kathiravan MK, Phoujdar MS, Sahne RS, Chauhan BS, Shah AK, Yadav MR. Recent advances in selective α1-adrenoreceptor antagonists as antihypertensive agents. Bioorg Med Chem 2008; 16:4759-800. [DOI: 10.1016/j.bmc.2008.02.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022]
|
5
|
Grisé CM, Rodrigue EM, Barriault L. Gold(I)-catalyzed benzannulation of 3-hydroxy-1,5-enynes: an efficient synthesis of substituted tetrahydronaphthalenes and related compounds. Tetrahedron 2008. [DOI: 10.1016/j.tet.2007.10.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Perez DM. Structure-function of alpha1-adrenergic receptors. Biochem Pharmacol 2006; 73:1051-62. [PMID: 17052695 PMCID: PMC2034198 DOI: 10.1016/j.bcp.2006.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 11/17/2022]
Abstract
The Easson-Stedman hypothesis provided the rationale for the first studies of drug design for the alpha(1)-adrenergic receptor. Through chemical modifications of the catecholamine core structure, the need was established for a protonated amine, a beta-hydroxyl on a chiral center, and an aromatic ring with substitutions capable of hydrogen bonding. After the receptors were cloned and three alpha(1)-adrenergic receptor subtypes were discovered, drug design became focused on the analysis of receptor structure and new interactions were uncovered. It became clear that alpha(1)- and beta-adrenergic receptors did not share stringent homology in the ligand-binding pocket but this difference has allowed for more selective drug design. Novel discoveries on allosterism and agonist trafficking may be used in the future design of therapeutics with fewer side effects. This review will explore past and current knowledge of the structure-function of the alpha(1)-adrenergic receptor subtypes.
Collapse
Affiliation(s)
- Dianne M Perez
- Department of Molecular Cardiology, NB5, The Cleveland Clinic Foundation, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
Nakane M, Cowart MD, Hsieh GC, Miller L, Uchic ME, Chang R, Terranova MA, Donnelly-Roberts DL, Namovic MT, Miller TR, Wetter JM, Marsh K, Stewart AO, Brioni JD, Moreland RB. 2-[4-(3,4-Dimethylphenyl)piperazin-1-ylmethyl]-1H benzoimidazole (A-381393), a selective dopamine D4 receptor antagonist. Neuropharmacology 2005; 49:112-21. [PMID: 15992586 DOI: 10.1016/j.neuropharm.2005.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/24/2004] [Accepted: 02/04/2005] [Indexed: 11/17/2022]
Abstract
2-[4-(3,4-Dimethylphenlyl)piperazin-1-ylmethyl]-1H benzoimidazole (A-381393) was identified as a potent dopamine D4 receptor antagonist with excellent receptor selectivity. [3H]-spiperone competition binding assays showed that A-381393 potently bound to membrane from cells expressing recombinant human dopamine D4.4 receptor (Ki=1.5 nM), which was 20-fold higher than that of clozapine (Ki=30.4 nM). A-381393 exhibited highly selective binding for the dopamine D4.4 receptor (>2700-fold) when compared to D1, D2, D3 and D5 dopamine receptors. Furthermore, in comparison to clozapine and L-745870, A-381393 exhibits better receptor selectivity, showing no affinity up to 10 microM for a panel of more than 70 receptors and channels, with the exception of moderate affinity for 5-HT2A (Ki=370 nM). A-381393 potently inhibited the functional activity of agonist-induced GTP-gamma-S binding assay and 1 microM dopamine induced-Ca2+ flux in human dopamine D4.4 receptor expressing cells, but not in human dopamine D2L or D3 receptor cells. In contrast to L-745870, A-381393 did not exhibit any significant intrinsic activity in a D4.4 receptor. In vivo, A-381393 has good brain penetration after subcutaneous administration. A-381393 inhibited penile erection induced by the selective D4 agonist PD168077 in conscious rats. Thus, A-381393 is a novel selective D4 antagonist that will enhance the ability to study dopamine D4 receptors both in vitro and in vivo.
Collapse
Affiliation(s)
- Masaki Nakane
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|