1
|
Yan C, Liu Z, Bai Y, Wang Z, Fang J, Liu A. 3DSTarPred: A Web Server for Target Prediction of Bioactive Small Molecules Based on 3D Shape Similarity. J Chem Inf Model 2024; 64:8105-8112. [PMID: 39475556 DOI: 10.1021/acs.jcim.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Target identification plays a critical role in preclinical drug development. The in silico approach has been developed and widely applied to assist medicinal chemists and pharmacologists in drug target identification. There are many target prediction web servers available today that have revealed both advantages and shortcomings in practical applications. Here, we present 3DSTarPred, a web server for three-dimensional (3D) shape similarity-based target prediction of small molecules. A benchmark study showed that 3DSTarPred achieved a target prediction success rate of 76.27%, which was higher than that of existing target prediction web servers. In addition, the performance of 3DSTarPred in the target prediction of diverse substructures/superstructures was also better than that of the existing target prediction web servers. In case studies, 3DSTarPred was used to identify the potential targets of two small molecules, one being kaempferol, a natural lead compound for the treatment of Alzheimer's disease (AD), and the other being sildenafil, a candidate for drug repurposing in AD. The case studies further demonstrated the reliability and success of 3DSTarPred in practice. The 3DSTarPred server is freely available at http://3dstarpred.pumc.wecomput.com.
Collapse
Affiliation(s)
- Caiqin Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhihong Liu
- Department of Data Science, Wecomput Technology Co., Ltd. (Guangzhou), Guangzhou 510535, China
| | - Yiming Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Gao Z, Zheng J, Wu X, Savinov S, Zhao C, Xiao H. Heat shock cognate 70 protein is a novel target of nobiletin and its colonic metabolites in inhibiting colon carcinogenesis. Food Funct 2024; 15:10447-10458. [PMID: 39329172 DOI: 10.1039/d4fo03211j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Nobiletin (NBT) is a unique flavonoid mainly found in citrus fruits and has been reported to inhibit colon carcinogenesis in multiple rodent models. However, the direct molecular targets of NBT are unknown, which greatly limits its utilization in cancer prevention and treatment. In this study, using affinity chromatography, proteomics, computer modeling and various biochemical analyses, for the first time we identified HSC70 as a direct protein target of NBT in colon cancer cells. Moreover, NBT bound to HSC70 at its ATP-binding site and inhibited its ATPase activity. Importantly, our results also demonstrated that the major colonic metabolites of NBT (generated in the colon of NBT-fed mice) produced similar inhibitory effects against HSC70-mediated pro-carcinogenic events to those of NBT. Overall, our results provide a solid basis to further investigate the implication of the interaction between NBT/NBT metabolites and HSC70 in cancer chemoprevention.
Collapse
Affiliation(s)
- Zili Gao
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01002, USA.
| | - Jinkai Zheng
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01002, USA.
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xian Wu
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01002, USA.
- Department of Kinesiology and Health, Miami University, Oxford, OH 45056, USA
| | - Sergey Savinov
- Division of Arts and Sciences, Rivier University, Nashua, NH, USA
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01002, USA.
| |
Collapse
|
3
|
Njue AW, Omolo J, Ramos RS, Santos CBR, Kimani NM. Ergostanes from the mushroom Trametes versicolor and their cancer cell inhibition: In vitro and in silico evaluation. Steroids 2024; 212:109511. [PMID: 39303896 DOI: 10.1016/j.steroids.2024.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
In this study, five steroid compounds were isolated from the fruiting bodies mushroom Trametes versicolor. The compounds, 9,19-cyclolanostane-3,29-diol (3), ergosta-7,22-dien-3-acetate (4), and ergosta-8(14),22-dien-3β,5α,6β,7α-tetrol (5), were identified from T. versicolor for the first time. The five compounds were evaluated for their activity against cancer cell lines. Compound 5α,8α-epidioxyergosta-6,22-dien-3β-ol (1) was found to be the most effective against most of the cancer cell lines tested. In silico studies showed that compound 1 has good binding affinities to different cancer targets, namely cyclin-dependent kinase 2 (cdk2), human cyclin-dependent kinase 6 (cdk6), Human Topo IIa ATPase/AMP-PNP, anti-apoptotic protein Bcl-2, and Vegfr-2. It's also druglike based on Lipinski's rule of five and it's ADME/Tox properties. Therefore, compound 1 is a good candidate in the management of cancer. These results further show that T. versicolor is a potential source of drugs or drug leads for cancer treatment.
Collapse
Affiliation(s)
- Alice W Njue
- Department of Chemistry, Egerton University, Njoro, Kenya.
| | - Josiah Omolo
- Department of Chemistry, Egerton University, Njoro, Kenya
| | - Ryan S Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, AP, Brazil; Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Cleydson B R Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, AP, Brazil; Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, Embu, Kenya
| |
Collapse
|
4
|
Zumerle S, Sarill M, Saponaro M, Colucci M, Contu L, Lazzarini E, Sartori R, Pezzini C, Rinaldi A, Scanu A, Sgrignani J, Locatelli P, Sabbadin M, Valdata A, Brina D, Giacomini I, Rizzo B, Pierantoni A, Sharifi S, Bressan S, Altomare C, Goshovska Y, Giraudo C, Luisetto R, Iaccarino L, Torcasio C, Mosole S, Pasquini E, Rinaldi A, Pellegrini L, Peron G, Fassan M, Masiero S, Giori AM, Dall'Acqua S, Auwerx J, Cippà P, Cavalli A, Bolis M, Sandri M, Barile L, Montopoli M, Alimonti A. Targeting senescence induced by age or chemotherapy with a polyphenol-rich natural extract improves longevity and healthspan in mice. NATURE AGING 2024; 4:1231-1248. [PMID: 38951692 PMCID: PMC11408255 DOI: 10.1038/s43587-024-00663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.
Collapse
Affiliation(s)
- Sara Zumerle
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Miles Sarill
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Miriam Saponaro
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Liliana Contu
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Roberta Sartori
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Anna Scanu
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Isabella Giacomini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Beatrice Rizzo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Alessandra Pierantoni
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute for Research on Cancer and Aging, Nice, France
| | - Saman Sharifi
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Bressan
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yulia Goshovska
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Giraudo
- Department of Medicine, University of Padova, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Luca Iaccarino
- Department of Medicine, University of Padova, Padova, Italy
| | - Cristina Torcasio
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Stefano Masiero
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pietro Cippà
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Andrea Alimonti
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Medicine, University of Padova, Padova, Italy.
- Institute of Oncology Research (IOR), Bellinzona, Switzerland.
- Università della Svizzera italiana, Lugano, Switzerland.
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| |
Collapse
|
5
|
Berköz M, Yiğit A, Krośniak M. Protective Role of Myricetin and Fisetin Against Nephrotoxicity Caused by Lead Acetate Exposure through Up-regulation of Nrf2/HO-1 Signalling Pathway. Biol Trace Elem Res 2024; 202:4032-4046. [PMID: 38051478 DOI: 10.1007/s12011-023-03977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
The effect of various flavonoids against oxidative stress and inflammation caused by lead exposure has been investigated. However, the protective effects of myricetin (MYC) and fisetin (FST), which are known to have potent antioxidant properties, against nephrotoxicity caused by exposure to lead acetate (LA), the water-soluble form of lead, have not been investigated. Our study investigated the protective role of these flavonoids against LA intoxication-induced nephrotoxicity. In our study, 42 male rats were used. The rats were randomly selected and divided into 6 groups. These groups were: control, LA (100 g/kg), LA + MYC (100 mg/kg), LA + MYC (200 mg/kg), LA + FST (100 mg/kg) and LA + FST (200 mg/kg). All chemicals were administered daily by gavage for 28 days. According to the experimental protocol, the animals were sacrificed and their kidney tissues were isolated. Serum biochemical parameters, histological examinations, levels of several trace elements, oxidative stress and inflammatory parameters at both biochemical and molecular levels in kidney tissues were examined. After LA administration, tissue lead levels increased and zinc levels decreased. This situation was reversed by MYC and FST treatment. Oxidative stress and inflammatory response were increased in the kidney tissue of LA-treated rats and renal function was impaired. It was observed that both doses of MYC and high dose of FST could prevent nephrotoxicity. Oral administration of both doses of MYC and high dose FST ameliorated the changes in biochemical, oxidative and inflammatory parameters. Restoration of normal renal tissue architecture was also demonstrated by histological studies. MYC and FST were found to have promising biological activity against LA-induced nephrotoxicity, acting by attenuating inflammation and oxidative stress and improving antioxidant status.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Zeve Campus, Tuşba/VAN, Turkey.
| | - Ayhan Yiğit
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Zeve Campus, Tuşba/VAN, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
6
|
Khan M, Singh K, Khan S, Ahmad B, Khushal A, Yingning S. Computational exploration of allosteric inhibitors targeting CDK4/CDK6 proteins: a promising approach for multi-target drug development. J Biomol Struct Dyn 2024:1-19. [PMID: 38174658 DOI: 10.1080/07391102.2023.2300121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Cyclin-dependent kinases (CDKs) play a pivotal role in orchestrating the intricate regulation of the cell cycle, a fundamental process governing cell growth and division. In particular, CDK4 and CDK6 are critical for the transition from the G1 phase to the S phase, where Deoxyribonucleic acid (DNA) replication occurs, and their dysregulation is linked to various diseases, notably cancer. While ATP-binding site inhibitors for CDKs are well-documented, this study focuses on uncovering allosteric inhibitors, providing a fresh perspective on CDK inhibition. Computational techniques were employed in this investigation, utilizing Molecular Operating Environment (MOE) for virtual screening of a drug-like compound library. Moreover, the stability of the most promising binding inhibitors was assessed through Molecular Dynamics (MD) simulations and MMPBSA/MMGBSA analyses. The outcome reveals that three inhibitors (C1, C2, and C3) exhibited the strongest binding affinity for CDK4/CDK6, as corroborated by docking and simulation analyses. The computed binding energies ranged from -6.1 to -7.6 kcal/mol, underscoring the potency of these allosteric inhibitors. Notably, this study identifies key residues (PHE31, HIS95, HIS100, VAL101, ASP102, ASP104, and THR107) that play pivotal roles in mediating inhibitor binding within the allosteric sites. Among the findings, the C1-CDK4 complex and C2-CDK6 complex emerge as particularly promising inhibitors, exhibiting high binding energies, favorable interaction patterns, and sustained presence within the active site. This study contributes significantly to the pursuit of multi-target drugs against CDK4/CDK6 proteins, with potential implications for the development of innovative therapies across various disorders, including cancer and other cell cycle-related conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmood Khan
- College of Life Sciences and agricultural forestry, Qiqihar University, Qiqihar, China
| | - Kamaljot Singh
- Department of Chemistry, faculty of Applied Sciences, Sri Guru Granth Sahib World University, Punjab, India
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Basharat Ahmad
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Aneela Khushal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Sun Yingning
- College of Life Sciences and agricultural forestry, Qiqihar University, Qiqihar, China
| |
Collapse
|
7
|
Basnet R, Amissah OB, Basnet BB, Huang R, Sun Y, de Dieu Habimana J, Li Z. Potential Target of CDK6 Signaling Pathway for Cancer Treatment. Curr Drug Targets 2024; 25:724-739. [PMID: 39039674 DOI: 10.2174/0113894501313781240627062206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Cancer involves uncontrolled cell growth due to genetic mutations. Tumors can form when CDK6, a gene essential for controlling cell growth, isn't working correctly. Researchers are investigating drugs that inhibit CDK6; some of them appear promising. Nevertheless, CDK6 is advantageous and harmful to cancer because it controls other cellular processes. By inhibiting CDK6 and CDK4, CDK4/6 inhibitors offer a novel therapeutic strategy that stops cell proliferation. The study investigates the function of CDK6 in cancer, the difficulties in targeting CDK6, and possible remedies. OBJECTIVE Scientists have developed drugs designed to block CDK6 and prevent it from altering other proteins. These drugs, also known as CDK6 inhibitors, help treat cancer. Finding the best drugs for CDK6 is still tricky, though. The drugs' selectivity, potency, and cost are some difficulties. These factors depend on CDK6's structure and interactions with other proteins. The structure of CDK6 and how it influences its function and regulation are explained in this review. It also describes CDK6's function in cancer and its interaction with other molecules and proteins, which is crucial for cell division. This review also discusses the present and upcoming therapies that target CDK6, as well as how CDK6 interacts with drugs that block it. CONCLUSION This review presents the structure, current research, and overview of CDK6. It also reviews the role of CDK6 in cancer, function, and regulation. Additionally, it explores its role in cancer signaling networks and its interaction with CDK6 inhibitors. Lastly, it discusses the current status and prospects of therapies targeting CDK6.
Collapse
Affiliation(s)
- Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
8
|
Zhang X, Hou X, Xu C, Cheng S, Ni X, Shi Y, Yao Y, Chen L, Hu MG, Xia D. Kaempferol regulates the thermogenic function of adipocytes in high-fat-diet-induced obesity via the CDK6/RUNX1/UCP1 signaling pathway. Food Funct 2023; 14:8201-8216. [PMID: 37551935 DOI: 10.1039/d3fo00613a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Activation of adipose tissue thermogenesis is a promising strategy in the treatment of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a predominant dietary flavonoid with multiple pharmacological properties, such as anti-inflammatory and antioxidant activities. In this study, we sought to characterize the role of KPF in adipocyte thermogenesis. We demonstrated that KPF-treated mice were protected from diet-induced obesity, glucose tolerance, and insulin resistance, accompanied by markedly increased energy expenditure, ex vivo oxygen consumption of white fat, and increased expression of proteins related to adaptive thermogenesis. KPF-promoted beige cell formation is a cell-autonomous effect, since the overexpression of cyclin-dependent kinase 6 (CDK6) in preadipocytes partially reversed browning phenotypes observed in KPF-treated cells. Overall, these data implicate that KPF is involved in promoting beige cell formation by suppressing CDK6 protein expression. This study provides evidence that KPF is a promising natural product for obesity treatment by boosting energy expenditure.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoli Hou
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Xu
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Siyao Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xintao Ni
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yueyue Shi
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yanjing Yao
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liangxin Chen
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology Oncology, Tufts Medical Center, Boston, MA, 02111, USA.
| | - Daozong Xia
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
9
|
Zhou Y, Li X, Luo P, Chen H, Zhou Y, Zheng X, Yin Y, Wei H, Liu H, Xia W, Shi M, Li X. Identification of abemaciclib derivatives targeting cyclin-dependent kinase 4 and 6 using molecular dynamics, binding free energy calculation, synthesis, and pharmacological evaluation. Front Pharmacol 2023; 14:1154654. [PMID: 37234717 PMCID: PMC10206264 DOI: 10.3389/fphar.2023.1154654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
CDK4/6 plays a crucial role in various cancers and is an effective anticancer drug target. However, the gap between clinical requirements and approved CDK4/6 drugs is unresolved. Thus, there is an urgent need to develop selective and oral CDK4/6 inhibitors, particularly for monotherapy. Here, we studied the interaction between abemaciclib and human CDK6 using molecular dynamics simulations, binding free energy calculations, and energy decomposition. V101 and H100 formed stable hydrogen bonds with the amine-pyrimidine group, and K43 interacted with the imidazole ring via an unstable hydrogen bond. Meanwhile, I19, V27, A41, and L152 interacted with abemaciclib through π-alkyl interactions. Based on the binding model, abemaciclib was divided into four regions. With one region modification, 43 compounds were designed and evaluated using molecular docking. From each region, three favorable groups were selected and combined with each other to obtain 81 compounds. Among them, C2231-A, which was obtained by removing the methylene group from C2231, showed better inhibition than C2231. Kinase profiling revealed that C2231-A showed inhibitory activity similar to that of abemaciclib; additionally, C2231-A inhibited the growth of MDA-MB-231 cells to a greater extent than did abemaciclib. Based on molecular dynamics simulation, C2231-A was identified as a promising candidate compound with considerable inhibitory effects on human breast cancer cell lines.
Collapse
Affiliation(s)
- Yanting Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Peifang Luo
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Huiting Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yan Zhou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Xueting Zheng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Yuan Yin
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Haoche Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongji Liu
- Department of Ophthalmology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Wen Xia
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingsong Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| |
Collapse
|
10
|
Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals (Basel) 2023; 16:196. [PMID: 37259344 PMCID: PMC9961076 DOI: 10.3390/ph16020196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms involved in the development and progression of cancer. Several treatment strategies including the use of phytoconstituents have evolved and been practiced for better therapeutic outcomes against cancer. Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties. It inhibits the rapid growth, invasiveness, and metastasis of tumors by hindering the multiplication of cancer cells, and prompts apoptosis by avoiding cell division related to actuation of caspase-9 and caspase-8. However, its poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility. The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes. This review aims to provide in-depth information regarding fisetin as a potential candidate for anticancer therapy, its properties and various formulation strategies.
Collapse
Affiliation(s)
- Rachna M. Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Kanan Panchal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
11
|
Eslaminejad T, Faghih Mirzaei E, Abaszadeh M. Synthesis, Antioxidant, Cytotoxicity, Induce Apoptosis Investigation and Docking Study of New Halogenated Dihydropyrano[3,2- b]Chromene-3-Carbonitrile Derivatives on MCF-7 Breast Cancer Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e132932. [PMID: 38116542 PMCID: PMC10728837 DOI: 10.5812/ijpr-132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 12/21/2023]
Abstract
Background Chromene derivatives showed numerous biological activities. In the current study, the antioxidant, cytotoxicity, and apoptosis properties of halogenated dihydropyrano[3,2-b]chromene-3-carbonitrile derivatives (HDCCD) on MCF-7 cell line have been examined. Objectives This study's principal point was synthesizing new halogenated pyranochromene derivatives and assessing their cytotoxic effects and apoptosis potential on MCF-7 breast cancer cell line by flow cytometry. Methods Initially, 6-chloro- and 6-bromo-3-hydroxychromone compounds were prepared. In the next step, a series of HDCCD were synthesized by a one-pot three-component reaction of these two compounds, aromatic aldehydes, and malononitrile, in the presence of triethylamine in EtOH at reflux conditions. These compounds were fully characterized by standard spectroscopic techniques (IR, 1H, and 13C NMR) and elemental analyses. The potential of the antioxidant activity was determined by using ferric reducing antioxidant power assay (FRAP). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) were used to evaluate metabolic activity. The nitric oxide (NO) and malondialdehyde (MDA) biomarkers of the exposed cells were evaluated on the cells and their supernatant. To quantify apoptotic death of MCF-7 breast cancer cells treated by the compounds at their IC50 concentrations, Annexin V-FITC apoptosis detection kit was utilized. Molecular docking of compounds (6a-j) into the Cyclin-dependent kinase 6 (PDB code: 4EZ5) was carried out, and the probable binding mode of compounds 6e and 6j was determined. Results A dose-response relationship was seen in all the compounds. Most of them induced cytotoxic effects on the cells. Nitrite concentration of the culture media of the cells was decreased compared to the control. Malondialdehyde levels of the cells were below the range of the control by the addition of 6b, 6d, 6e, 6f, and 6g compounds on the cells, while the addition of the 6a, 6c, 6h, 6i, and 6j compounds increased the MDA level compared to the control. Flow cytometric analysis showed that most of the exposed cells were in the early and late apoptotic stage, and a few of them were in the necrotic stage. Conclusions It could be concluded that HDCCD (6a-j) was toxic and caused death in the cells by apoptosis. The compounds have lipophilic characteristics, so they can easily pass the cell membrane. As confirmed by LDH results, it can be concluded that the cytotoxicity is connected with apoptosis rather than necrosis, endorsed by flowcytometry analysis afterward.
Collapse
Affiliation(s)
- Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Faghih Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abaszadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Pugh L, Pancholi A, Purat PC, Agudo-Alvarez S, Benito-Arenas R, Bastida A, Bolanos-Garcia VM. Computational Biology Dynamics of Mps1 Kinase Molecular Interactions with Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer. Int J Mol Sci 2022; 23:ijms232214228. [PMID: 36430712 PMCID: PMC9692432 DOI: 10.3390/ijms232214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin. Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug development in oncology.
Collapse
Affiliation(s)
- Lauren Pugh
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Alisha Pancholi
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Priscila Celeste Purat
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Sandra Agudo-Alvarez
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| |
Collapse
|
13
|
Adetutu A, Owoade AO, Adegbola PI. Inhibitory effects of ethyl acetate and butanol fractions from Morinda lucida benth on benzene-induced leukemia in mice. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Baig MH, Yousuf M, Khan MI, Khan I, Ahmad I, Alshahrani MY, Hassan MI, Dong JJ. Investigating the Mechanism of Inhibition of Cyclin-Dependent Kinase 6 Inhibitory Potential by Selonsertib: Newer Insights Into Drug Repurposing. Front Oncol 2022; 12:865454. [PMID: 35720007 PMCID: PMC9204300 DOI: 10.3389/fonc.2022.865454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are considered an attractive drug target for cancer, neurodegenerative, and inflammatory diseases. In the present study, we have aimed to investigate the binding affinity and inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we performed molecular docking of selonsertib with CDK6 and observed a significant binding affinity. To ascertain, we further performed essential dynamics analysis and free energy calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-silico findings were further experimentally validated. The recombinant CDK6 was expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The results indicated an appreciable binding of selonsertib against CDK6, which subsequently inhibits its activity with a commendable IC50 value (9.8 μM). We concluded that targeting CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-related diseases. These observations provide a promising opportunity to utilize selonsertib to address CDK6-related human pathologies.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohd. Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, Istanbul, Turkey
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Jabeur W, Korb M, Al-Otaibi JS, Čižmár E, Badraoui R, Zeleňák V, Naïli H. Physico-chemical characterizations and biological evaluation of a new semiconducting metal–organic compound based on pyrimidine frameworks. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
El-Hawary SS, Mohammed R, Taher MA, AbouZid SF, Mansour MA, Almahmoud SA, Huwaimel B, Amin E. Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing. PLANTS (BASEL, SWITZERLAND) 2022; 11:888. [PMID: 35406868 PMCID: PMC9002841 DOI: 10.3390/plants11070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Genus Tabebuia is famous for its traditional uses and valuable phytoconstituents. Our previous investigation of Tabebuia species noted the promising anticancer activity of T. guayacan Hemsl. leaves extract, however, the mechanism underlying the observed anticancer activity is still unexplored. The current research was designed to explore the phytochemical content as well as to address the phytoconstituent(s) responsible for the recorded anticancer activity. Accordingly, sixteen compounds were isolated, and their structures were elucidated using different spectroscopic techniques. The drug-likeness of the isolated compounds, as well as their binding affinity with four anticancer drug target receptors: CDK-2/6, topoisomerase-1, and VEGFR-2, were evaluated. Additionally, the most promising compounds were in vitro evaluated for inhibitory activities against CDK-2/6 and VEGFR-2 enzymes using kinase assays method. Corosolic acid (3) and luteolin-7-O-β-glucoside (16) were the most active inhibitors against CDK-2 (-13.44 kcal/mol) and topoisomerase 1 (-13.83 kcal/mol), respectively. Meanwhile, quercetin 3-O-β-xyloside (10) scored the highest binding free energies against both CDK-6 (-16.23 kcal/mol) as well as against VEGFR-2 protein targets (-10.39 kcal/mol). Molecular dynamic simulation indicated that quercetin 3-O-β-xyloside (10) exhibited the least fluctuations and deviations from the starting binding pose with RMSD (2.6 Å). Interestingly, in vitro testing results confirmed the potent activity of 10 (IC50 = 0.154 µg/mL) compared to IC50 = 0.159 µg/mL of the reference drug ribociclib. These findings suggest the three noted compounds (3, 10, and 16) for further in vivo anticancer studies.
Collapse
Affiliation(s)
- Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt;
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
| | - Marwa A. Taher
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Sameh Fekry AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mostafa A. Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
17
|
Pradubyat N, Giannoudis A, Elmetwali T, Mahalapbutr P, Palmieri C, Mitrpant C, Ketchart W. 1'-Acetoxychavicol Acetate from Alpinia galanga Represses Proliferation and Invasion, and Induces Apoptosis via HER2-signaling in Endocrine-Resistant Breast Cancer Cells. PLANTA MEDICA 2022; 88:163-178. [PMID: 33445186 DOI: 10.1055/a-1307-3997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Estrogen receptor-positive breast cancer patients have a good prognosis, but 30% of these patients will experience recurrence due to the development of resistance through various signaling pathways. This study aimed to evaluate the mode of anticancer effects of 1'-acetoxychavicol acetate, which is isolated from the rhizomes of Alpinia galanga in estrogen receptor positive (MCF7) human epidermal growth factor receptor 2-overexpressed (MCF7/HER2), and endocrine-resistant breast cancer cells (MCF7/LCC2 and MCF7/LCC9). 1'-Acetoxychavicol acetate showed antiproliferation in a concentration- and time-dependent fashion and had higher potency in human epidermal growth factor receptor 2-overexpressed cell lines. This was associated with down-regulation of human epidermal growth factor receptor 2, pERK1/2, pAKT, estrogen receptor coactivator, cyclin D1, and MYC proto-oncogene while in vivo and significant reduction in the tumor mass of 1'-acetoxychavicol acetate-treated zebrafish-engrafted breast cancer groups. The anti-invasive effects of 1'-acetoxychavicol acetate were confirmed in vitro by the matrigel invasion assay and with down-regulation of C - X-C chemokine receptor type 4, urokinase plasminogen activator, vascular endothelial growth factor, and basic fibroblast growth factor 2 genes. The down-regulation of urokinase plasminogen activator and fibroblast growth factor 2 proteins was also validated by molecular docking analysis. Moreover, 1'-acetoxychavicol acetate-treated cells exhibited lower expression levels of the anti-apoptotic Bcl-2 and Mcl-1 proteins in addition to enhanced stress-activated kinases/c-Jun N-terminal kinase 1/2 and poly-ADP ribose polymerase cleavage, indicating apoptotic cell induction by 1'-acetoxychavicol acetate. Moreover, 1'-acetoxychavicol acetate had higher potency in human epidermal growth factor receptor 2-overexpressed cell lines regarding its inhibition on human epidermal growth factor receptor 2, pAKT, pERK1/2, PSer118, and PSer167-ERα proteins. Our findings suggest 1'-acetoxychavicol acetate mediates its anti-cancer effects via human epidermal growth factor receptor 2 signaling pathway.
Collapse
Affiliation(s)
- Nalinee Pradubyat
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom of Great Britain
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Athina Giannoudis
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom of Great Britain
| | - Taha Elmetwali
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom of Great Britain
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Carlo Palmieri
- Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom of Great Britain
- Clatterbridge Cancer Centre, NHS Foundation Trust, Liverpool, United Kingdom of Great Britain
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Perron Institute for Neurological and Translational Science, Perth, Nedlands, Perth, Western Australia, Australia
| | - Wannarasmi Ketchart
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Kammerud SC, Metge BJ, Elhamamsy AR, Weeks SE, Alsheikh HA, Mattheyses AL, Shevde LA, Samant RS. Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. J Transl Med 2021; 101:1439-1448. [PMID: 34267320 PMCID: PMC8510891 DOI: 10.1038/s41374-021-00642-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.
Collapse
Affiliation(s)
- Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr R Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
19
|
Akella M, Malla R. Molecular modeling and in vitro study on pyrocatechol as potential pharmacophore of CD151 inhibitor. J Mol Graph Model 2020; 100:107681. [PMID: 32738620 DOI: 10.1016/j.jmgm.2020.107681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
CD151 has been recognized as a prognostic marker, the therapeutic target of breast cancers, but less explored for small molecule inhibitors due to lack of a validated model. The 3-D structure of CD151 large extracellular loop (LEL) was modeled using the LOMETS server and validated by the Ramachandran plot. The validated structure was employed for molecular docking and structure-based pharmacophore analysis. Druglikeness was evaluated by the ADMET description protocol. Antiproliferative activity was evaluated by MTT, BrdU incorporation, flow cytometry, and cell death ELISAPLUS assay. This study predicted the best model for CD151-LEL with 94.1% residues in favored regions and Z score -2.79 kcal/mol using the threading method. The web-based receptor cavity method identified one functional target site, which was suitable for the binding of aromatic and heterocyclic compounds. Molecular docking study identified pyrocatechol (PCL) and 5-fluorouracil (FU) as potential leads of CD151-LEL. The pharmacophore model identified interaction points of modeled CD151-LEL with PCL and FU. Also, the analysis of ADMET properties revealed the drug-likeness of PCL and FU. The viability of MDA-MB 231 cells was significantly reduced with PCL and FU but less affected MCF-12A, normal healthy breast epithelial cell line. With 50% toxic concentration, both PCL and FU significantly inhibited 82.46 and 87.12% proliferation, respectively, of MDA-MB 231 cells by altering morphology and inducing G1 cell cycle arrest and apoptosis. In addition, PCL and FU inhibited the CD151 expression by 4.5-and 4.8-folds, respectively. This study suggests the further assessment of pyrocatechol as a potential lead of CD151 in breast cancer at the molecular level.
Collapse
Affiliation(s)
- Manasa Akella
- Cancer Biology Lab, Dept. of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to Be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - RamaRao Malla
- Cancer Biology Lab, Dept. of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to Be University), Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
20
|
Liang H, Liu H, Kuang Y, Chen L, Ye M, Lai L. Discovery of Targeted Covalent Natural Products against PLK1 by Herb-Based Screening. J Chem Inf Model 2020; 60:4350-4358. [PMID: 32407091 DOI: 10.1021/acs.jcim.0c00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural products (NPs) are a rich source of drug discovery, and some of them act by covalently binding to the targets. Recently, targeted covalent natural product (TCNP) design has gained considerable attention since this approach offers significant benefits in improving biological efficacy and decreasing the off-target side effects. However, most of the known TCNPs were discovered by chance. Rational approaches for a systematic screen of TCNPs are much needed. Here, we developed a combined computational and experimental approach to carry out herb-based screening to identify TCNPs against proper cysteine residues in the target proteins. The herb-based TCNP screening approach (HB-TCNP) starts from a druggable pocket and cysteine residue prediction, followed by virtual screening of a covalent NP database and herb-based mapping to identify candidate herbs for experimental validation. Herbs with time-dependent activity are selected, and their NPs are experimentally tested to further screen covalent NPs. We have successfully applied HB-TCNP to screen anti-PLK1 herbs and NPs with high efficacy. Cys67 and Cys133 in the ATP binding pocket of PLK1 were used in the search. Five herbs were tested and exhibited PLK1 inhibition activity to some extent, among which Scutellaria baicalensis showed the most potent activity with time dependency. Further experimental studies showed that the main active compounds in Scutellaria baicalensis, baicalein and baicalin, covalently bind PLK1 through Cys133. Our study provided an efficient way to rationally design TCNPs and to make better use of herb medicines. The Cys133 residue in PLK1 serves as a novel covalent site for further drug discovery against PLK1.
Collapse
Affiliation(s)
- Hao Liang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hongbo Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Limin Chen
- Peking-Tsinghua Center for Life Sciences at Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences at Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery. Int J Mol Sci 2020; 21:ijms21093354. [PMID: 32397434 PMCID: PMC7246882 DOI: 10.3390/ijms21093354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibitors targeting the general RNA polymerase II (RNAPII) transcription machinery are candidate therapeutics in cancer and other complex diseases. Here, we review the molecular targets and mechanisms of action of these compounds, framing them within the steps of RNAPII transcription. We discuss the effects of transcription inhibitors in vitro and in cellular models (with an emphasis on cancer), as well as their efficacy in preclinical and clinical studies. We also discuss the rationale for inhibiting broadly acting transcriptional regulators or RNAPII itself in complex diseases.
Collapse
|
22
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
23
|
Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules 2019; 9:E174. [PMID: 31064104 PMCID: PMC6572624 DOI: 10.3390/biom9050174] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains the leading cause of death worldwide. As prevention is always better than cure, efficient strategies are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant chemotherapeutic agents in heterogeneous human carcinomas like breast, colon, lung, ovary, and prostate cancers has shown an upward trend during the last decade or so. Flavonoids are well-known products of plant derivatives that are reportedly documented to be therapeutically active phytochemicals against many diseases encompassing malignancies, inflammatory disorders (cardiovascular disease, neurodegenerative disorder), and oxidative stress. The current review focuses on two key flavonols, fisetin and quercetin, known for their potential pharmacological relevance. Also, efforts have been made to bring together most of the concrete studies pertaining to the bioactive potential of fisetin and quercetin, especially in the modulation of a range of cancer signaling pathways. Further emphasis has also been made to highlight the molecular action of quercetin and fisetin so that one could explore cancer initiation pathways and progression, which could be helpful in designing effective treatment strategies.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital (GMCH), Chandigarh 160031, Punjab, India.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.
| | | | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India.
| | - Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, Punjab, India.
| | | |
Collapse
|
24
|
Zhao L, Yuan X, Wang J, Feng Y, Ji F, Li Z, Bian J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg Med Chem 2019; 27:677-685. [DOI: 10.1016/j.bmc.2019.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
|
25
|
Abstract
Dysoline, a novel chromone alkaloid isolated from Dysoxylum binectariferum, was reported to have selective cytotoxicity for HT1080 fibrosarcoma cells (IC50 of 0.21 μM). Given the scarcity of natural material, a concise synthesis of (+)-dysoline was developed, allowing for further biological evaluation. An enantioselective nucleophile-catalyzed aldol lactonization formed the piperidine ring with control of relative and absolute stereochemistry. Construction of the C6-chromone core with complete regioselectivity was achieved using a Danheiser benzannulation.
Collapse
Affiliation(s)
- Aaron Coffin
- Department of Biochemistry, Division of Chemistry , UT Southwestern Medical Center , 5323 Harry Hines Blvd. , Dallas , Texas 75390-0938 , United States
| | - Joseph M Ready
- Department of Biochemistry, Division of Chemistry , UT Southwestern Medical Center , 5323 Harry Hines Blvd. , Dallas , Texas 75390-0938 , United States
| |
Collapse
|
26
|
The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci Rep 2019; 9:195. [PMID: 30655588 PMCID: PMC6336835 DOI: 10.1038/s41598-018-36808-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Resistance to 5-Fluorouracil chemotherapy is a major cause of therapeutic failure in colon cancer cure. Development of combined therapies constitutes an effective strategy to inhibit cancer cells and prevent the emergence of drug resistance. For this purpose, we investigated the anti-tumoral effect of thirteen phenolic compounds, from the Tunisian quince Cydonia oblonga Miller, alone or combined to 5-FU, on the human 5-FU-resistant LS174-R colon cancer cells in comparison to parental cells. Our results showed that only Kaempferol was able to chemo-sensitize 5-FU-resistant LS174-R cells. This phenolic compound combined with 5-FU exerted synergistic inhibitory effect on cell viability. This combination enhanced the apoptosis and induced cell cycle arrest of both chemo-resistant and sensitive cells through impacting the expression levels of different cellular effectors. Kaempferol also blocked the production of reactive oxygen species (ROS) and modulated the expression of JAK/STAT3, MAPK, PI3K/AKT and NF-κB. In silico docking analysis suggested that the potent anti-tumoral effect of Kaempferol, compared to its two analogs (Kaempferol 3-O-glucoside and Kampferol 3-O-rutinoside), can be explained by the absence of glucosyl groups. Overall, our data propose Kaempferol as a potential chemotherapeutic agent to be used alone or in combination with 5-FU to overcome colon cancer drug resistance.
Collapse
|
27
|
Cheng W, Yang Z, Wang S, Li Y, Wei H, Tian X, Kan Q. Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures. Eur J Med Chem 2019; 164:615-639. [PMID: 30639897 DOI: 10.1016/j.ejmech.2019.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
The cyclin-dependent protein kinases (CDKs) are protein-serine/threonine kinases that display crucial effects in regulation of cell cycle and transcription. While the excessive expression of CDKs is intimate related to the development of diseases including cancers, which provides opportunities for disease treatment. A large number of small molecules are explored targeting CDKs. CDK/inhibitor co-crystal structures play an important role during the exploration of inhibitors. So far nine kinds of CDK/inhibitor co-crystals have been determined, they account for the highest proportion among the Protein Data Bank (PDB) deposited crystal structures. Herein, we review main co-crystals of CDKs in complex with corresponding inhibitors reported in recent years, focusing our attention on the binding models and the pharmacological activities of inhibitors.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
28
|
Ozdemir ES, Halakou F, Nussinov R, Gursoy A, Keskin O. Methods for Discovering and Targeting Druggable Protein-Protein Interfaces and Their Application to Repurposing. Methods Mol Biol 2019; 1903:1-21. [PMID: 30547433 PMCID: PMC8185533 DOI: 10.1007/978-1-4939-8955-3_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Drug repurposing is a creative and resourceful approach to increase the number of therapies by exploiting available and approved drugs. However, identifying new protein targets for previously approved drugs is challenging. Although new strategies have been developed for drug repurposing, there is broad agreement that there is room for further improvements. In this chapter, we review protein-protein interaction (PPI) interface-targeting strategies for drug repurposing applications. We discuss certain features, such as hot spot residue and hot region prediction and their importance in drug repurposing, and illustrate common methods used in PPI networks to identify drug off-targets. We also collect available online resources for hot spot prediction, binding pocket identification, and interface clustering which are effective resources in polypharmacology. Finally, we provide case studies showing the significance of protein interfaces and hot spots in drug repurposing.
Collapse
Affiliation(s)
- E Sila Ozdemir
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Farideh Halakou
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey.
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.
| |
Collapse
|
29
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
30
|
Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 2018; 193:31-49. [PMID: 30121319 DOI: 10.1016/j.pharmthera.2018.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.
Collapse
Affiliation(s)
- Vassilios Myrianthopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Athena Research Center, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Myrsini Kouloukoussa
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
31
|
Zhang J, Zhang L, Xu Y, Jiang S, Shao Y. Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex. PLoS One 2018; 13:e0196651. [PMID: 29715320 PMCID: PMC5929560 DOI: 10.1371/journal.pone.0196651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD) simulations were performed on six inhibitors, chrysin (M01), fisetin (M03), galangin (M04), genistein (M05), quercetin (M06) and kaempferol (M07), complexed with CDK6/cyclin D. For all six flavonoids, the 3'-OH and 4'-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3', 4', 7-trihydroxyflavone (M15). The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force) and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.
Collapse
Affiliation(s)
- Jingxiao Zhang
- College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei, China
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, China
| | - Lilei Zhang
- College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei, China
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, China
| | - Yangcheng Xu
- College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei, China
| | - Shanshan Jiang
- College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei, China
| | - Yueyue Shao
- College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei, China
| |
Collapse
|
32
|
Selective and novel cyclin-dependent kinases 4 inhibitor: synthesis and biological evaluation. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Li Y, Luo X, Guo Q, Nie Y, Wang T, Zhang C, Huang Z, Wang X, Liu Y, Chen Y, Zheng J, Yang S, Fan Y, Xiang R. Discovery of N1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl)amino)phenyl)-N8-hydroxyoctanediamide as a Novel Inhibitor Targeting Cyclin-dependent Kinase 4/9 (CDK4/9) and Histone Deacetlyase1 (HDAC1) against Malignant Cancer. J Med Chem 2018. [PMID: 29518312 DOI: 10.1021/acs.jmedchem.8b00209] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yongtao Li
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaohe Luo
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qingxiang Guo
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yongwei Nie
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chao Zhang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhi Huang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanhua Liu
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanan Chen
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianyu Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shengyong Yang
- Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| | - Rong Xiang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
34
|
Wang J, Huang S. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp Ther Med 2017; 15:2667-2673. [PMID: 29467859 DOI: 10.3892/etm.2017.5666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment.
Collapse
Affiliation(s)
- Junjian Wang
- Department of Respiratory Medicine, Tianjin 5th Central Hospital, Tianjin 300450, P.R. China
| | - Shaoxiang Huang
- Department of Respiratory Medicine, Tianjin 5th Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
35
|
He H, Xu J, Xie W, Guo QL, Jiang FL, Liu Y. Reduced state transition barrier of CDK6 from open to closed state induced by Thr177 phosphorylation and its implication in binding modes of inhibitors. Biochim Biophys Acta Gen Subj 2017; 1862:501-512. [PMID: 29108955 DOI: 10.1016/j.bbagen.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND CDK6 is considered as a highly validated anticancer drug target due to its essential role in regulating cell cycle progression at G1 restriction point. Activation of CDK6 requires the phosphorylation of Thr177 on A-loop, but the structural insights of the activation mechanism remain unclear. METHODS Herein, all-atoms molecular dynamics (MD) simulations were used to study the effects of Thr177 phosphorylation on the dynamic structure of CDK6-Vcyclin complex. RESULTS MD results indicated that the free energy barrier of the transition from open to closed state decreased ~47.2% after Thr177 phosphorylation. Key steps along the state transition process were obtained from a cluster analysis. Binding preference of ten different inhibitors to open or closed state were also investigated through molecular docking along with MD simulations methods. CONCLUSIONS Our results indicated that Thr177 phosphorylation increased the flexibility around the ATP-binding pocket. The transition of the ATP-binding pocket between open and closed states should be considered for understanding the binding of CDK6 inhibitors. GENERAL SIGNIFICANCE This work could deepen the understanding of CDKs activation mechanism, and provide useful information for the discovery of new CDKs inhibitors with high affinity and specificity.
Collapse
Affiliation(s)
- Huan He
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Juan Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wen Xie
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - Qing-Lian Guo
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE) & Key Laboratory of Biomedical Polymer Materials (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Key Laboratory of Coal Conversion and Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China.
| |
Collapse
|
36
|
Molecular modeling and structure-based drug discovery approach reveals protein kinases as off-targets for novel anticancer drug RH1. Med Oncol 2017; 34:176. [PMID: 28879492 DOI: 10.1007/s12032-017-1011-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/20/2017] [Indexed: 01/23/2023]
Abstract
Potential drug target identification and mechanism of action is an important step in drug discovery process, which can be achieved by biochemical methods, genetic interactions or computational conjectures. Sometimes more than one approach is implemented to mine out the potential drug target and characterize the on-target or off-target effects. A novel anticancer agent RH1 is designed as pro-drug to be activated by NQO1, an enzyme overexpressed in many types of tumors. However, increasing data show that RH1 can affect cells in NQO1-independent fashion. Here, we implemented the bioinformatics approach of modeling and molecular docking for search of RH1 targets among protein kinase species. We have examined 129 protein kinases in total where 96 protein kinases are in complexes with their inhibitor, 11 kinases were in the unbound state with any ligand and for 22 protein kinases 3D structure were modeled. Comparison of calculated free energy of binding of RH1 with indigenous kinase inhibitors binding efficiency as well as alignment of their pharmacophoric maps let us predict and ranked protein kinases such as KIT, CDK2, CDK6, MAPK1, NEK2 and others as the most prominent off-targets of RH1. Our finding opens new avenues in search of protein targets that might be responsible for curing cancer by new promising drug RH1 in NQO1-independent way.
Collapse
|
37
|
Kalra S, Joshi G, Munshi A, Kumar R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur J Med Chem 2017; 142:424-458. [PMID: 28911822 DOI: 10.1016/j.ejmech.2017.08.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
There are around 20 Cyclin-dependent kinases (CDKs) known till date, and various research groups have reported their role in different types of cancer. The X-ray structures of some CDKs especially CDK2 was exploited in the past few years, and several inhibitors have been found, e.g., flavopiridol, indirubicin, roscovitine, etc., but due to the specificity issues of these inhibitors (binding to all CDKs), these were called as pan inhibitors. The revolutionary outcome of palbociclib in 2015 as CDK4/6 inhibitor added a new charm to the specific inhibitor design for CDKs. Computer-aided drug design (CADD) tools added a benefit to the design and development of new CDK inhibitors by studying the binding pattern of the inhibitors to the ATP binding domain of CDKs. Herein, we have attempted a comparative analysis of structural differences between several CDKs ATP binding sites and their inhibitor specificity by depicting the important ligand-receptor interactions for a particular CDK to be targeted. This perspective provides futuristic implications in the design of inhibitors considering the spatial features and structural insights of the specific CDK.
Collapse
Affiliation(s)
- Sourav Kalra
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gaurav Joshi
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Raj Kumar
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
38
|
Pajtás D, Kónya K, Kiss-Szikszai A, Džubák P, Pethő Z, Varga Z, Panyi G, Patonay T. Optimization of the Synthesis of Flavone–Amino Acid and Flavone–Dipeptide Hybrids via Buchwald–Hartwig Reaction. J Org Chem 2017; 82:4578-4587. [DOI: 10.1021/acs.joc.7b00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dávid Pajtás
- Department
of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Krisztina Kónya
- Department
of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department
of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779
00 Olomouc, Czech Republic
| | - Zoltán Pethő
- Department
of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Zoltán Varga
- Department
of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - György Panyi
- Department
of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Tamás Patonay
- Department
of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
39
|
Erdemli ME, Ekhteiari Salmas R, Durdagi S, Akgul H, Demirkol M, Aksungur Z, Selamoglu Z. Biochemical changes induced by grape seed extract and low level laser therapy administration during intraoral wound healing in rat liver: an experimental and in silico study. J Biomol Struct Dyn 2017; 36:993-1008. [PMID: 28279122 DOI: 10.1080/07391102.2017.1305297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, the changes that occur in rat liver tissue as a result of the use of grape seed extract (GSE) and low level laser therapy (LLLT) in intraoral wound (IW) healing are analyzed using biochemical parameters. Diode laser application groups received 8 J/cm2 dose LLLT once a day for 4 days (810 nm wavelength, continuous mode, 0.25 W, 9 s). As a result of the biological parameter analysis, it was determined that the oxidative damage caused by the IWs and recovery period on 7th and 14th days could be substantially removed with GSE applications that have antioxidant capacity especially in rat liver tissue. In addition, the active compound of grape seed, catechin is studied in the active site of glycogen synthase kinase 3 (GSK3) target using molecular modeling approaches. Post-processing molecular dynamics (MD) results for catechin is compared with a standard GSK3 inhibitor. MD simulations assisted for better understanding of inhibition mechanism and the crucial amino acids contributing in the ligand binding. These results along with a through free energy analysis of ligands using sophisticated simulations methods are quite striking and it suggests a greater future role for simulation in deciphering complex patterns of molecular mechanism in combination with methods for understanding drug-receptor interactions.
Collapse
Affiliation(s)
- Mehmet Erman Erdemli
- a Faculty of Medicine, Department of Medical Biochemistry , Omer Halisdemir University , Nigde , Turkey
| | - Ramin Ekhteiari Salmas
- b Computational Biology and Molecular Simulations Laboratory, Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| | - Serdar Durdagi
- b Computational Biology and Molecular Simulations Laboratory, Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| | - Hasan Akgul
- c Faculty of Arts and Science, Department of Biology , Akdeniz University , Antalya , Turkey
| | - Mehmet Demirkol
- d Faculty of Dentistry, Department of Oral and Maxillofacial Surgery , Gaziantep University , Gaziantep , Turkey
| | - Zeynep Aksungur
- e Faculty of Medicine, Department of Medical Biochemistry , Inonu University , Malatya , Turkey
| | - Zeliha Selamoglu
- f Faculty of Arts and Science, Department of Biotechnology , Omer Halisdemir University , Nigde , Turkey
| |
Collapse
|
40
|
Hernandez Maganhi S, Jensen P, Caracelli I, Zukerman Schpector J, Fröhling S, Friedman R. Palbociclib can overcome mutations in cyclin dependent kinase 6 that break hydrogen bonds between the drug and the protein. Protein Sci 2017; 26:870-879. [PMID: 28168755 PMCID: PMC5368058 DOI: 10.1002/pro.3135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/27/2016] [Accepted: 01/29/2017] [Indexed: 01/04/2023]
Abstract
Inhibition of cyclin dependent kinases (CDKs) 4 and 6 prevent cells from entering the synthesis phase of the cell cycle. CDK4 and 6 are therefore important drug targets in various cancers. The selective CDK4/6 inhibitor palbociclib is approved for the treatment of breast cancer and has shown activity in a cellular model of mixed lineage leukaemia (MLL)‐rearranged acute myeloid leukaemia (AML). We studied the interactions of palbociclib and CDK6 using molecular dynamics simulations. Analysis of the simulations suggested several interactions that stabilized the drug in its binding site and that were not observed in the crystal structure of the protein‐drug complex. These included a hydrogen bond to His 100 that was hitherto not reported and several hydrophobic contacts. Evolutionary‐based bioinformatic analysis was used to suggest two mutants, D163G and H100L that would potentially yield drug resistance, as they lead to loss of important protein–drug interactions without hindering the viability of the protein. One of the mutants involved a change in the glycine of the well‐conserved DFG motif of the kinase. Interestingly, CDK6‐dependent human AML cells stably expressing either mutant retained sensitivity to palbociclib, indicating that the protein‐drug interactions are not affected by these. Furthermore, the cells were proliferative in the absence of palbociclib, indicating that the Asp to Gly mutation in the DFG motif did not interfere with the catalytic activity of the protein. PDB Code(s): 2EUF
Collapse
Affiliation(s)
| | - Patrizia Jensen
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ignez Caracelli
- Department of Physics, Federal University of São Carlos, São Carlos, Brazil
| | | | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.,Centre of Excellence "Biomaterials Chemistry", Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
41
|
Fang J, Wang L, Wu T, Yang C, Gao L, Cai H, Liu J, Fang S, Chen Y, Tan W, Wang Q. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:281-292. [PMID: 27888133 DOI: 10.1016/j.jep.2016.11.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD), as the most common type of dementia, has brought a heavy economic burden to healthcare system around the world. However, currently there is still lack of effective treatment for AD patients. Herbal medicines, featured as multiple herbs, ingredients and targets, have accumulated a great deal of valuable experience in treating AD although the exact molecular mechanisms are still unclear. MATERIALS AND METHODS In this investigation, we proposed a network pharmacology-based method, which combined large-scale text-mining, drug-likeness filtering, target prediction and network analysis to decipher the mechanisms of action for the most widely studied medicinal herbs in AD treatment. RESULTS The text mining of PubMed resulted in 10 herbs exhibiting significant correlations with AD. Subsequently, after drug-likeness filtering, 1016 compounds were remaining for 10 herbs, followed by structure clustering to sum up chemical scaffolds of herb ingredients. Based on target prediction results performed by our in-house protocol named AlzhCPI, compound-target (C-T) and target-pathway (T-P) networks were constructed to decipher the mechanism of action for anti-AD herbs. CONCLUSIONS Overall, this approach provided a novel strategy to explore the mechanisms of herbal medicine from a holistic perspective.
Collapse
Affiliation(s)
- Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Pre-Incubator for Innovative Drugs & Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Tian Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Cong Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Haobin Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junhui Liu
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Shuhuan Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yunbo Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Encephalopathy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
42
|
Abstract
CVD remain the leading cause of death globally. Effective dietary strategies for their reduction are of high priority. Increasing evidence suggests that phytochemicals, particularly dietary flavonoids and nitrates, are key modulators of CVD risk reduction through impact on multiple risk factors. The aim of this review is to explore the evidence for the impact of flavonoid- and nitrate-rich foods and supplements on CVD risk, with specific reference to their importance as mediators of vascular health and platelet function. There is accumulating evidence to support benefits of dietary flavonoids on cardiovascular health. Dose-dependent recovery of endothelial function and lowering of blood pressure have been reported for the flavanol (-)-epicatechin, found in cocoa, apples and tea, through production and availability of endothelial nitric oxide (NO). Furthermore, flavonoids, including quercetin and its metabolites, reduce in vitro and ex vivo platelet function via inhibition of phosphorylation-dependent cellular signalling pathways, although further in vivo studies are required to substantiate these mechanistic effects. Hypotensive effects of dietary nitrates have been consistently reported in healthy subjects in acute and chronic settings, although there is less evidence for these effects in patient groups. Proposed mechanisms of actions include endothelial-independent NO availability, which is dependent on the entro-salivary circulation and microbial conversion of dietary nitrate to nitrite in the mouth. In conclusion, flavonoid- and nitrate-rich foods show promising effects on vascular function, yet further randomly controlled studies are required to confirm these findings and to determine effective doses.
Collapse
Affiliation(s)
- Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition,Department of Food and Nutritional Sciences,Reading RG6 6AP,UK
| | - Alex Stainer
- Institute for Cardiovascular and Metabolic Research (ICMR),University of Reading,Whiteknights,Reading RG6 6AP,UK
| | - Ditte A Hobbs
- Hugh Sinclair Unit of Human Nutrition,Department of Food and Nutritional Sciences,Reading RG6 6AP,UK
| |
Collapse
|
43
|
Affiliation(s)
| | - Maria Daniela D'Agostino
- McGill University Department of Human Genetics and McGill University Health Center, Department of Medical Genetics, Montreal, QC, Canada
| | - Nancy Braverman
- McGill University Department of Human Genetics and Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
44
|
Tadesse S, Yu M, Kumarasiri M, Le BT, Wang S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle 2016; 14:3220-30. [PMID: 26315616 DOI: 10.1080/15384101.2015.1084445] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) plays a vital role in regulating the progression of the cell cycle. More recently, CDK6 has also been shown to have a transcriptional role in tumor angiogenesis. Up-regulated CDK6 activity is associated with the development of several types of cancers. While CDK6 is over-expressed in cancer cells, it has a low detectable level in non-cancerous cells and CDK6-null mice develop normally, suggesting a specific oncogenic role of CDK6, and that its inhibition may represent an ideal mechanism-based and low toxic therapeutic strategy in cancer treatment. Identification of selective small molecule inhibitors of CDK6 is thus needed for drug development. Herein, we review the latest understandings of the biological regulation and oncogenic roles of CDK6. The potential clinical relevance of CDK6 inhibition, the progress in the development of small-molecule CDK6 inhibitors and the rational design of potential selective CDK6 inhibitors are also discussed.
Collapse
Affiliation(s)
- Solomon Tadesse
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Mingfeng Yu
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Malika Kumarasiri
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Bich Thuy Le
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Shudong Wang
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| |
Collapse
|
45
|
Navarro-Retamal C, Caballero J. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship. PLoS One 2016; 11:e0161111. [PMID: 27517610 PMCID: PMC4982677 DOI: 10.1371/journal.pone.0161111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/29/2016] [Indexed: 01/20/2023] Open
Abstract
In the last years, the interactions of flavonoids with protein kinases (PKs) have been described by using crystallographic experiments. Interestingly, different orientations have been found for one flavonoid inside different PKs and different chemical substitutions lead to different orientations of the flavonoid scaffold inside one PK. Accordingly, orientation predictions of novel analogues could help to the design of flavonoids with high PK inhibitory activities. With this in mind, we studied the binding modes of 37 flavonoids (flavones and chalcones) inside the cyclin-dependent PK CDK1 using docking experiments. We found that the compounds under study adopted two different orientations into the active site of CDK1 (orientations I and II in the manuscript). In addition, quantitative structure-activity relationship (QSAR) models using CoMFA and CoMSIA methodologies were constructed to explain the trend of the CDK1 inhibitory activities for the studied flavonoids. Template-based and docking-based alignments were used. Models developed starting from docking-based alignment were applied for describing the whole dataset and compounds with orientation I. Adequate R2 and Q2 values were obtained by each method; interestingly, only hydrophobic and hydrogen bond donor fields describe the differential potency of the flavonoids as CDK1 inhibitors for both defined alignments and subsets. Our current application of docking and QSAR together reveals important elements to be drawn for the design of novel flavonoids with increased PK inhibitory activities.
Collapse
Affiliation(s)
- Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
- * E-mail:
| |
Collapse
|
46
|
Abstract
The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development.
Collapse
|
47
|
Lim DY, Shin SH, Lee MH, Malakhova M, Kurinov I, Wu Q, Xu J, Jiang Y, Dong Z, Liu K, Lee KY, Bae KB, Choi BY, Deng Y, Bode A, Dong Z. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget 2016; 7:35001-14. [PMID: 27167001 PMCID: PMC5085205 DOI: 10.18632/oncotarget.9223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/10/2016] [Indexed: 12/19/2022] Open
Abstract
Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches.
Collapse
Affiliation(s)
- Do Young Lim
- The Hormel Institute, University of Minnesota, MN, USA
| | - Seung Ho Shin
- The Hormel Institute, University of Minnesota, MN, USA
- Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, MN, USA
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
| | | | | | - Qiong Wu
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
| | - Jinglong Xu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Yanan Jiang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Ziming Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Kangdong Liu
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Kun Yeong Lee
- The Hormel Institute, University of Minnesota, MN, USA
| | - Ki Beom Bae
- The Hormel Institute, University of Minnesota, MN, USA
| | - Bu Young Choi
- Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, Chungbuk, South Korea
| | - Yibin Deng
- The Hormel Institute, University of Minnesota, MN, USA
| | - Ann Bode
- The Hormel Institute, University of Minnesota, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, MN, USA
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
48
|
Exploring the molecular targets of dietary flavonoid fisetin in cancer. Semin Cancer Biol 2016; 40-41:130-140. [PMID: 27163728 DOI: 10.1016/j.semcancer.2016.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/17/2016] [Indexed: 01/08/2023]
Abstract
The last few decades have seen a resurgence of interest among the scientific community in exploring the efficacy of natural compounds against various human cancers. Compounds of plant origin belonging to different groups such as alkaloids, flavonoids and polyphenols evaluated for their cancer preventive effects have yielded promising data, thereby offering a potential therapeutic alternative against this deadly disease. The flavonol fisetin (3,3',4',7-tetrahydroxyflavone), present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant and more significantly anti-carcinogenic activity when assessed in diverse cell culture and animal model systems. The purpose of this review is to update and discuss key findings obtained till date from in vitro and in vivo studies on fisetin, with special focus on its anti-cancer role. The molecular mechanism(s) described in the observed growth inhibitory effects of fisetin in different cancer cell types is also summarized. Moreover, an attempt is made to delineate the direction of future studies that could lead to the development of fisetin as a potent chemopreventive/chemotherapeutic agent against cancer.
Collapse
|
49
|
Beekmann K, de Haan LHJ, Actis-Goretta L, van Bladeren PJ, Rietjens IMCM. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1256-1263. [PMID: 26808477 DOI: 10.1021/acs.jafc.5b05456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the phosphorylation activity of recombinant protein kinase A (PKA) and of cell lysate from the hepatocellular carcinoma cell line HepG2 on 141 putative serine/threonine phosphorylation sites derived from human proteins was assessed. Glucuronidation reduced the inhibitory potency of kaempferol on the phosphorylation activity of PKA and HepG2 lysate on average about 16 and 3.5 times, respectively, but did not appear to affect the target selectivity for kinases present in the lysate. The data demonstrate that, upon glucuronidation, kaempferol retains part of its intrinsic kinase inhibition potential, which implies that K3G does not necessarily need to be deconjugated to the aglycone for a potential inhibitory effect on protein kinases.
Collapse
Affiliation(s)
- Karsten Beekmann
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
| | - Lucas Actis-Goretta
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Case Postale 44, 1000 Lausanne 26, Switzerland
| | - Peter J van Bladeren
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Case Postale 44, 1000 Lausanne 26, Switzerland
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
| |
Collapse
|
50
|
Shum AMY, Fung DCY, Corley SM, McGill MC, Bentley NL, Tan TC, Wilkins MR, Polly P. Cardiac and skeletal muscles show molecularly distinct responses to cancer cachexia. Physiol Genomics 2015; 47:588-99. [PMID: 26395599 DOI: 10.1152/physiolgenomics.00128.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cachexia is a systemic, paraneoplastic syndrome seen in patients with advanced cancer. There is growing interest in the altered muscle pathophysiology experienced by cachectic patients. This study reports the microarray analysis of gene expression in cardiac and skeletal muscle in the colon 26 (C26) carcinoma mouse model of cancer cachexia. A total of 268 genes were found to be differentially expressed in cardiac muscle tissue, compared with nontumor-bearing controls. This was fewer than the 1,533 genes that changed in cachectic skeletal muscle. In addition to different numbers of genes changing, different cellular functions were seen to change in each tissue. The cachectic heart showed signs of inflammation, similar to cachectic skeletal muscle, but did not show the upregulation of ubiquitin-dependent protein catabolic processes or downregulation of genes involved in cellular energetics and muscle regeneration that characterizes skeletal muscle cachexia. Quantitative PCR was used to investigate a subset of inflammatory genes in the cardiac and skeletal muscle of independent cachectic samples; this revealed that B4galt1, C1s, Serpina3n, and Vsig4 were significantly upregulated in cardiac tissue, whereas C1s and Serpina3n were significantly upregulated in skeletal tissue. Our skeletal muscle microarray results were also compared with those from three published microarray studies and found to be consistent in terms of the genes differentially expressed and the functional processes affected. Our study highlights that skeletal and cardiac muscles are affected differently in the C26 mouse model of cachexia and that therapeutic strategies cannot assume that both muscle types will show a similar response.
Collapse
Affiliation(s)
- Angie M Y Shum
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - David C Y Fung
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Susan M Corley
- New South Wales Systems Biology Initiative, University of New South Wales Australia, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Max C McGill
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - Nicholas L Bentley
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Mitochondrial Bioenergetics Group, Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - Timothy C Tan
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Blacktown Clinical School and Blacktown Hospital, Blacktown, New South Wales, Australia; and Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Marc R Wilkins
- New South Wales Systems Biology Initiative, University of New South Wales Australia, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Patsie Polly
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia;
| |
Collapse
|