1
|
Jin X, Ding N, Guo HY, Hu Q. Macrocyclic-based strategy in drug design: From lab to the clinic. Eur J Med Chem 2024; 277:116733. [PMID: 39098132 DOI: 10.1016/j.ejmech.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Macrocyclic compounds have emerged as potent tools in the field of drug design, offering unique advantages for enhancing molecular recognition, improving pharmacokinetic properties, and expanding the chemical space accessible to medicinal chemists. This review delves into the evolutionary trajectory of macrocyclic-based strategies, tracing their journey from laboratory innovations to clinical applications. Beginning with an exploration of the defining structural features of macrocycles and their impact on drug-like characteristics, this discussion progresses to highlight key design principles that have facilitated the development of diverse macrocyclic drug candidates. Through a series of illustrative representative case studies from approved macrocyclic drugs and candidates spanning various therapeutic areas, particular emphasis is placed on their efficacy in targeting challenging protein-protein interactions, enzymes, and receptors. Additionally, this review thoroughly examines how macrocycles effectively address critical issues such as metabolic stability, oral bioavailability and selectivity. Valuable insights into optimization strategies employed during both approved and clinical phases underscore successful translation of promising leads into efficacious therapies while providing valuable perspectives on harnessing the full potential of macrocycles in drug discovery and development endeavors.
Collapse
Affiliation(s)
- Xin Jin
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Ding
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Yu Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Jung C, Hwang J, Lee K, Viji M, Jang H, Kim H, Song S, Rajasekar S, Jung JK. Reagent-Free Intramolecular Hydroamination of Ynone-Tethered Aryl-sulfonamide: Synthesis of Polysubstituted 4-Quinolones. J Org Chem 2024; 89:13691-13702. [PMID: 39213512 DOI: 10.1021/acs.joc.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An efficient reagent-free method for the synthesis of polysubstituted 4-quinolone from 2-substituted alkynoyl aryl-sulfonamide was developed. This developed method tolerates various functional groups and gives the corresponding 4-quinolones. We have successfully extended this method to the synthesis of dihydro-4-quinolones from 2-alkenoyl aryl sulfonamide derivatives.
Collapse
Affiliation(s)
- Chanhyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jinha Hwang
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kwanghee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of Kashmir, J&K 191201, India
| | - Hongjun Jang
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Hyoungsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Sukgil Song
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Shanmugam Rajasekar
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
3
|
Martino SD, Petri GL, De Rosa M. Hepatitis C: The Story of a Long Journey through First, Second, and Third Generation NS3/4A Peptidomimetic Inhibitors. What Did We Learn? J Med Chem 2024; 67:885-921. [PMID: 38179950 DOI: 10.1021/acs.jmedchem.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hepatitis C viral (HCV) infection is the leading cause of liver failure and still represents a global health burden. Over the past decade, great advancements made HCV curable, and sustained viral remission significantly improved to more than 98%. Historical treatment with pegylated interferon alpha and ribavirin has been displaced by combinations of direct-acting antivirals. These regimens include drugs targeting different stages of the HCV life cycle. However, the emergence of viral resistance remains a big concern. The design of peptidomimetic inhibitors (PIs) able to fit and fill the conserved substrate envelope region within the active site helped avoid contact with the vulnerable sites of the most common resistance-associated substitutions Arg155, Ala156, and Asp168. Herein, we give an overview of HCV NS3 PIs discovered during the past decade, and we deeply discuss the rationale behind the structural optimization efforts essential to achieve pangenotypic activity.
Collapse
Affiliation(s)
- Simona Di Martino
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Giovanna Li Petri
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
4
|
Rana SM, Islam M, Saeed H, Rafique H, Majid M, Aqeel MT, Imtiaz F, Ashraf Z. Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted-1,3,4-Oxadiazole Derivatives. Pharmaceuticals (Basel) 2023; 16:1045. [PMID: 37513956 PMCID: PMC10384447 DOI: 10.3390/ph16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The 1,3,4-oxadiazole derivatives Ox-6a-f have been synthesized by incorporating flurbiprofen moiety with the aim to explore the potential of target molecules to decrease the oxidative stress. The title compounds Ox-6a-f were prepared by simple reactions in which a flurbiprofen -COOH group was esterified with methanol in an acid-catalyzed medium, which was then reacted with hydrazine to afford the corresponding hydrazide. The acid hydrazide was then cyclized into 1,3,4-oxadiazole-2-thiol by reacting with CS2 in the presence of KOH. The title compounds Ox-6a-f were synthesized by the reaction of an -SH group with various alkyl/aryl chlorides, which involves an S-alkylation reaction. The structures of the synthesized Ox-6a-f derivatives were ascertained by spectroscopic data. The in silico molecular docking was performed against target proteins cyclooxygenase-2 COX-2 (PDBID 5KIR) and cyclooxygenase-1 COX-1 (PDBID 6Y3C) to determine the binding affinity of the synthesized compounds with these structures. It has been inferred that most of the synthesized compounds bind well with an active binding site of 5KIR compared to 6Y3C, and especially compound Ox-6f showed excellent binding affinity (7.70 kcal/mol) among all synthesized compounds Ox-6a-f. The molecular dynamic (MD) simulation has also been performed to check the stability of docking complexes of ligands with COX-2 by determining their root mean square deviation and root mean square fluctuation. Little fluctuation was observed in case of Ox-6f, which forms the most stable complex with COX-2. The comprehensive antioxidant potential of the synthesized compounds has been evaluated by determining their free radical scavenging activity, including DPPH, OH, nitric oxide (NO), and iron chelation assay. The derivative Ox-6f showed promising results with 80.23% radical scavenging potential at a dose of 100 µg/mL while ascorbic acid exhibited 87.72% inhibition at the same dose. The anti-inflammatory activity of the final products has also been performed, and inflammatory markers were assayed, such as a thiobarbituric acid-reducing substance, nitric oxide, interleukin-6 (IL-6), and COX-2. The derivatives Ox-6d and Ox-6f displayed higher anti-inflammatory activity, exhibiting 70.56% and 74.16% activity, respectively. The results were compared with standard ibuprofen, which showed 84.31% activity at the same dose, 200 µg/mL. The anti-inflammatory potential has been performed by following the carrageen-induced hind paw edema model, and results showed that derivative Ox-6f exhibited 79.83% reduction in edema volume compared to standard ibuprofen, which reduced 84.31% edema volume. As dry lab and wet lab results confirm each other, it has been deduced that derivative Ox-6f may serve as the lead structure to design potent compounds to address oxidative stress.
Collapse
Affiliation(s)
- Sibghat Mansoor Rana
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Islam
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Hamid Saeed
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Hummera Rafique
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University Islamabad, Islamabad 45500, Pakistan
| | | | - Fariha Imtiaz
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| |
Collapse
|
5
|
Liu H, Liu H, Wang E, Li L, Luo Z, Cao J, Chen J, Yang L, Yang X. Hydrogen Bond Assisted Three-Component Tandem Reactions to Access N-Alkyl-4-Quinolones. Molecules 2023; 28:molecules28052304. [PMID: 36903552 PMCID: PMC10005641 DOI: 10.3390/molecules28052304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Hydrogen-bonding catalytic reactions have gained great interest. Herein, a hydrogen-bond-assisted three-component tandem reaction for the efficient synthesis of N-alkyl-4-quinolones is described. This novel strategy features the first proof of polyphosphate ester (PPE) as a dual hydrogen-bonding catalyst and the use of readily available starting materials for the preparation of N-alkyl-4-quinolones. The method provides a diversity of N-alkyl-4-quinolones in moderate to good yields. The compound 4h demonstrated good neuroprotective activity against N-methyl-ᴅ-aspartate (NMDA)-induced excitotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Huadan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Enhua Wang
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Liangqun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zhongsheng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Jiafu Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Jialin Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Lishou Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.Y.); (X.Y.)
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.Y.); (X.Y.)
| |
Collapse
|
6
|
Singh P, Sahoo SK, Goud NS, Swain B, Yaddanapudi VM, Arifuddin M. Microwave‐Assisted Copper‐Catalyzed One‐Pot Synthesis of 2‐Aryl/Heteroaryl‐4‐Quinolones via Sequential IntramolecularAza‐Michael addition and Oxidation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Priti Singh
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Medicinal Chemistry INDIA
| | - Santosh Kumar Sahoo
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Chemical Sciences INDIA
| | - Nerella Sridhar Goud
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Mdicinal Chemsitry INDIA
| | - Baijayantimala Swain
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Medicinal Chemisty INDIA
| | - Venkata Madhavi Yaddanapudi
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad Chemical Sciences INDIA
| | - Mohammed Arifuddin
- National Institute of Pharmaceutical Education & Research (NIPER) Medicinal Chemistry Balanagar 500037 Hyderabad INDIA
| |
Collapse
|
7
|
Wang JS, Li C, Ying J, Xu T, Lu W, Li CY, Wu XF. Supported Palladium-Catalyzed Carbonylative Cyclization of 2-Bromonitrobenzenes and Alkynes to Access Quinolin-4(1H)-ones. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Nageswara Rao D, Zephyr J, Henes M, Chan ET, Matthew AN, Hedger AK, Conway HL, Saeed M, Newton A, Petropoulos CJ, Huang W, Kurt Yilmaz N, Schiffer CA, Ali A. Discovery of Quinoxaline-Based P1-P3 Macrocyclic NS3/4A Protease Inhibitors with Potent Activity against Drug-Resistant Hepatitis C Virus Variants. J Med Chem 2021; 64:11972-11989. [PMID: 34405680 PMCID: PMC9228641 DOI: 10.1021/acs.jmedchem.1c00554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three pan-genotypic HCV NS3/4A protease inhibitors (PIs) currently in clinical use-grazoprevir, glecaprevir, and voxilaprevir-are quinoxaline-based P2-P4 macrocycles and thus exhibit similar resistance profiles. Using our quinoxaline-based P1-P3 macrocyclic lead compounds as an alternative chemical scaffold, we explored structure-activity relationships (SARs) at the P2 and P4 positions to develop pan-genotypic PIs that avoid drug resistance. A structure-guided strategy was used to design and synthesize two series of compounds with different P2 quinoxalines in combination with diverse P4 groups of varying sizes and shapes, with and without fluorine substitutions. Our SAR data and cocrystal structures revealed the interplay between the P2 and P4 groups, which influenced inhibitor binding and the overall resistance profile. Optimizing inhibitor interactions in the S4 pocket led to PIs with excellent antiviral activity against clinically relevant PI-resistant HCV variants and genotype 3, providing potential pan-genotypic inhibitors with improved resistance profiles.
Collapse
Affiliation(s)
- Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Elise T Chan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ashley N Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Adam K Hedger
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Hasahn L Conway
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts 02118, United States
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts 02118, United States
| | - Alicia Newton
- Monogram Biosciences, South San Francisco, California 94080, United States
| | | | - Wei Huang
- Monogram Biosciences, South San Francisco, California 94080, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
9
|
Kavale AC, Kalbandhe AH, Opai IA, Jichkar AA, Karade NN. Oxidative ring expansion of 3-hydroxy-3-phenacyloxindoles using phenyliodine diacetate and molecular iodine: Synthesis of 2-hydroxy-2-aryl/alkyl-2,3-dihydroquinolin-4(1H)-ones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Metal-free electrochemical oxidative trifluoromethylation/C(sp2) H functionalization of quinolinones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Wypych RM, LaPlante SR, White PW, Martin SF. Structure-thermodynamics-relationships of hepatitis C viral NS3 protease inhibitors. Eur J Med Chem 2020; 192:112195. [PMID: 32151833 DOI: 10.1016/j.ejmech.2020.112195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Thermodynamic parameters were determined for structurally-related inhibitors of HCV NS3 protease to assess how binding entropies and enthalpies vary with incremental changes at the P2 and P3 inhibitor subsites. Changing the heterocyclic substituent at P2 from a pyridyl to a 7-methoxy-2-phenyl-4-quinolyl group leads to a 710-fold increase in affinity. Annelating a benzene ring onto a pyridine ring leads to quinoline-derived inhibitors having higher affinities, but the individual enthalpy and entropy contributions are markedly different for each ligand pair. Introducing a phenyl group at C2 of the heterocyclic ring at P2 uniformly leads to higher affinity analogs with more favorable binding entropies, while adding a methoxy group at C7 of the quinoline ring at P2 provides derivatives with more favorable binding enthalpies. Significant enthalpy/entropy compensation is observed for structural changes made to inhibitors lacking a 2-phenyl substituent, whereas favorable changes in both binding enthalpies and entropies accompany structural modifications when a 2-phenyl group is present. Overall, binding energetics of inhibitors having a 2-phenyl-4-quinolyl group at P2 are dominated by entropic effects, whereas binding of the corresponding norphenyl analogs are primarily enthalpy driven. Notably, the reversal from an entropy driven association to an enthalpy driven one for this set of inhibitors also correlates with alternate binding modes. When the steric bulk of the side chain at P3 is increased from a hydrogen atom to a tert-butyl group, there is a 770-fold improvement in affinity. The 30-fold increase resulting from the first methyl group is solely the consequence of a more favorable change in entropy, whereas subsequent additions of methyl groups leads to modest increases in affinity that arise primarily from incremental improvements in binding enthalpies accompanied with smaller favorable entropic contributions.
Collapse
Affiliation(s)
- Rachel M Wypych
- The University of Texas at Austin, Department of Chemistry, 105 E 24th St Station A5300, Austin, TX, 78712-1224, USA
| | - Steven R LaPlante
- Université du Québec, INRS-Centre Armand Frappier Santé et Biotechnologie, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Peter W White
- Boehringer Ingelheim (Canada) Limited, Research and Development, 2100 rue Cunard, Laval, Quebec, H7S 2G5, Canada
| | - Stephen F Martin
- The University of Texas at Austin, Department of Chemistry, 105 E 24th St Station A5300, Austin, TX, 78712-1224, USA.
| |
Collapse
|
12
|
Gore BS, Lee CC, Lee J, Wang J. Copper‐Catalyzed Synthesis of Substituted 4‐Quinolones using Water as a Benign Reaction Media: Application for the Construction of Oxolinic Acid and BQCA. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Chein Chung Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jessica Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
13
|
Iqbal Z, Iqbal A, Ashraf Z, Latif M, Hassan M, Nadeem H. Synthesis and docking studies of N-(5-(alkylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamide analogues as potential alkaline phosphatase inhibitors. Drug Dev Res 2019; 80:646-654. [PMID: 31032540 DOI: 10.1002/ddr.21542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
A series of N-(5-(alkylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamides 6a-i were synthesized as alkaline phosphatase inhibitors. The intermediate 5-substituted 1,3,4-oxadiazole-2-thione 4 was synthesized starting with hippuric acid. Hippuric acid in the first step was converted into corresponding methyl ester 2 which upon reaction with hydrazine hydrate furnished the formation of hydrazide 3. The hippuric acid hydrazide was then cyclized into 5-substituted 1,3,4-oxadiazole-2-thione 4. The intermediate 4 was then reacted with alkyl or aryl halides 5a-5i to afford the title compounds N-(5-(methylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamides 6a-i. The bioassay results showed that compounds 6a-i exhibited good to excellent alkaline phosphatase inhibitory activity. The most potent activity was exhibited by the compound 6i having IC50 value 0.420 μM, whereas IC50 value of standard (KH2 PO4 ) was 2.80 μM. Molecular docking studies was performed against alkaline phosphatase enzyme (PDBID 1EW2) to check binding affinity of the synthesized compounds 6a-i against target protein. The docking results showed that three compounds 6c, 6e, and 6i have maximum binding interactions with binding energy values of -8 kcal/mol. The compound 6i displayed the interactions of oxadiazole ring nitrogen with amino acid His265 having a binding distance 2.13 Ǻ. It was concluded from our results that synthesized compounds, especially compound 6i may serve as lead structure to design more potent inhibitors of human alkaline phosphatase.
Collapse
Affiliation(s)
- Zafar Iqbal
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Ambreen Iqbal
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Muhammad Latif
- Department is genetics and Inherited diseases, College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
14
|
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
15
|
Liu Y, Tian Y, Su K, Wang P, Guo X, Chen B. Rhodium(iii)-catalyzed [3 + 3] annulation reactions of N-nitrosoanilines and cyclopropenones: an approach to functionalized 4-quinolones. Org Chem Front 2019. [DOI: 10.1039/c9qo01250h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Rh(iii)-catalyzed [3 + 3] annulation reactions for the preparation of functionalized 4-quinolones from available N-nitrosoanilines and cyclopropenones.
Collapse
Affiliation(s)
- Yafeng Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Yuan Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Peigen Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
16
|
Bai H, Liu F, Wang X, Wang P, Huang C. Three-Component One-Pot Approach to Highly Efficient and Sustainable Synthesis of the Functionalized Quinolones via Linear/Branched Domino Protocols, Key Synthetic Methods for the Floxacin of Quinolone Drugs. ACS OMEGA 2018; 3:11233-11251. [PMID: 31459232 PMCID: PMC6645088 DOI: 10.1021/acsomega.8b01378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 06/10/2023]
Abstract
The development of a clear chemical process to produce diverse value-added chemicals from low-cost raw materials is a particularly attractive concept and represents a considerable challenge in sustainable organic synthesis. Herein, two highly efficient and clear methods for the synthesis of quinolone derivatives based on a linear/branched domino protocol under sustainable conditions were established. The main advantages of these protocols are the simple experimental procedure, high bond-forming efficiency, inexpensive readily available starting materials, moderate to excellent yields with good functional group compatibility, and nonchromatographic purification, which render these methods particularly attractive for the sustainable preparation of biologically and medicinally interesting molecules. To demonstrate the practical utility of our protocol, existing pharmaceutical sarafloxacin was successfully synthesized. Furthermore, a postulated reaction pathway including condensation reaction/nucleophilic aromatic substitution/Friedel-Crafts reaction for these domino reactions is also discussed.
Collapse
Affiliation(s)
- Hairui Bai
- School
of Chemistry and Environment and Engineering Research Center of
Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Yuehua Street, Kunming 650500, P. R. China
| | - Fujun Liu
- School
of Chemistry and Environment and Engineering Research Center of
Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Yuehua Street, Kunming 650500, P. R. China
| | - Xiaojing Wang
- School
of Chemistry and Environment and Engineering Research Center of
Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Yuehua Street, Kunming 650500, P. R. China
| | - Ping Wang
- School
of Chemistry and Environment and Engineering Research Center of
Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Yuehua Street, Kunming 650500, P. R. China
| | - Chao Huang
- School
of Chemistry and Environment and Engineering Research Center of
Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Yuehua Street, Kunming 650500, P. R. China
| |
Collapse
|
17
|
Venables BL, Sin N, Wang AX, Sun LQ, Tu Y, Hernandez D, Sheaffer A, Lee M, Dunaj C, Zhai G, Barry D, Friborg J, Yu F, Knipe J, Sandquist J, Falk P, Parker D, Good AC, Rajamani R, McPhee F, Meanwell NA, Scola PM. P3-P4 ureas and reverse carbamates as potent HCV NS3 protease inhibitors: Effective transposition of the P4 hydrogen bond donor. Bioorg Med Chem Lett 2018; 28:1853-1859. [PMID: 29650290 DOI: 10.1016/j.bmcl.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022]
Abstract
A series of tripeptidic acylsulfonamide inhibitors of HCV NS3 protease were prepared that explored structure-activity relationships (SARs) at the P4 position, and their in vitro and in vivo properties were evaluated. Enhanced potency was observed in a series of P4 ureas; however, the PK profiles of these analogues were less than optimal. In an effort to overcome the PK shortcomings, modifications to the P3-P4 junction were made. This included a strategy in which one of the two urea N-H groups was either N-methylated or replaced with an oxygen atom. The former approach provided a series of regioisomeric N-methylated ureas while the latter gave rise to P4 reverse carbamates, both of which retained potent NS3 inhibitory properties while relying upon an alternative H-bond donor topology. Details of the SARs and PK profiles of these analogues are provided.
Collapse
Affiliation(s)
- Brian L Venables
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States.
| | - Ny Sin
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Alan Xiangdong Wang
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Li-Qiang Sun
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Yong Tu
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Dennis Hernandez
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Amy Sheaffer
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Min Lee
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Cindy Dunaj
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Guangzhi Zhai
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Diana Barry
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Jacques Friborg
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Fei Yu
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Jay Knipe
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Jason Sandquist
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Paul Falk
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Dawn Parker
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Andrew C Good
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Ramkumar Rajamani
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Fiona McPhee
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Paul M Scola
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| |
Collapse
|
18
|
Chen XB, Gong JW, Zhang XD, Liu XL, Liu W, Wang YC. Catalyst-free concise synthesis of multi-functional 3-cyano-4-quinolinone derivatives from cyanoacetylenaminones and DMF-DMA. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wu J, Zhou Y, Wu T, Zhou Y, Chiang CW, Lei A. From Ketones, Amines, and Carbon Monoxide to 4-Quinolones: Palladium-Catalyzed Oxidative Carbonylation. Org Lett 2017; 19:6432-6435. [DOI: 10.1021/acs.orglett.7b03337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jiwei Wu
- The Institute for
Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yuchen Zhou
- The Institute for
Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ting Wu
- The Institute for
Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Zhou
- The Institute for
Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chien-Wei Chiang
- The Institute for
Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Aiwen Lei
- The Institute for
Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Gore BS, Senadi GC, Garkhedkar AM, Wang JJ. Efficient Approach to Amide Bond Formation with Nitriles and Peroxides: One-Pot Access to Boronated β-Ketoamides. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1 Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Gopal Chandru Senadi
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1 Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Amol Milind Garkhedkar
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1 Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; No. 100, Shih-Chuan 1 Rd, Sanmin district Kaohsiung City 807 Taiwan
- Department of Medical Research; Kaohsiung Medical University Hospital; No. 100, Tzyou 1 Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
21
|
Shi P, Wang L, Chen K, Wang J, Zhu J. Co(III)-Catalyzed Enaminone-Directed C–H Amidation for Quinolone Synthesis. Org Lett 2017; 19:2418-2421. [DOI: 10.1021/acs.orglett.7b00968] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengfei Shi
- School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Collaborative Innovation Center
of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lili Wang
- School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Collaborative Innovation Center
of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kehao Chen
- School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Collaborative Innovation Center
of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jie Wang
- School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Collaborative Innovation Center
of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- School of Chemistry and Chemical
Engineering, State Key Laboratory of Coordination Chemistry, Nanjing
National Laboratory of Microstructures, Collaborative Innovation Center
of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Huang PQ, Ou W. A Direct, Versatile, and Chemoselective Synthesis of Vinylogous Bis- and Monourethanes/amides and β-Keto Esters by Aza-Knoevenagel-Type Reactions of Tertiary Amides with Enolates. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pei-Qiang Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province; iChEM (Collaborative Innovation Center of Chemistry for Energy Materials); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 P.R. China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; 300071 Tianjin P. R. China
| | - Wei Ou
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province; iChEM (Collaborative Innovation Center of Chemistry for Energy Materials); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 P.R. China
| |
Collapse
|
23
|
Ma H, Guo C, Zhan Z, Lu G, Zhang Y, Luo X, Cui X, Huang G. Transition-metal-free oxidative intermolecular cyclization reaction: synthesis of 2-aryl-4-quinolones. NEW J CHEM 2017. [DOI: 10.1039/c7nj01293d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel and efficient intermolecular cyclization of 2-aminoacetophenones with aldehydes was developed for the synthesis of 2-aryl-4-quinolones through C–C and C–N bond formation.
Collapse
Affiliation(s)
- Haojie Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Cui Guo
- Yanchuan County People's Hospital
- Yanchuan
- P. R. China
| | - Zhenzhen Zhan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - YiXin Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Xinliang Luo
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - XinFeng Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
24
|
Hasan P, Aneja B, Masood M, Ahmad MB, Yadava U, Daniliuc CG, Abid M. Efficient synthesis of novel N-substituted 2-carboxy-4-quinolones via lithium bis(trimethylsilyl)amide (LiHMDS)-induced in situ cyclocondensation reaction. RSC Adv 2017. [DOI: 10.1039/c6ra28631c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Efficient synthesis ofN-aryl-2-carboxy-substituted 4-quinolones with broad substrate scope and high regioselectivity.
Collapse
Affiliation(s)
- Phool Hasan
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Mir M. Masood
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Md. Belal Ahmad
- Department of Chemistry
- TNB College
- TM Bhagalpur University
- Bhagalpur 812007
- India
| | - Umesh Yadava
- Department of Physics
- Deen Dayal Upadhyay Gorakhpur University
- Gorakhpur
- India
| | | | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi 110025
- India
| |
Collapse
|
25
|
Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones. Eur J Med Chem 2017; 126:408-420. [DOI: 10.1016/j.ejmech.2016.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022]
|
26
|
Ma H, Zhou X, Wei D, Cao J, Shi C, Fan Y, Huang G. KHCO3- and DBU-Promoted Cascade Reaction to Synthesize 3-Benzyl-2-phenylquinolin-4(1 H)-ones. Chem Asian J 2016; 11:2829-2833. [DOI: 10.1002/asia.201600901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Haojie Ma
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Xiaoqiang Zhou
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - DaiDong Wei
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Jinhui Cao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Chong Shi
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Yuxing Fan
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| |
Collapse
|
27
|
Santhosh Reddy R, Lagishetti C, Kiran INC, You H, He Y. Transition-Metal-Free Cascade Synthesis of 4-Quinolones: Umpolung of Michael Acceptors via Ene Reaction with Arynes. Org Lett 2016; 18:3818-21. [DOI: 10.1021/acs.orglett.6b01830] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Santhosh Reddy
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Chandraiah Lagishetti
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - I. N. Chaithanya Kiran
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Hengyao You
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical
Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P. R. China
| |
Collapse
|
28
|
Mochalov SS, Fedotov AN, Trofimova EV, Zefirov NS. Transformations of N-(2-acylaryl)benzamides and their analogs under the Camps cyclization conditions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s107042801607006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Parsy CC, Alexandre FR, Bidau V, Bonnaterre F, Brandt G, Caillet C, Cappelle S, Chaves D, Convard T, Derock M, Gloux D, Griffon Y, Lallos LB, Leroy F, Liuzzi M, Loi AG, Moulat L, Chiara M, Rahali H, Roques V, Rosinovsky E, Savin S, Seifer M, Standring D, Surleraux D. Discovery and structural diversity of the hepatitis C virus NS3/4A serine protease inhibitor series leading to clinical candidate IDX320. Bioorg Med Chem Lett 2015; 25:5427-36. [DOI: 10.1016/j.bmcl.2015.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
|
30
|
Discovery of a series of novel compounds with moderate anti-hepatitis C virus NS3 protease activity in vitro. Bioorg Med Chem 2015; 23:5539-45. [PMID: 26238980 DOI: 10.1016/j.bmc.2015.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 01/02/2023]
|
31
|
Barlow TMA, Jida M, Tourwé D, Ballet S. Efficient synthesis of conformationally constrained, amino-triazoloazepinone-containing di- and tripeptides via a one-pot Ugi-Huisgen tandem reaction. Org Biomol Chem 2015; 12:6986-9. [PMID: 25116189 DOI: 10.1039/c4ob01381f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we describe a catalyst-free procedure employing an Ugi-4CR between a β-azido-α-amino acid, propargylamine, an isocyanide and an aldehyde, followed by a thermal azide-alkyne Huisgen cycloaddition to generate a 16-member library of amino-triazoloazepinone-bearing di- and tripeptides with up to four points of diversification and high atom economy.
Collapse
Affiliation(s)
- T M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
32
|
Mao Y, Zhu F, Chen W, Shen J, Jiang X. New Synthesis ofN-(4-Chloro-3-cyano-7-ethoxyquinolin-6-yl)acetamide. ORG PREP PROCED INT 2015. [DOI: 10.1080/00304948.2015.1005987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Hu W, Lin JP, Song LR, Long YQ. Direct synthesis of 2-aryl-4-quinolones via transition-metal-free intramolecular oxidative C(sp(3))-H/C(sp(3))-H coupling. Org Lett 2015; 17:1268-71. [PMID: 25700137 DOI: 10.1021/acs.orglett.5b00248] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel, metal-free oxidative intramolecular Mannich reaction was developed between secondary amines and unmodified ketones, affording a simple and direct access to a broad range of 2-arylquinolin-4(1H)-ones through C(sp(3))-H activation/C(sp(3))-C(sp(3)) bond formation from readily available N-arylmethyl-2-aminophenylketones, using TEMPO as the oxidant and KO(t)Bu as the base.
Collapse
Affiliation(s)
- Wei Hu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | |
Collapse
|
34
|
Vidyacharan S, Sagar A, Sharada DS. A new route for the synthesis of highly substituted 4-aminoquinoline drug like molecules via aza hetero–Diels–Alder reaction. Org Biomol Chem 2015; 13:7614-8. [DOI: 10.1039/c5ob01023c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new route has been developed for the synthesis of 4-aminoquinoline drug like moleculesviaaza hetero–Diels–Alder reaction starting from 2H-indazole as a diene for the first time.
Collapse
Affiliation(s)
- Shinde Vidyacharan
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Telangana
- Hyderabad
- India
| | - A. Sagar
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Telangana
- Hyderabad
- India
| | - Duddu S. Sharada
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Telangana
- Hyderabad
- India
| |
Collapse
|
35
|
Qian Z, Dougherty PG, Liu T, Oottikkal S, Hogan PG, Hadad CM, Pei D. Structure-based optimization of a peptidyl inhibitor against calcineurin-nuclear factor of activated T cell (NFAT) interaction. J Med Chem 2014; 57:7792-7. [PMID: 25162754 PMCID: PMC4174996 DOI: 10.1021/jm500743t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Calcineurin
inhibitors such as cyclosporine A and FK506 are effective
immunosuppressants but produce severe side effects. Rational modification
of a previously reported peptide inhibitor, GPHPVIVITGPHEE (KD ∼ 500 nM), by replacing the two valine
residues with tert-leucine and the C-terminal proline
with a cis-proline analogue, gave an improved inhibitor
ZIZIT-cisPro, which binds to calcineurin with a KD value of 2.6 nM and is more resistant to proteolysis.
Collapse
Affiliation(s)
- Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University , 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Parsy C, Alexandre FR, Brandt G, Caillet C, Cappelle S, Chaves D, Convard T, Derock M, Gloux D, Griffon Y, Lallos L, Leroy F, Liuzzi M, Loi AG, Moulat L, Musiu C, Rahali H, Roques V, Seifer M, Standring D, Surleraux D. Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 2014; 24:4444-4449. [DOI: 10.1016/j.bmcl.2014.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
|
37
|
Ma W, Mao Y, Xie K, Zhu Q, Zhang R, Shen J, Sun H. New and Practical Synthesis of N-(3-Cyano-7-ethoxy-4-oxo-1,4-dihydroquinolin-6-yl)acetamide. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenpeng Ma
- China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Yongjun Mao
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road Pudong Shanghai 201203 China
| | - Kai Xie
- Topharman Shanghai Co., Ltd.; 1088 Chuansha Road Pudong Shanghai 201209 China
| | - Qifeng Zhu
- Topharman Shanghai Co., Ltd.; 1088 Chuansha Road Pudong Shanghai 201209 China
| | - Rongxia Zhang
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road Pudong Shanghai 201203 China
| | - Jingshan Shen
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road Pudong Shanghai 201203 China
| | - Hongbin Sun
- China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|
38
|
Scola PM, Wang AX, Good AC, Sun LQ, Combrink KD, Campbell JA, Chen J, Tu Y, Sin N, Venables BL, Sit SY, Chen Y, Cocuzza A, Bilder DM, D’Andrea S, Zheng B, Hewawasam P, Ding M, Thuring J, Li J, Hernandez D, Yu F, Falk P, Zhai G, Sheaffer AK, Chen C, Lee MS, Barry D, Knipe JO, Li W, Han YH, Jenkins S, Gesenberg C, Gao Q, Sinz MW, Santone KS, Zvyaga T, Rajamani R, Klei HE, Colonno RJ, Grasela DM, Hughes E, Chien C, Adams S, Levesque PC, Li D, Zhu J, Meanwell NA, McPhee F. Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. J Med Chem 2014; 57:1708-29. [DOI: 10.1021/jm401840s] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul M. Scola
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Alan Xiangdong Wang
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew C. Good
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Li-Qiang Sun
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Keith D. Combrink
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey A. Campbell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yong Tu
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brian L. Venables
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Anthony Cocuzza
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Donna M. Bilder
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Stanley D’Andrea
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Barbara Zheng
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Piyasena Hewawasam
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Min Ding
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jan Thuring
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jianqing Li
- Department
of Discovery Chemical Synthesis, Bristol-Myers Squibb Research and Development, P.O.
Box 4000, Princeton, New Jersey 08543, United States
| | - Dennis Hernandez
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Fei Yu
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Paul Falk
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Guangzhi Zhai
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy K. Sheaffer
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Chaoqun Chen
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Min S. Lee
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Diana Barry
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jay O. Knipe
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wenying Li
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yong-Hae Han
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Susan Jenkins
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Christoph Gesenberg
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Qi Gao
- Department of Pharmaceutical Development, Bristol-Myers Squibb Research and Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael W. Sinz
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S. Santone
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Tatyana Zvyaga
- Department of
Lead Discovery and Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ramkumar Rajamani
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Herbert E. Klei
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Richard J. Colonno
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dennis M. Grasela
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Eric Hughes
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Caly Chien
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Stephen Adams
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Paul C. Levesque
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Danshi Li
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jialong Zhu
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Fiona McPhee
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
39
|
Rosenquist Å, Samuelsson B, Johansson PO, Cummings MD, Lenz O, Raboisson P, Simmen K, Vendeville S, de Kock H, Nilsson M, Horvath A, Kalmeijer R, de la Rosa G, Beumont-Mauviel M. Discovery and Development of Simeprevir (TMC435), a HCV NS3/4A Protease Inhibitor. J Med Chem 2014; 57:1673-93. [DOI: 10.1021/jm401507s] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Maxwell D. Cummings
- Janssen Research & Development, LLC, Spring House, Pennsylvania 19002, United States
| | - Oliver Lenz
- Janssen Infectious Diseases BVBA, Beerse 2340, Belgium
| | | | - Kenny Simmen
- Janssen Infectious Diseases BVBA, Beerse 2340, Belgium
| | | | - Herman de Kock
- Galapagos NV Generaal De Wittelaan, L11A3-2800, Mechelen, Belgium
| | | | | | | | - Guy de la Rosa
- Janssen Global Services, LLC, Titusville, New Jersey 08560, United States
| | | |
Collapse
|
40
|
Li J, Mao Y, He Y, Zhu F, Chen W, Shen J. New Synthesis of N-(4-Chloro-3-cyano-7-ethoxyquinolin-6-yl)acetamide. HETEROCYCLES 2014. [DOI: 10.3987/com-13-12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Gupta S, Ghosh P, Dwivedi S, Das S. Synthesis of 6-aryl substituted 4-quinolones via Suzuki cross coupling. RSC Adv 2014. [DOI: 10.1039/c3ra45056b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Lin JP, Long YQ. Transition metal-free one-pot synthesis of 2-substituted 3-carboxy-4-quinolone and chromone derivatives. Chem Commun (Camb) 2013; 49:5313-5. [PMID: 23640202 DOI: 10.1039/c3cc41690a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel one-pot synthesis of the 2-substituted 3-carboxy-4-quinolone/chromone derivatives from readily available 3-oxo-3-arylpropanoates and amides/acyl chlorides is reported, without any transition metal aid.
Collapse
Affiliation(s)
- Jian-Ping Lin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | | |
Collapse
|
43
|
Bailey MD, Bordeleau J, Garneau M, Leblanc M, Lemke CT, O’Meara J, White PW, Llinàs-Brunet M. Peptide backbone replacement of hepatitis C virus NS3 serine protease C-terminal cleavage product analogs: Discovery of potent succinamide inhibitors. Bioorg Med Chem Lett 2013; 23:4447-52. [DOI: 10.1016/j.bmcl.2013.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/03/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
|
44
|
Bilodeau F, Bailey MD, Bhardwaj PK, Bordeleau J, Forgione P, Garneau M, Ghiro E, Gorys V, Halmos T, Jolicoeur ES, Leblanc M, Lemke CT, Naud J, O’Meara J, White PW, Llinàs-Brunet M. Synthesis and optimization of a novel series of HCV NS3 protease inhibitors: 4-Arylproline analogs. Bioorg Med Chem Lett 2013; 23:4267-71. [DOI: 10.1016/j.bmcl.2013.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
45
|
Wan Y, Lin W, Xin HQ, Yuan R, Zhao LL, Shi JJ, Wang C, Zhang XX, Wu H. Silica Sulfuric Acid-Catalyzed One-Pot Synthesis, Mechanism, and Fluorescence Properties of 2-(2-arylquinolin-4-(1 H)-ylidene)malononitriles. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
McCauley JA, Rudd MT, Liverton NJ. HCV NS3/4a Protease Inhibitors: Simeprevir (TMC‐435350), Vaniprevir (MK‐7009) and MK‐5172. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatitis C virus (HCV) infection continues to represent a major health issue, with estimates of 130–170 million people infected worldwide. Recent developments in the HCV NS3/4a protease inhibitor area have significantly improved treatment options for patients. However, a more dramatic paradigm shift in the treatment of HCV infection appears all but certain in coming years, with a move to all oral combination therapy with direct‐acting antivirals (DAAs). HCV protease inhibitors have the potential to play a significant role in these DAA combination therapies. This chapter discusses in detail the design and discovery of three HCV NS3/4a protease inhibitors in clinical development: simeprevir (TMC‐435350), vaniprevir (MK‐7009) and MK‐5172.
Collapse
Affiliation(s)
- John A. McCauley
- Department of Medicinal Chemistry Merck Research Laboratories, West Point, PA 19486 USA
| | - Michael T. Rudd
- Department of Medicinal Chemistry Merck Research Laboratories, West Point, PA 19486 USA
| | - Nigel J. Liverton
- Department of Medicinal Chemistry Merck Research Laboratories, West Point, PA 19486 USA
| |
Collapse
|
47
|
Li X, Liu Y, Zhang YK, Plattner JJ, Baker SJ, Bu W, Liu L, Zhou Y, Ding CZ, Zhang S, Kazmierski WM, Hamatake R, Duan M, Wright LL, Smith GK, Jarvest RL, Ji JJ, Cooper JP, Tallant MD, Crosby RM, Creech K, Wang A. Synthesis and antiviral activity of novel HCV NS3 protease inhibitors with P4 capping groups. Bioorg Med Chem Lett 2012; 22:7351-6. [DOI: 10.1016/j.bmcl.2012.10.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022]
|
48
|
Mao Y, Liu Z, Yang X, Xia X, Zhang R, Li J, Jiang X, Xie K, Zheng J, Zhang H, Suo J, Shen J. A New and Improved Process for N-(4-Chloro-3-cyano-7-ethoxyquinolin-6-yl)acetamide. Org Process Res Dev 2012. [DOI: 10.1021/op300260m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yongjun Mao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong,
Shanghai 201203, P.R. China
| | - Zheng Liu
- Topharman Shanghai Co., Ltd., 1088 Chuansha
Road, Pudong, Shanghai 201209, P.R. China
| | - Xiaojun Yang
- Topharman Shanghai Co., Ltd., 1088 Chuansha
Road, Pudong, Shanghai 201209, P.R. China
| | - Xiangfei Xia
- Topharman Shanghai Co., Ltd., 1088 Chuansha
Road, Pudong, Shanghai 201209, P.R. China
| | - Rongxia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong,
Shanghai 201203, P.R. China
| | - Jianfeng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong,
Shanghai 201203, P.R. China
| | - Xiangrui Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong,
Shanghai 201203, P.R. China
| | - Kai Xie
- Topharman Shanghai Co., Ltd., 1088 Chuansha
Road, Pudong, Shanghai 201209, P.R. China
| | - Jin Zheng
- Topharman Shanghai Co., Ltd., 1088 Chuansha
Road, Pudong, Shanghai 201209, P.R. China
| | - Hui Zhang
- Topharman Shanghai Co., Ltd., 1088 Chuansha
Road, Pudong, Shanghai 201209, P.R. China
| | - Jin Suo
- Topharman Shanghai Co., Ltd., 1088 Chuansha
Road, Pudong, Shanghai 201209, P.R. China
| | - Jingshan Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong,
Shanghai 201203, P.R. China
| |
Collapse
|
49
|
Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032). Antimicrob Agents Chemother 2012; 56:5387-96. [PMID: 22869577 DOI: 10.1128/aac.01186-12] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with K(i) values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC(50)s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC(50), 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC(50), >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC(50)s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients.
Collapse
|
50
|
|