1
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
2
|
Van Den Hauwe R, Elsocht M, Ballet S, Hollanders C. Efficient Synthesis of Polysubstituted 1,5-Benzodiazepinone Dipeptide Mimetics via an Ugi-4CR-Ullmann Condensation Sequence. Synlett 2021. [DOI: 10.1055/a-1545-2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient three-step synthesis towards 3-amino-1,4-benzodiazepin-2-one derivatives is presented. The versatile Ugi-4-component reaction (Ugi-4CR) and Boc deprotection is followed by a ligand-free Ullmann condensation. This protocol allows the rapid construction of a diverse array of substituted 1,5-benzodiazepinones. Since Ugi-based products are typically limited by their ‘inert’ C-terminal amides, the use of a convertible (‘cleavable’) isocyanide was envisaged and resulted in building blocks that can be made SPPS compatible. To demonstrate the potential of this novel synthetic route, the design and preparation of novel phenylurea-1,5-benzodiazepin-4(5H)-one dipeptide mimetics with potential CCK2-antagonist properties is reported.
Collapse
|
3
|
Mahdavi M, Pedrood K, Montazer MN, Larijani B. Recent Advances in the Synthesis of Heterocycles by the Aza-Wittig Reaction. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1394-7511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe formation of the C=N bond in recent studies on heterocyclic compounds via the aza-Wittig reaction is reviewed. Furthermore, two different strategies for the formation of heterocyclic compounds, including intermolecular and intramolecular aza-Wittig reactions are described. The primary aim of this review is to provide up-to-date information on the application of the aza-Wittig reaction in the synthesis of a wide range of N-containing heterocyclic compounds in the chemical literature since 2010.1 Introduction2 Mechanism of the Staudinger and Aza-Wittig Reactions3 Intramolecular Aza-Wittig Reaction4 Intermolecular Aza-Wittig Reaction5 Conclusion
Collapse
Affiliation(s)
- Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences
| | - Mohammad Nazari Montazer
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences
| |
Collapse
|
4
|
Ranjit A, Khajehpour S, Aghazadeh-Habashi A. Update on Angiotensin II Subtype 2 Receptor: Focus on Peptide and Nonpeptide Agonists. Mol Pharmacol 2021; 99:469-487. [PMID: 33795351 DOI: 10.1124/molpharm.121.000236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (Ang II) is the most dominant effector component of the renin-angiotensin system (RAS) that generally acts through binding to two main classes of G protein-coupled receptors, namely Ang II subtype 1 receptor (AT1R) and angiotensin II subtype 2 receptor (AT2R). Despite some controversial reports, the activation of AT2R generally antagonizes the effects of Ang II binding on AT1R. Studying AT2R signaling, function, and its specific ligands in cell culture or animal studies has confirmed its beneficial effects throughout the body. These characteristics classify AT2R as part of the protective arm of the RAS that, along with functions of Ang (1-7) through Mas receptor signaling, modulates the harmful effects of Ang II on AT1R in the activated classic arm of the RAS. Although Ang II is the primary ligand for AT2R, we have summarized other natural or synthetic peptide and nonpeptide agonists with critical evaluation of their structure, mechanism of action, and biologic activity. SIGNIFICANCE STATEMENT: AT2R is one of the main components of the RAS and has a significant prospective for mediating the beneficial action of the RAS through its protective arm on the body's homeostasis. Targeting AT2R offers substantial clinical application possibilities for modulating various pathological conditions. This review provided concise information regarding the AT2R peptide and nonpeptide agonists and their potential clinical applications for various diseases.
Collapse
Affiliation(s)
- Arina Ranjit
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | - Sana Khajehpour
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | | |
Collapse
|
5
|
Jang HS, Kwon YI, Kim S. Facile Synthesis of Functionalized 1,4‐Benzodiazepine‐3‐One‐5‐Acetates via [4 + 3]‐Annulation of Azaoxyallyl Cations With 2‐Aminophenyl α,β‐Unsaturated Esters. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hyun Sun Jang
- Department of ChemistryKyonggi University Suwon 16227 Republic of Korea
| | - Yong Il Kwon
- Department of ChemistryKyonggi University Suwon 16227 Republic of Korea
| | - Sung‐Gon Kim
- Department of ChemistryKyonggi University Suwon 16227 Republic of Korea
| |
Collapse
|
6
|
Vasile S, Hallberg A, Sallander J, Hallberg M, Åqvist J, Gutiérrez-de-Terán H. Evolution of Angiotensin Peptides and Peptidomimetics as Angiotensin II Receptor Type 2 (AT2) Receptor Agonists. Biomolecules 2020; 10:E649. [PMID: 32340100 PMCID: PMC7226584 DOI: 10.3390/biom10040649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II receptor type 1 and 2 (AT1R and AT2R) are two G-protein coupled receptors that mediate most biological functions of the octapeptide Angiotensin II (Ang II). AT2R is upregulated upon tissue damage and its activation by selective AT2R agonists has become a promising approach in the search for new classes of pharmaceutical agents. We herein analyzed the chemical evolution of AT2R agonists starting from octapeptides, through shorter peptides and peptidomimetics to the first drug-like AT2R-selective agonist, C21, which is in Phase II clinical trials and aimed for idiopathic pulmonary fibrosis. Based on the recent crystal structures of AT1R and AT2R in complex with sarile, we identified a common binding model for a series of 11 selected AT2R agonists, consisting of peptides and peptidomimetics of different length, affinity towards AT2R and selectivity versus AT1R. Subsequent molecular dynamics simulations and free energy perturbation (FEP) calculations of binding affinities allowed the identification of the bioactive conformation and common pharmacophoric points, responsible for the key interactions with the receptor, which are maintained by the drug-like agonists. The results of this study should be helpful and facilitate the search for improved and even more potent AT2R-selective drug-like agonists.
Collapse
Affiliation(s)
- Silvana Vasile
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden;
| | - Jessica Sallander
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden;
| | - Johan Åqvist
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Hugo Gutiérrez-de-Terán
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| |
Collapse
|
7
|
Kwon Y, Choi S, Jang HS, Kim SG. Rapid Access to Hindered α-Amino Acid Derivatives and Benzodiazepin-3-ones from Aza-Oxyallyl Cations. Org Lett 2020; 22:1420-1425. [DOI: 10.1021/acs.orglett.0c00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- YongIl Kwon
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sunyoung Choi
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Hyun Sun Jang
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42, Gwanggyosan-ro Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
8
|
One-pot and regioselective synthesis of polysubstituted 3,4-dihydroquinazolines and 4,5-dihydro-3H-1,4-benzodiazepin-3-ones by sequential Ugi/Staudinger/aza-Wittig reaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Singh KD, Unal H, Desnoyer R, Karnik SS. Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT 1R Initiated by van der Waals Attraction. J Chem Inf Model 2019; 59:373-385. [PMID: 30608150 DOI: 10.1021/acs.jcim.8b00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a succession of structural changes involved in hormone peptide activation of a prototypical GPCR. Microsecond molecular dynamics simulation generated conformational ensembles reveal propagation of structural changes through key "microswitches" within human AT1R bound to native hormone. The endocrine octa-peptide angiotensin II (AngII) activates AT1R signaling in our bodies which maintains physiological blood pressure, electrolyte balance, and cardiovascular homeostasis. Excessive AT1R activation is associated with pathogenesis of hypertension and cardiovascular diseases which are treated by sartan drugs. The mechanism of AT1R inhibition by sartans has been elucidated by 2.8 Å X-ray structures, mutagenesis, and computational analyses. Yet, the mechanism of AT1R activation by AngII is unclear. The current study delineates an activation scheme initiated by AngII binding. A van der Waals "grasp" interaction between Phe8AngII with Ile2887.39 in AT1R induced mechanical strain pulling Tyr2927.43 and breakage of critical interhelical H-bonds, first between Tyr2927.43 and Val1083.32 and second between Asn1113.35 and Asn2957.46. Subsequently changes are observed in conserved microswitches DRYTM3, Yx7K(R)TM5, CWxPTM6, and NPxxYTM7 in AT1R. Activating the microswitches in the intracellular region of AT1R may trigger formation of the G-protein binding pocket as well as exposure of helix-8 to cytoplasm. Thus, the active-like conformation of AT1R is initiated by the van der Waals interaction of Phe8AngII with Ile2887.39, followed by systematic reorganization of critical interhelical H-bonds and activation of microswitches.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| |
Collapse
|
10
|
Sasiambarrena LD, Barri IA, Fraga GG, Bravo RD, Ponzinibbio A. Facile synthesis of 4-substituted 1,2,4,5-tetrahydro-1,4-benzodiazepin-3-ones by reductive cyclization of 2-chloro-N-(2-nitrobenzyl)acetamides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Ota Y, Miyamura S, Araki M, Itoh Y, Yasuda S, Masuda M, Taniguchi T, Sowa Y, Sakai T, Itami K, Yamaguchi J, Suzuki T. Design, synthesis and evaluation of γ-turn mimetics as LSD1-selective inhibitors. Bioorg Med Chem 2018; 26:775-785. [DOI: 10.1016/j.bmc.2017.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/25/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
|
12
|
Convenient two-step synthesis of highly functionalized benzo-fused 1,4-diazepin-3-ones and 1,5-diazocin-4-ones by sequential Ugi and intramolecular S N Ar reactions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Jedhe GS, Kotmale AS, Rajamohanan PR, Pasha S, Sanjayan GJ. Angiotensin II analogs comprised of Pro-Amb (γ-turn scaffold) as angiotensin II type 2 (AT2) receptor agonists. Chem Commun (Camb) 2016; 52:1645-8. [DOI: 10.1039/c5cc09687a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the design, synthesis and conformational investigation of Pro-Amb (proline-3-amino-2-methoxybenzoic acid) incorporated Angiotensin II and its truncated analogues.
Collapse
Affiliation(s)
- Ganesh S. Jedhe
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
- Peptide Synthesis Laboratory
| | - Amol S. Kotmale
- Central NMR Facility
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | | | - Santosh Pasha
- Peptide Synthesis Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi 110007
- India
| | | |
Collapse
|
14
|
Douchez A, Lubell WD. Chemoselective Alkylation for Diversity-Oriented Synthesis of 1,3,4-Benzotriazepin-2-ones and Pyrrolo[1,2][1,3,4]benzotriazepin-6-ones, Potential Turn Surrogates. Org Lett 2015; 17:6046-9. [DOI: 10.1021/acs.orglett.5b03046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antoine Douchez
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal H3C 3J7, Canada
| | - William D. Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal H3C 3J7, Canada
| |
Collapse
|
15
|
Wang HJ, Camara F, Haber JC, Mangette JE. Synthesis of benzo[6,7][1,4]diazepino[1,2-b]indazol-7(6H)-ones and benzo[f]pyrazolo[1,5-a][1,4]diazepin-4-ones via CuI/l-proline catalyzed intramolecular N2-arylation. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Clayton D, Hanchapola I, Thomas WG, Widdop RE, Smith AI, Perlmutter P, Aguilar MI. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2. Front Pharmacol 2015; 6:5. [PMID: 25688208 PMCID: PMC4311625 DOI: 10.3389/fphar.2015.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a zinc carboxypeptidase involved in the renin–angiotensin system (RAS) and inactivates the potent vasopressive peptide angiotensin II (Ang II) by removing the C-terminal phenylalanine residue to yield Ang1–7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R, and angiotensin type 2 (AT2R) receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here, we further explore this region for the potential to modulate ligand specificity. In this study, (1) a library of 47 peptides derived from the C-terminal tetrapeptide sequence (-IHPF) of Ang II was synthesized and assessed for ACE2 binding, (2) the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, (3) high affinity ACE2 binding chimeric AngII analogs were then synthesized and assessed, (4) the structure of the full-length Ang II analogs were assessed by circular dichroism, and (5) the Ang II analogs were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor selectivity.
Collapse
Affiliation(s)
- Daniel Clayton
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Iresha Hanchapola
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland Brisbane, QLD, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash University Clayton, VIC, Australia
| | - Alexander I Smith
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | | | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
17
|
Regioselective Synthesis of 2-Acylquinazolines and 3H-1,4-Benzodiazepin-3-ones by a Ugi 4CC/Staudinger/aza-Wittig Sequence. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Kaur N, Kishore D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2013.772202] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Navjeet Kaur
- a Department of Chemistry , Banasthali University , Banasthali , Rajasthan , India
| | - Dharma Kishore
- a Department of Chemistry , Banasthali University , Banasthali , Rajasthan , India
| |
Collapse
|
19
|
Behrends M, Wallinder C, Wieckowska A, Guimond MO, Hallberg A, Gallo-Payet N, Larhed M. N-Aryl Isoleucine Derivatives as Angiotensin II AT2 Receptor Ligands. ChemistryOpen 2014; 3:65-75. [PMID: 24808993 PMCID: PMC4000169 DOI: 10.1002/open.201300040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 01/25/2023] Open
Abstract
A novel series of ligands for the recombinant human AT2 receptor has been synthesized utilizing a fast and efficient palladium-catalyzed procedure for aminocarbonylation as the key reaction. Molybdenum hexacarbonyl [Mo(CO)6] was employed as the carbon monoxide source, and controlled microwave heating was applied. The prepared N-aryl isoleucine derivatives, encompassing a variety of amide groups attached to the aromatic system, exhibit binding affinities at best with K i values in the low micromolar range versus the recombinant human AT2 receptor. Some of the new nonpeptidic isoleucine derivatives may serve as starting points for further structural optimization. The presented data emphasize the importance of using human receptors in drug discovery programs.
Collapse
Affiliation(s)
- Malte Behrends
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Charlotta Wallinder
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Anna Wieckowska
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Marie-Odile Guimond
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Nicole Gallo-Payet
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Mats Larhed
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| |
Collapse
|
20
|
Veron JB, Joshi A, Wallinder C, Larhed M, Odell LR. Synthesis and evaluation of isoleucine derived angiotensin II AT(2) receptor ligands. Bioorg Med Chem Lett 2013; 24:476-9. [PMID: 24388688 DOI: 10.1016/j.bmcl.2013.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Sixteen new C-terminally modified analogues of 2, a previously described potent and selective AT2R ligand, were designed, synthesized and evaluated for their affinity to the AT2R receptor. The introduction of large, hydrophobic substituents was shown to be beneficial and the most active compound (17, Ki=8.5 μM) was over 12-times more potent than the lead compound 2.
Collapse
Affiliation(s)
- Jean-Baptiste Veron
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Advait Joshi
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Charlotta Wallinder
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R Odell
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
21
|
Abstract
It is quite well established that activation of the AT(2) receptor (AT(2)R) provides a counter-regulatory role to AT(1)R overactivity, particularly during pathological conditions. Indeed, a potential therapeutic role for the AT(2)R is currently being promulgated with the introduction of novel AT(2)R ligands such as compound 21 (C21). In this brief review, we will focus on recent evidence to suggest that AT(2)R exhibits promising organ protection in the context of the heart, kidney and brain, with inflammation and gender influencing outcome. However, this field is not without controversy since the 'flagship' ligand C21 has also come under scrutiny, although it is safe to say there is much evidence to support a potentially important role of AT(2)R in a number of cardiovascular diseases. This report updates recent data in this field.
Collapse
|
22
|
Adem A, Al Haj M, Benedict S, Yasin J, Nagelkerke N, Nyberg F, Yandle TG, Frampton CM, Lewis LK, Nicholls MG, Kazzam E. ANP and BNP responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PLoS One 2013; 8:e57806. [PMID: 23516417 PMCID: PMC3596322 DOI: 10.1371/journal.pone.0057806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were to investigate and compare the responses of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in the circulation of hydrated, dehydrated, and dehydrated losartan - treated camels; and to document the cardiac storage form of B-type natriuretic peptide in the camel heart. Eighteen male camels were used in the study: control or hydrated camels (n = 6), dehydrated camels (n = 6) and dehydrated losartan-treated camels (n = 6) which were dehydrated and received the angiotensin II (Ang II) AT-1 receptor blocker, losartan, at a dose of 5 mg/kg body weight intravenously for 20 days. Control animals were supplied with feed and water ad-libitum while both dehydrated and dehydrated-losartan treated groups were supplied with feed ad-libitum but no water for 20 days. Compared with time-matched controls, dehydrated camels exhibited a significant decrease in plasma levels of both ANP and BNP. Losartan-treated camels also exhibited a significant decline in ANP and BNP levels across 20 days of dehydration but the changes were not different from those seen with dehydration alone. Size exclusion high performance liquid chromatography of extracts of camel heart indicated that proB-type natriuretic peptide is the storage form of the peptide. We conclude first, that dehydration in the camel induces vigorous decrements in circulating levels of ANP and BNP; second, blockade of the renin-angiotensin system has little or no modulatory effect on the ANP and BNP responses to dehydration; third, proB-type natriuretic peptide is the storage form of this hormone in the heart of the one-humped camel.
Collapse
Affiliation(s)
- Abdu Adem
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mahmoud Al Haj
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sheela Benedict
- Internal Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Internal Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Nicolas Nagelkerke
- Community Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Tim G. Yandle
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Chris M. Frampton
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Lynley K. Lewis
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - M. Gary Nicholls
- Department of Medicine, University of Otago - Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Elsadig Kazzam
- Internal Medicine, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
23
|
Ali MA, Adem A, Chandranath IS, Benedict S, Pathan JY, Nagelkerke N, Nyberg F, Lewis LK, Yandle TG, Nicholls GM, Frampton CM, Kazzam E. Responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PLoS One 2012; 7:e37299. [PMID: 22624009 PMCID: PMC3356281 DOI: 10.1371/journal.pone.0037299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
Our objectives were to compare the levels of circulating electrolytes, hormones, and renal function during 20 days of dehydration in camels versus the level in non-dehydrated camels and to record the effect of blocking angiotensin II AT1 receptors with losartan during dehydration. Dehydration induced significant increments in serum sodium, creatinine, urea, a substantial fall in body weight, and a doubling in plasma arginine vasopressin (AVP) levels. Plasma aldosterone, however, was unaltered compared with time-matched controls. Losartan significantly enhanced the effect of dehydration to reduce body weight and increase serum levels of creatinine and urea, whilst also impairing the rise in plasma AVP and reducing aldosterone levels. We conclude that dehydration in the camel induces substantial increments in serum sodium, creatinine, urea and AVP levels; that aldosterone levels are altered little by dehydration; that blockade of angiotensin II type 1 receptors enhances the dehydration-induced fall in body weight and increase in serum creatinine and urea levels whilst reducing aldosterone and attenuating the rise in plasma AVP.
Collapse
Affiliation(s)
- Mahmoud Alhaj Ali
- Department of Pharmacology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Abdu Adem
- Department of Pharmacology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| | - Irwin S. Chandranath
- Department of Pharmacology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sheela Benedict
- Department of Internal Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Y. Pathan
- Department of Internal Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nicolas Nagelkerke
- Department of Community Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lynley K. Lewis
- Department of Medicine, Christchurch Hospital, Otago University, Christchurch, New Zealand
| | - Tim G. Yandle
- Department of Medicine, Christchurch Hospital, Otago University, Christchurch, New Zealand
| | - Gary M. Nicholls
- Department of Medicine, Christchurch Hospital, Otago University, Christchurch, New Zealand
| | - Chris M. Frampton
- Department of Medicine, Christchurch Hospital, Otago University, Christchurch, New Zealand
| | - Elsadig Kazzam
- Department of Internal Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Sun H, Tawa G, Wallqvist A. Classification of scaffold-hopping approaches. Drug Discov Today 2012; 17:310-24. [PMID: 22056715 PMCID: PMC3328312 DOI: 10.1016/j.drudis.2011.10.024] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this article we classify scaffold hopping into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics and topology-based hopping. We review the structural diversity of original and final scaffolds with respect to each category. We discuss the advantages and limitations of small, medium and large-step scaffold hopping. Finally, we summarize software that is frequently used to facilitate different kinds of scaffold-hopping methods.
Collapse
Affiliation(s)
- Hongmao Sun
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Frederick, MD 21702, USA.
| | | | | |
Collapse
|
25
|
Murugaiah AMS, Wu X, Wallinder C, Mahalingam AK, Wan Y, Sköld C, Botros M, Guimond MO, Joshi A, Nyberg F, Gallo-Payet N, Hallberg A, Alterman M. From the first selective non-peptide AT(2) receptor agonist to structurally related antagonists. J Med Chem 2012; 55:2265-78. [PMID: 22248302 DOI: 10.1021/jm2015099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A para substitution pattern of the phenyl ring is a characteristic feature of the first reported selective AT(2) receptor agonist M024/C21 (1) and all the nonpeptidic AT(2) receptor agonists described so far. Two series of compounds structurally related to 1 but with a meta substitution pattern have now been synthesized and biologically evaluated for their affinity to the AT(1) and AT(2) receptors. A high AT(2)/AT(1) receptor selectivity was obtained with all 41 compounds synthesized, and the majority exhibited K(i) ranging from 2 to 100 nM. Five compounds were evaluated for their functional activity at the AT(2) receptor, applying a neurite outgrowth assay in NG108-15 cells. Notably, four of the five compounds, with representatives from both series, acted as potent AT(2) receptor antagonists. These compounds were found to be considerably more effective than PD 123,319, the standard AT(2) receptor antagonist used in most laboratories. No AT(2) receptor antagonists were previously reported among the derivatives with a para substitution pattern. Hence, by a minor modification of the agonist 1 it could be transformed into the antagonist, compound 38. These compounds should serve as valuable tools in the assessment of the role of the AT(2) receptor in more complex physiological models.
Collapse
Affiliation(s)
- A M S Murugaiah
- Department of Medicinal Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jones ES, Del Borgo MP, Kirsch JF, Clayton D, Bosnyak S, Welungoda I, Hausler N, Unabia S, Perlmutter P, Thomas WG, Aguilar MI, Widdop RE. A Single β-Amino Acid Substitution to Angiotensin II Confers AT
2
Receptor Selectivity and Vascular Function. Hypertension 2011; 57:570-6. [DOI: 10.1161/hypertensionaha.110.164301] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emma S. Jones
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Mark P. Del Borgo
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Julian F. Kirsch
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Clayton
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Sanja Bosnyak
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Iresha Welungoda
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Hausler
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Sharon Unabia
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Patrick Perlmutter
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Walter G. Thomas
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Marie-Isabel Aguilar
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| | - Robert E. Widdop
- From the Department of Pharmacology (E.S.J., J.F.K., S.B., I.W., R.E.W.), Department of Biochemistry and Molecular Biology (M.P.D.B., D.C., S.U., M.-I.A.), and School of Chemistry (N.H., P.P.), Monash University, Clayton, Victoria, Australia; School of Biomedical Sciences (W.G.T.), University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Wang HJ, Wang Y, Camara F, Paquette WD, Csakai AJ, Mangette JE. Facile synthesis of 6,12b-diaza-dibenzo[a,h]azulen-7-ones and benzo[f]pyrrolo[1,2-a][1,4]diazepin-4-ones via CuI/l-proline catalyzed intramolecular N-arylation. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Intramolecular N-arylation in heterocyclization: synthesis of new pyrido-fused pyrrolo[1,2-a][1,4]diazepinones. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.05.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wang H, Jiang Y, Gao K, Ma D. Facile synthesis of 1,4-benzodiazepin-3-ones from o-bromobenzylamines and amino acids via a cascade coupling/condensation process. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.06.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Deschrijver T, Verwilst P, Broos K, Deckmyn H, Dehaen W, De Borggraeve WM. Synthesis and modifications of a small library of 1,4-benzodiazepin-3-ones toward potential inhibitors of the collagen—von Willebrand Factor interaction. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.03.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Pettersson B, Rydbeck A, Bergman J. Synthesis of 1,4-benzodiazepin-3-ones and 1,5-benzodiazocin-4-ones by addition of Grignard reagents to derivatives of o-aminobenzonitrile. Org Biomol Chem 2009; 7:1184-91. [DOI: 10.1039/b819260j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Xing L, Cheng C, Zhu R, Zhang B, Wang X, Hu Y. Self-modulated highly chemoselective direct-reductive-amination (DRA) of benzaldehydes straightforward to N-monosubstituted benzylamine hydrochlorides. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.09.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
|
34
|
De Silva RA, Santra S, Andreana PR. A Tandem One-Pot, Microwave-Assisted Synthesis of Regiochemically Differentiated 1,2,4,5-Tetrahydro-1,4-benzodiazepin-3-ones. Org Lett 2008; 10:4541-4. [DOI: 10.1021/ol801841m] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ravindra A. De Silva
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202
| | - Soumava Santra
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202
| | - Peter R. Andreana
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202
| |
Collapse
|
35
|
Abstract
In this study we report ab initio molecular orbital calculations on the natural hormone angiotensin II, which induces activity at AT1/AT2 receptor subtypes leading to vasoconstriction and subsequent hypertension, and AT2 antagonists. Pharmacophoric features of AT2 antagonists have been studied. A model of AT2 receptor has been made, and angiotensin II as well as antagonists has been systematically docked and their interactions with the receptor analyzed. Calculated ligand-receptor interaction energies have been correlated with experimentally observed biological potency data. Our studies indicate that antagonists retain sufficient interactions to block the receptor but may not be adequate to induce activity at the receptor. A poor antagonist is, therefore, proposed as a close mimic of angiotensin II in terms of interacting with the receptor. These studies further explore the mechanistic aspects of this important class of drugs.
Collapse
|
36
|
Modeling binding modes of angiotensin II and pseudopeptide analogues to the AT2 receptor. J Mol Graph Model 2008; 26:991-1003. [DOI: 10.1016/j.jmgm.2007.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 11/17/2022]
|
37
|
Blakeney JS, Reid RC, Le GT, Fairlie DP. Nonpeptidic Ligands for Peptide-Activated G Protein-Coupled Receptors. Chem Rev 2007; 107:2960-3041. [PMID: 17622179 DOI: 10.1021/cr050984g] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jade S Blakeney
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
38
|
Molteni G, Del Buttero P. A one-step synthesis of enantiopure 2-substituted 4,5-dihydro-1,4-benzodiazepine-3-ones via intramolecular azide cycloaddition. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Georgsson J, Sköld C, Botros M, Lindeberg G, Nyberg F, Karlén A, Hallberg A, Larhed M. Synthesis of a new class of druglike angiotensin II C-terminal mimics with affinity for the AT2 receptor. J Med Chem 2007; 50:1711-5. [PMID: 17358051 DOI: 10.1021/jm0613469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four tripeptides corresponding to the C-terminal region of angiotensin II were synthesized. One of these peptides (Ac-His-Pro-Ile) showed moderate binding affinity for the AT2 receptor. Two aromatic histidine-related scaffolds were synthesized and introduced in the tripeptides to give eight new peptidomimetic structures. Three of the new peptide-derived druglike molecules exhibited selective, nanomolar affinity for the AT2 receptor. These ligands may become lead compounds in the future development of novel classes of selective AT2 receptor agonists.
Collapse
Affiliation(s)
- Jennie Georgsson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rosenström U, Sköld C, Lindeberg G, Botros M, Nyberg F, Karlén A, Hallberg A. Design, Synthesis, and Incorporation of a β-Turn Mimetic in Angiotensin II Forming Novel Pseudopeptides with Affinity for AT1 and AT2 Receptors. J Med Chem 2006; 49:6133-7. [PMID: 17004728 DOI: 10.1021/jm051222g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A benzodiazepine-based beta-turn mimetic has been designed, synthesized, and incorporated into angiotensin II. Comparison of the mimetic with beta-turns in crystallized proteins showed that it most closely resembles a type II beta-turn. The compounds exhibited high to moderate binding affinity for the AT2 receptor, and one also displayed high affinity for the AT1 receptor. Molecular modeling showed that the high-affinity compounds could be incorporated into a previously derived model of AT2 receptor ligands.
Collapse
MESH Headings
- Angiotensin II/chemistry
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Benzodiazepines/chemical synthesis
- Benzodiazepines/chemistry
- Benzodiazepines/pharmacology
- Drug Design
- Female
- In Vitro Techniques
- Ligands
- Liver/drug effects
- Liver/metabolism
- Models, Molecular
- Molecular Mimicry
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Peptides/chemistry
- Protein Structure, Secondary
- Rabbits
- Radioligand Assay
- Rats
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Swine
- Uterus/drug effects
- Uterus/metabolism
Collapse
Affiliation(s)
- Ulrika Rosenström
- Department of Medicinal Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Georgsson J, Rosenström U, Wallinder C, Beaudry H, Plouffe B, Lindeberg G, Botros M, Nyberg F, Karlén A, Gallo-Payet N, Hallberg A. Short pseudopeptides containing turn scaffolds with high AT2 receptor affinity. Bioorg Med Chem 2006; 14:5963-72. [PMID: 16753301 DOI: 10.1016/j.bmc.2006.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/04/2006] [Accepted: 05/15/2006] [Indexed: 11/22/2022]
Abstract
Two pentapeptides, Ac-Tyr-Ile-His-Pro-Phe/Ile, were synthesized and shown to have angiotensin II AT2 receptor affinity and agonistic activity. Based on these peptides, a new series of 13 pseudopeptides was synthesized via introduction of five different turn scaffolds replacing the Tyr-Ile amino acid residues. Pharmacological evaluation disclosed subnanomolar affinities for some of these compounds at the AT2 receptor. Substitution of Phe by Ile in this series of ligands enhanced the AT2 receptor affinity of all compounds. These results suggest that the C-terminal amino acid residues can be elaborated on to enhance the AT2 receptor affinity in truncated Ang II analogues.
Collapse
Affiliation(s)
- Jennie Georgsson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, PO Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Georgsson J, Sköld C, Plouffe B, Lindeberg G, Botros M, Larhed M, Nyberg F, Gallo-Payet N, Gogoll A, Karlén A, Hallberg A. Angiotensin II pseudopeptides containing 1,3,5-trisubstituted benzene scaffolds with high AT2 receptor affinity. J Med Chem 2005; 48:6620-31. [PMID: 16220978 DOI: 10.1021/jm050280z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two 1,3,5-trisubstituted aromatic scaffolds intended to serve as gamma-turn mimetics have been synthesized and incorporated in five pseudopeptide analogues of angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe), replacing Val-Tyr-Ile, Val-Tyr, or Tyr-Ile. All the tested compounds exhibited nanomolar affinity for the AT2 receptor with the best compound (3) having a K(i) of 1.85 nM. Four pseudopeptides were AT2 selective, while one (5) also exhibited good affinity for the AT1 receptor (K(i) = 30.3 nM). This pseudopeptide exerted full agonistic activity in an AT2 receptor induced neurite outgrowth assay but displayed no agonistic effect in an AT1 receptor functional assay. Molecular modeling, using the program DISCOtech, showed that the high-affinity ligands could interact similarly with the AT2 receptor as other ligands with high affinity for this receptor. A tentative agonist model is proposed for AT2 receptor activation by angiotensin II analogues. We conclude that the 1,3,5-trisubstituted benzene rings can be conveniently prepared and are suitable as gamma-turn mimics.
Collapse
MESH Headings
- Angiotensin II/analogs & derivatives
- Angiotensin II/chemical synthesis
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Benzene Derivatives/chemical synthesis
- Benzene Derivatives/pharmacology
- Cell Line, Tumor
- Female
- In Vitro Techniques
- Ligands
- Liver/metabolism
- Models, Molecular
- Molecular Mimicry
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myometrium/metabolism
- Neurites/drug effects
- Neurites/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/pharmacology
- Protein Structure, Secondary
- Rabbits
- Radioligand Assay
- Rats
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Swine
Collapse
Affiliation(s)
- Jennie Georgsson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rosenström U, Sköld C, Plouffe B, Beaudry H, Lindeberg G, Botros M, Nyberg F, Wolf G, Karlén A, Gallo-Payet N, Hallberg A. New selective AT2 receptor ligands encompassing a gamma-turn mimetic replacing the amino acid residues 4-5 of angiotensin II act as agonists. J Med Chem 2005; 48:4009-24. [PMID: 15943474 DOI: 10.1021/jm0491492] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New benzodiazepine-based gamma-turn mimetics with one or two amino acid side chains were synthesized. The gamma-turn mimetics were incorporated into angiotensin II (Ang II) replacing the Val(3)-Tyr(4)-Ile(5) or Tyr(4)-Ile(5) peptide segments. All of the resulting pseudopeptides displayed high AT(2)/AT(1) receptor selectivity and exhibited AT(2) receptor affinity in the low nanomolar range. Molecular modeling was used to investigate whether the compounds binding to the AT(2) receptor could position important structural elements in common areas. A previously described benzodiazepine-based gamma-turn mimetic with high affinity for the AT(2) receptor was also included in the modeling. It was found that the molecules, although being structurally quite different, could adopt the same binding mode/interaction pattern in agreement with the model hypothesis. The pseudopeptides selected for agonist studies were shown to act as AT(2) receptor agonists being able to induce outgrowth of neurite cells, stimulate p42/p44(mapk), and suppress proliferation of PC12 cells.
Collapse
|
44
|
Clement EC, Carlier PR. A simple route to tetrahydro-1,4-benzodiazepin-3-ones bearing diverse N1, N4, and C10 functionalization. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.03.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Cabedo N, Pannecoucke X, Quirion JC. An Efficient Asymmetric Synthesis of 2-Substituted 1,4-Benzodiazepin-3-one as a Potential Molecular Scaffold. European J Org Chem 2005. [DOI: 10.1002/ejoc.200400682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP. Over One Hundred Peptide-Activated G Protein-Coupled Receptors Recognize Ligands with Turn Structure. Chem Rev 2005; 105:793-826. [PMID: 15755077 DOI: 10.1021/cr040689g] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joel D A Tyndall
- Center for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
47
|
Johannesson P, Erdélyi M, Lindeberg G, Frändberg PA, Nyberg F, Karlén A, Hallberg A. AT2-selective angiotensin II analogues containing tyrosine-functionalized 5,5-bicyclic thiazabicycloalkane dipeptide mimetics. J Med Chem 2005; 47:6009-19. [PMID: 15537355 DOI: 10.1021/jm049651m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports the synthesis of two angiotensin II analogues with tyrosine-functionalized 5,5-bicyclic thiazabicycloalkane dipeptide mimetics replacing the Tyr(4)-Ile(5) residues. The preparation of these analogues relies on the synthesis and incorporation of an alpha,alpha-disubstituted chimeric amino acid derivative and on-resin bicyclization to a cysteine residue. The synthesized analogues both displayed high angiotensin AT(2)/AT(1) receptor binding preferences and had AT(2) receptor affinities in the same low nanomolar range as angiotensin II itself. Conformational analysis, using experimental constraints derived from NMR studies, indicated that the Tyr(4) and His(6) residues in one of the angiotensin II analogues were in close proximity to each other.
Collapse
Affiliation(s)
- Petra Johannesson
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Facile solid phase synthesis of 1,2-disubstituted-6-nitro-1,4-dihydroquinazolines using a tetrafunctional scaffold. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2004.11.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Rosenström U, Sköld C, Lindeberg G, Botros M, Nyberg F, Hallberg A, Karlén A. Synthesis and AT2 receptor-binding properties of angiotensin II analogues. ACTA ACUST UNITED AC 2004; 64:194-201. [PMID: 15485557 DOI: 10.1111/j.1399-3011.2004.00184.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study investigates the importance of the amino acid side chains in the octapeptide angiotensin II (Ang II) for binding to the AT2 receptor. A Gly scan was performed where each amino acid in Ang II was substituted one-by-one with glycine. The resulting set of peptides was tested for affinity to the AT2 receptor (porcine myometrial membranes). For a comparison, the peptides were also tested for affinity to the AT1 receptor (rat liver membranes). Only the substitution of Arg2 reduced affinity to the AT2 receptor considerably (92-fold when compared with Ang II). For the other Gly-substituted analogues the affinity to the AT2 receptor was only moderately affected. To further investigate the role of the Arg2 side chain for receptor binding, we synthesized some N-terminally modified Ang II analogues. According to these studies a positive charge in the N-terminal end of angiotensin III [Ang II (2-8)] is not required for high AT2 receptor affinity but seems to be more important in Ang II. With respect to the AT1 receptor, [Gly2]Ang II and [Gly8]Ang II lacked binding affinity (Ki > 10 microM). Replacement of the Val3 or Ile5 residues with Gly produced only a slight decrease in affinity. Interestingly, substitution of Tyr4 or His6, which are known to be very important for AT1 receptor binding, resulted in only 48 and 14 times reduction in affinity, respectively.
Collapse
Affiliation(s)
- U Rosenström
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|