1
|
Su M, Su Y. Recent Advances in Amphipathic Peptidomimetics as Antimicrobial Agents to Combat Drug Resistance. Molecules 2024; 29:2492. [PMID: 38893366 PMCID: PMC11173824 DOI: 10.3390/molecules29112492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The development of antimicrobial drugs with novel structures and clear mechanisms of action that are active against drug-resistant bacteria has become an urgent need of safeguarding human health due to the rise of bacterial drug resistance. The discovery of AMPs and the development of amphipathic peptidomimetics have lay the foundation for novel antimicrobial agents to combat drug resistance due to their overall strong antimicrobial activities and unique membrane-active mechanisms. To break the limitation of AMPs, researchers have invested in great endeavors through various approaches in the past years. This review summarized the recent advances including the development of antibacterial small molecule peptidomimetics and peptide-mimic cationic oligomers/polymers, as well as mechanism-of-action studies. As this exciting interdisciplinary field is continuously expanding and growing, we hope this review will benefit researchers in the rational design of novel antimicrobial peptidomimetics in the future.
Collapse
Affiliation(s)
- Ma Su
- College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Yongxiang Su
- College of Chemistry and Environmental Engineering, Jiaozuo University, Ren-Min Road, Jiaozuo 454000, China;
| |
Collapse
|
2
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
4
|
Molecular dynamics simulations to study the role of biphenylalanine in promoting the antibacterial activity of ultrashort peptides. J Mol Graph Model 2022; 117:108282. [PMID: 35961218 DOI: 10.1016/j.jmgm.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 01/14/2023]
Abstract
The hydrophobic amino acid biphenylalanine (B) plays a key role in the antibacterial activity of ultrashort peptides. In this study, the interactions of tetrapeptide BRBR-NH2 (BRBR) and pentapeptide BRBRB-NH2 (BRBRB) with dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) mixed model membrane were studied by molecular dynamics simulation to assess the role of biphenylalanine in promoting the antibacterial activity of ultrashort peptides. At low peptide concentrations, both peptides presented amphiphilic conformations; residues B of the pentapeptide approached the membrane faster than those of the tetrapeptide and made more contacts with the membrane; BRBRB exhibited stronger membrane affinity than BRBR. However, due to the low peptide concentrations, the effects of these two peptides on the membrane were not significantly different. At high peptide concentrations, the strong affinity of BRBRB made it have more interaction with membrane than BRBR and most residues B of BRBRB inserted into the membrane; BRBRB was more prone to aggregation and caused the membrane more disordered and thinner than BRBR. Hydrophobic residues often act as anchors in the antibacterial activity of ultrashort antimicrobial peptides. Adding a hydrophobic residue B to the C-terminal of BRBR could improve the ability of the peptide to "grasp" the membrane. At high peptide concentrations, the addition of residue B might enhance the antibacterial activity of the peptide. Thus, our results will be helpful in designing efficient antibacterial drugs.
Collapse
|
5
|
Svenson J, Molchanova N, Schroeder CI. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol 2022; 13:915368. [PMID: 35720375 PMCID: PMC9204644 DOI: 10.3389/fimmu.2022.915368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The search for efficient antimicrobial therapies that can alleviate suffering caused by infections from resistant bacteria is more urgent than ever before. Infections caused by multi-resistant pathogens represent a significant and increasing burden to healthcare and society and researcher are investigating new classes of bioactive compounds to slow down this development. Antimicrobial peptides from the innate immune system represent one promising class that offers a potential solution to the antibiotic resistance problem due to their mode of action on the microbial membranes. However, challenges associated with pharmacokinetics, bioavailability and off-target toxicity are slowing down the advancement and use of innate defensive peptides. Improving the therapeutic properties of these peptides is a strategy for reducing the clinical limitations and synthetic mimics of antimicrobial peptides are emerging as a promising class of molecules for a variety of antimicrobial applications. These compounds can be made significantly shorter while maintaining, or even improving antimicrobial properties, and several downsized synthetic mimics are now in clinical development for a range of infectious diseases. A variety of strategies can be employed to prepare these small compounds and this review describes the different compounds developed to date by adhering to a minimum pharmacophore based on an amphiphilic balance between cationic charge and hydrophobicity. These compounds can be made as small as dipeptides, circumventing the need for large compounds with elaborate three-dimensional structures to generate simplified and potent antimicrobial mimics for a range of medical applications. This review highlight key and recent development in the field of small antimicrobial peptide mimics as a promising class of antimicrobials, illustrating just how small you can go.
Collapse
Affiliation(s)
| | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christina I. Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
6
|
Barzan G, Kokalari I, Gariglio G, Ghibaudi E, Devocelle M, Monopoli MP, Sacco A, Greco A, Giovannozzi AM, Rossi AM, Fenoglio I. Molecular Aspects of the Interaction with Gram-Negative and Gram-Positive Bacteria of Hydrothermal Carbon Nanoparticles Associated with Bac8c 2,5Leu Antimicrobial Peptide. ACS OMEGA 2022; 7:16402-16413. [PMID: 35601297 PMCID: PMC9118266 DOI: 10.1021/acsomega.2c00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial peptides (AMPs) are widely studied as therapeutic agents due to their broad-spectrum efficacy against infections. However, their clinical use is hampered by the low in vivo bioavailability and systemic toxicity. Such limitations might be overcome by using appropriate drug delivery systems. Here, the preparation of a drug delivery system (DDS) by physical conjugation of an arginine-rich peptide and hydrothermal carbon nanoparticles (CNPs) has been explored, and its antimicrobial efficacy against Eschericia coli (E. coli) and Staphylococcus aureus investigated in comparison with the unloaded carrier and the free peptide. The mechanism of interaction between CNPs and the bacteria was investigated by scanning electron microscopy and a combined dielectrophoresis-Raman spectroscopy method for real-time analysis. In view of a possible systemic administration, the effect of proteins on the stability of the DDS was investigated by using albumin as a model protein. The peptide was bounded electrostatically to the CNPs surface, establishing an equilibrium modulated by pH and albumin. The DDS exhibited antimicrobial activity toward the two bacterial strains, albeit lower as compared to the free peptide. The decrease in effectiveness toward E. coli was likely due to the rapid formation of a particle-induced extracellular matrix. The present results are relevant for the future development of hydrothermal CNPs as drug delivery agents of AMPs.
Collapse
Affiliation(s)
- Giulia Barzan
- National
Institute of Metrological Research (INRiM), 10135 Torino, Italy
- Department
of Electronics and Telecommunications, Politecnico
di Torino, 10129 Torino, Italy
| | - Ida Kokalari
- Department
of Chemistry, University of Torino, 10125 Torino, Italy
| | - Giacomo Gariglio
- Department
of Chemistry, University of Torino, 10125 Torino, Italy
| | - Elena Ghibaudi
- Department
of Chemistry, University of Torino, 10125 Torino, Italy
| | - Marc Devocelle
- Department
of Chemistry, Royal College of Surgeons
in Ireland (RCSI), Dublin 2, Ireland
| | - Marco P. Monopoli
- Department
of Chemistry, Royal College of Surgeons
in Ireland (RCSI), Dublin 2, Ireland
| | - Alessio Sacco
- National
Institute of Metrological Research (INRiM), 10135 Torino, Italy
| | - Angelo Greco
- National
Institute of Metrological Research (INRiM), 10135 Torino, Italy
- Department
of Electronics and Telecommunications, Politecnico
di Torino, 10129 Torino, Italy
| | | | - Andrea M. Rossi
- National
Institute of Metrological Research (INRiM), 10135 Torino, Italy
| | - Ivana Fenoglio
- Department
of Chemistry, University of Torino, 10125 Torino, Italy
| |
Collapse
|
7
|
Grant TM, Rennison D, Cervin G, Pavia H, Hellio C, Foulon V, Brimble MA, Cahill P, Svenson J. Towards eco-friendly marine antifouling biocides - Nature inspired tetrasubstituted 2,5-diketopiperazines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152487. [PMID: 34953845 DOI: 10.1016/j.scitotenv.2021.152487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Valentin Foulon
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
8
|
Karlsen EA, Stensen W, Juskewitz E, Svenson J, Berglin M, Svendsen JSM. Anti-Colonization Effect of Au Surfaces with Self-Assembled Molecular Monolayers Functionalized with Antimicrobial Peptides on S. epidermidis. Antibiotics (Basel) 2021; 10:1516. [PMID: 34943728 PMCID: PMC8698454 DOI: 10.3390/antibiotics10121516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Medical devices with an effective anti-colonization surface are important tools for combatting healthcare-associated infections. Here, we investigated the anti-colonization efficacy of antimicrobial peptides covalently attached to a gold model surface. The gold surface was modified by a self-assembled polyethylene glycol monolayer with an acetylene terminus. The peptides were covalently connected to the surface through a copper-catalyzed [3 + 2] azide-acetylene coupling (CuAAC). The anti-colonization efficacy of the surfaces varied as a function of the antimicrobial activity of the peptides, and very effective surfaces could be prepared with a 6 log unit reduction in bacterial colonization.
Collapse
Affiliation(s)
- Eskil André Karlsen
- Amicoat AS, Sykehusvegen 23, 9019 Tromsø, Norway; (E.A.K.); (W.S.)
- Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Wenche Stensen
- Amicoat AS, Sykehusvegen 23, 9019 Tromsø, Norway; (E.A.K.); (W.S.)
- Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eric Juskewitz
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Johan Svenson
- RISE Research Institutes of Sweden, Brinellgatan 4, 504 62 Borås, Sweden; (J.S.); (M.B.)
| | - Mattias Berglin
- RISE Research Institutes of Sweden, Brinellgatan 4, 504 62 Borås, Sweden; (J.S.); (M.B.)
| | - John Sigurd Mjøen Svendsen
- Amicoat AS, Sykehusvegen 23, 9019 Tromsø, Norway; (E.A.K.); (W.S.)
- Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
9
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
11
|
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 2020; 260:118407. [PMID: 32931796 PMCID: PMC7486823 DOI: 10.1016/j.lfs.2020.118407] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tung Truong Thanh
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
12
|
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020; 52:1207-1226. [PMID: 32945974 PMCID: PMC7544725 DOI: 10.1007/s00726-020-02890-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
With the development of modern chemistry and biology, non-proteinogenic amino acids (NPAAs) have become a powerful tool for developing peptide-based drug candidates. Drug-like properties of peptidic medicines, due to the smaller size and simpler structure compared to large proteins, can be changed fundamentally by introducing NPAAs in its sequence. While peptides composed of natural amino acids can be used as drug candidates, the majority have shown to be less stable in biological conditions. The impact of NPAA incorporation can be extremely beneficial in improving the stability, potency, permeability, and bioavailability of peptide-based therapies. Conversely, undesired effects such as toxicity or immunogenicity should also be considered. The impact of NPAAs in the development of peptide-based therapeutics is reviewed in this article. Further, numerous examples of peptides containing NPAAs are presented to highlight the ongoing development in peptide-based therapeutics.
Collapse
Affiliation(s)
- Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
13
|
Dolle A, Nagati VB, Hunashal Y, Krishnamurthy K, Pasupulati AK, Raghothama S, Gowd KH. Disulfide engineering on temporin-SHf: Stabilizing the bioactive conformation of an ultra-short antimicrobial peptide. Chem Biol Drug Des 2019; 94:1634-1646. [PMID: 30924306 DOI: 10.1111/cbdd.13525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022]
Abstract
In Silico searching for short antimicrobial peptides has revealed temporin-SHf as the short (8AA), hydrophobic, broad spectrum, and natural antimicrobial peptide. Important drawback associated with temporin-SHf is the susceptibility of its bioactive conformation for denaturation and proteolytic degradation. In the current report, disulfide engineering strategy has been adopted to improve the stability of bioactive conformation of temporin-SHf. The functionally non-critical Leu4 and Ile7 residues at i and i + 3 position of helical conformation of temporin-SHf were mutated with cysteine disulfide. Designed [L4C, I7C]temporin-SHf was synthesized, characterized using NMR spectroscopy, and accessed for antimicrobial activity. [L4C, I7C]Temporin-SHf adopts helical conformation from Phe3 to Phe8 in the absence of membrane-mimetic environment and retains broad spectrum antimicrobial activity. The reduction potential of cysteine disulfide of [L4C, I7C]temporin-SHf is -289 mV. Trypsin-induced digestion and serum-induced digestion have confirmed the advantage of cysteine disulfide in imparting proteolytic stability to temporin-SHf. Disulfide-stabilized temporin-SHf may serve as a good model for the rational design of temporin-SHf based antibiotics for treatment of infectious diseases.
Collapse
Affiliation(s)
- Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Veera Babu Nagati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Yamanappa Hunashal
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kiran Krishnamurthy
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| |
Collapse
|
14
|
Small AntiMicrobial Peptide With in Vivo Activity Against Sepsis. Molecules 2019; 24:molecules24091702. [PMID: 31052373 PMCID: PMC6539432 DOI: 10.3390/molecules24091702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and alternative mechanisms of action compared to conventional antibiotics. Although AMPs present considerable advantages over conventional antibiotics, their clinical and commercial development still have some limitations, because of their potential toxicity, susceptibility to proteases, and high cost of production. To overcome these drawbacks, the use of peptides mimics is anticipated to avoid the proteolysis, while the identification of minimalist peptide sequences retaining antimicrobial activities could bring a solution for the cost issue. We describe here new polycationic β-amino acids combining these two properties, that we used to design small dipeptides that appeared to be active against Gram-positive and Gram-negative bacteria, selective against prokaryotic versus mammalian cells, and highly stable in human plasma. Moreover, the in vivo data activity obtained in septic mice reveals that the bacterial killing effect allows the control of the infection and increases the survival rate of cecal ligature and puncture (CLP)-treated mice.
Collapse
|
15
|
Svendsen JSM, Grant TM, Rennison D, Brimble MA, Svenson J. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. Acc Chem Res 2019; 52:749-759. [PMID: 30829472 DOI: 10.1021/acs.accounts.8b00624] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The alarming rate at which micro-organisms are developing resistance to conventional antibiotics represents one of the global challenges of our time. There is currently ample space in the antibacterial drug pipeline, and scientists are trying to find innovative and novel strategies to target the microbial enemies. Nature has remained a source of inspiration for most of the antibiotics developed and used, and the immune molecules produced by the innate defense systems, as a first line of defense, have been heralded as the next source of antibiotics. Most living organisms produce an arsenal of antimicrobial peptides (AMPs) to rapidly fend off intruding pathogens, and several different attempts have been made to transform this versatile group of compounds into the next generation of antibiotics. However, faced with the many hurdles of using peptides as drugs, the success of these defense molecules as therapeutics remains to be realized. AMPs derived from the proteolytic degradation of the innate defense protein lactoferrin have been shown to display several favorable antimicrobial properties. In an attempt to investigate the biological and pharmacological properties of these much shorter AMPs, the sequence dependence was investigated, and it was shown, through a series of truncation experiments, that these AMPs in fact can be prepared as tripeptides, with improved antimicrobial activity, via the incorporation of unnatural hydrophobic residues and terminal cappings. In this Account, we describe how this class of promising cationic tripeptides has been developed to specifically address the main challenges limiting the general use of AMPs. This has been made possible through the identification of the antibacterial pharmacophore and via the incorporation of a range of unnatural hydrophobic and cationic amino acids. Incorporation of these residues at selected positions has allowed us to extensively establish how these compounds interact with the major proteolytic enzymes trypsin and chymotrypsin and also the two major drug-binding plasma proteins serum albumin and α-1 glycoprotein. Several of the challenges associated with using AMPs relate to their size, susceptibility to rapid proteolytic degradation, and poor oral bioavailability. Our studies have addressed these issues in detail, and the results have allowed us to effectively design and prepare active and metabolically stable AMPs that have been evaluated in a range of functional settings. The optimized short AMPs display inhibitory activities against a plethora of micro-organisms at low micromolar concentrations, and they have been shown to target resistant strains of both bacteria and fungi alike with a very rapid mode of action. Our Account further describes how these compounds behave in in vivo experiments and highlights both the challenges and possibilities of the intriguing compounds. In several areas, they have been shown to exhibit comparable or superior activity to established antibacterial, antifungal, and antifouling commercial products. This illustrates their ability to effectively target and eradicate various microbes in a variety of settings ranging from the ocean to the clinic.
Collapse
Affiliation(s)
| | - Thomas M. Grant
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Johan Svenson
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden
| |
Collapse
|
16
|
Labrière C, Kondori N, Caous JS, Boomgaren M, Sandholm K, Ekdahl KN, Hansen JH, Svenson J. Development and evaluation of cationic amphiphilic antimicrobial 2,5-diketopiperazines. J Pept Sci 2018; 24:e3090. [PMID: 29845683 DOI: 10.1002/psc.3090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Christophe Labrière
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nahid Kondori
- Department of Infectious diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Josefin Seth Caous
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås, Sweden
| | - Marc Boomgaren
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kerstin Sandholm
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Kristina N Ekdahl
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Jørn H Hansen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås, Sweden
| |
Collapse
|
17
|
Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R. Short hybrid peptides incorporating β- and γ-amino acids as antimicrobial agents. Peptides 2017; 97:46-53. [PMID: 28962891 DOI: 10.1016/j.peptides.2017.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Abstract
The peptides containing β- and γ-amino acids, LA-Lys-PEA, P1; LA-Lys-β3,3-Ac6c-PEA, P2; LA-Orn-β3,3-Ac6c-PEA, P3; LA-Lys-Gpn-PEA, P4; LA-Orn-Gpn-PEA, P5; LA-Lys-γ4-Phe-PEA, P6, LA-γ4-Leu-Lys-PEA, P7 and LA-β3,3-Pip(Ac)-Lys-PEA, P8 were synthesized, characterized and evaluated against Gram-positive and Gram-negative bacteria. Among all, peptides P2, P3, P4 and P5 exhibited potent activity (MIC 6.25μM) against S. aureus MTCC 737 and P. aeruginosa MTCC 424. In order to understand the efficacy of peptides and mechanism of action, time kill kinetics and fluorescence microscopic studies were performed against S. aureus and P. aeruginosa for the peptides P2, P3, P4 and P5. P4 took half time to show the bactericidal effect on P. aeruginosa and S. aureus in comparison to P2 at their 2x MICs. Fluorescence microscopic studies suggested that peptides P2 and P4 both killed the bacteria via membrane disruption. Further, P4 exhibited lowest haemolytic activity among active peptides and negligible cytotoxic activity against human cancer cell lines A-549, PC-3 and HCT-116 at its MIC.
Collapse
Affiliation(s)
- Naiem Ahmad Wani
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Gurpreet Singh
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001 India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sudha Shankar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Arushi Sharma
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001 India
| | - Meenu Katoch
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001 India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Rajkishor Rai
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
18
|
Bakka TA, Strøm MB, Andersen JH, Gautun OR. Synthesis and antimicrobial evaluation of cationic low molecular weight amphipathic 1,2,3-triazoles. Bioorg Med Chem Lett 2017; 27:1119-1123. [DOI: 10.1016/j.bmcl.2017.01.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 11/24/2022]
|
19
|
Molchanova N, Hansen PR, Damborg P, Nielsen HM, Franzyk H. Lysine-Based α-Peptide/β-Peptoid Peptidomimetics: Influence of Hydrophobicity, Fluorination, and Distribution of Cationic Charge on Antimicrobial Activity and Cytotoxicity. ChemMedChem 2017; 12:312-318. [PMID: 28052595 DOI: 10.1002/cmdc.201600553] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/02/2017] [Indexed: 02/05/2023]
Abstract
Multidrug-resistant bacteria pose a serious threat to public health worldwide. Previously, α-peptide/β-peptoid hybrid oligomers were found to display activity against Gram-negative multidrug-resistant bacteria. In the present work, the influence of hydrophobicity, fluorination, and distribution of cationic/hydrophobic residues on antimicrobial, hemolytic, and cytotoxic properties of α-peptide/β-peptoid hybrids were investigated. An array of 22 peptidomimetics was tested. Analogues with enhanced hydrophobicity were found to exhibit increased activity against Gram-positive bacteria. Incorporation of fluorinated residues into the peptidomimetics conferred increased potency against Gram-positive bacteria, while hemolytic properties and activity against Gram-negative bacteria depended on the degree and type of fluorination. Generally, shorter oligomers were less potent than the corresponding longer analogues. However, some short analogues exhibited equal or higher antimicrobial activity. The alternating hydrophobic/cationic design proved superior to other distribution patterns of cationic side chains and hydrophobic moieties.
Collapse
Affiliation(s)
- Natalia Molchanova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Peter Damborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| |
Collapse
|
20
|
Eksteen JJ, Ausbacher D, Simon-Santamaria J, Stiberg T, Cavalcanti-Jacobsen C, Wushur I, Svendsen JS, Rekdal Ø. Iterative Design and in Vivo Evaluation of an Oncolytic Antilymphoma Peptide. J Med Chem 2016; 60:146-156. [PMID: 28004928 DOI: 10.1021/acs.jmedchem.6b00839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oncolytic peptides represent a promising new strategy within the field of cancer immunotherapy. Here we describe the systematic design and evaluation of short antilymphoma peptides within this paradigm. The peptides were tested in vitro and in vivo to identify a lead compound for further evaluation as novel oncolytic immunotherapeutic. In vitro tests revealed peptides with high activity against several lymphoma types and low cytotoxicity toward normal cells. Treated lymphoma cells exhibited a reduced mitochondrial membrane potential that resulted in an irreversible disintegration of their plasma membranes. No caspase activation or ultrastructural features of apoptotic cell death were observed. One of these peptides, 11, was shown to induce complete tumor regression and protective immunity following intralesional treatment of murine A20 B-lymphomas. Due to its selectivity for lymphoma cells and its ability to induce tumor-specific immune responses, 11 has the potential to be used in intralesional treatment of accessible lymphoma tumors.
Collapse
Affiliation(s)
- J Johannes Eksteen
- Lytix Biopharma AS , P.O. Box 6447, Siva Innovation Centre Tromsø, Tromsø NO-9294, Norway
| | | | | | | | | | | | - John S Svendsen
- Lytix Biopharma AS , P.O. Box 6447, Siva Innovation Centre Tromsø, Tromsø NO-9294, Norway
| | - Øystein Rekdal
- Lytix Biopharma AS , P.O. Box 6447, Siva Innovation Centre Tromsø, Tromsø NO-9294, Norway
| |
Collapse
|
21
|
Wenzel M, Prochnow P, Mowbray C, Vuong C, Höxtermann S, Stepanek JJ, Albada HB, Hall J, Metzler-Nolte N, Bandow JE. Towards Profiles of Resistance Development and Toxicity for the Small Cationic Hexapeptide RWRWRW-NH2. Front Cell Dev Biol 2016; 4:86. [PMID: 27617260 PMCID: PMC4999427 DOI: 10.3389/fcell.2016.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/05/2016] [Indexed: 01/12/2023] Open
Abstract
RWRWRW-NH2 (MP196) is an amphipathic hexapeptide that targets the bacterial cytoplasmic membrane and inhibits cellular respiration and cell wall synthesis. In previous studies it showed promising activity against Gram-positive bacteria and no significant cytotoxicity or hemolysis. MP196 is therefore used as lead structure for developing more potent antibiotic derivatives. Here we present a more comprehensive study on the parent peptide MP196 with regard to clinically relevant parameters. We found that MP196 acts rapidly bactericidal killing 97% of initial CFU within 10 min at two times MIC. We were unable to detect resistance in standard 24 and 48 h resistance frequency assays. However, MP196 was effective against some but not all MRSA and VISA strains. Serum binding of MP196 was intermediate and we confirmed its low toxicity against mammalian cell lines. MP196 did neither induce NFκB activation nor cause an increase in IL8 levels at 250 μg/mL, and no IgE-dependent activation of basophil granulocytes was detected at 500 μg/mL. Yet, MP196 demonstrated acute toxicity in mice upon injection into the blood stream. Phase contrast microscopy of mouse blood treated with MP196 revealed a shrinking of erythrocytes at 250 μg/mL and severe morphological changes and lysis of erythrocytes at 500 μg/mL. These data suggest that MP196 derivatization directed at further lowering hemolysis could be instrumental in overcoming acute toxicity. The assessment of hemolysis is a critical step in the evaluation of the clinical potential of promising antimicrobial peptides and should be accompanied by microscopy-based morphological analysis of blood cells.
Collapse
Affiliation(s)
- Michaela Wenzel
- Applied Microbiology, Ruhr University Bochum Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology, Ruhr University Bochum Bochum, Germany
| | - Catherine Mowbray
- Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Cuong Vuong
- AiCuris Anti-infective Cures GmbH Wuppertal, Germany
| | - Stefan Höxtermann
- Clinic for Dermatology and Allergology, St. Josef Hospital Bochum, Germany
| | | | - H Bauke Albada
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Bochum, Germany
| | - Judith Hall
- Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
22
|
Ramesh S, Govender T, Kruger HG, de la Torre BG, Albericio F. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J Pept Sci 2016; 22:438-51. [DOI: 10.1002/psc.2894] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Suhas Ramesh
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Beatriz G. de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Chemistry and Physics; University of KwaZulu-Natal; Durban 4001 South Africa
- CIBER-BBN, Networking Centre on Bioengineering; Biomaterials and Nanomedicine; Barcelona Science Park 08028 Barcelona Spain
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
| |
Collapse
|
23
|
Bugg TDH, Rodolis MT, Mihalyi A, Jamshidi S. Inhibition of phospho-MurNAc-pentapeptide translocase (MraY) by nucleoside natural product antibiotics, bacteriophage ϕX174 lysis protein E, and cationic antibacterial peptides. Bioorg Med Chem 2016; 24:6340-6347. [PMID: 27021004 DOI: 10.1016/j.bmc.2016.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Maria T Rodolis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Agnes Mihalyi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Shirin Jamshidi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
24
|
Discovery of an ultra-short linear antibacterial tetrapeptide with anti-MRSA activity from a structure-activity relationship study. Eur J Med Chem 2015; 105:138-44. [PMID: 26489599 DOI: 10.1016/j.ejmech.2015.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/20/2022]
Abstract
The overuse and misuse of antibiotics has resulted in the emergence of drug-resistant pathogenic bacteria, including meticillin-resistant Staphylococcus aureus (MRSA), the primary pathogen responsible for human skin and soft-tissue infections. Antibacterial peptides are known to kill bacteria by rapidly disrupting their membranes and are deemed plausible alternatives to conventional antibiotics. One advantage of their membrane-targeting mode of action is that bacteria are unlikely to develop resistance as changing their cell membrane structure and morphology would likely involve extensive genetic mutations. However, major concerns in using peptides as antibacterial drugs include their instability towards plasma proteases, toxicity towards human cells due to their membrane-targeting mode of action and high manufacturing cost. These concerns can be mitigated by developing peptides as topical agents, by the judicial selection of amino acids and developing very short peptides respectively. In this preliminary report, we reveal a linear, non-hemolytic tetrapeptide with rapid bactericidal activity against MRSA developed from a structure-activity relationship study based on the antimicrobial hexapeptide WRWRWR-NH2. Our finding opens promising avenues for the development of ultra-short antibacterials to treat multidrug-resistant MRSA skin and soft tissue infections.
Collapse
|
25
|
Ghosh C, Haldar J. Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides. ChemMedChem 2015; 10:1606-24. [PMID: 26386345 DOI: 10.1002/cmdc.201500299] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 12/27/2022]
Abstract
Infectious diseases continue to be one of the major contributors to human morbidity. The rapid rate at which pathogenic microorganisms have developed resistance against frontline antimicrobials has compelled scientists to look for new alternatives. Given their vast antimicrobial repertoire, substantial research effort has been dedicated toward the development of antimicrobial peptides (AMPs) as alternative drugs. However, inherent limitations of AMPs have driven substantial efforts worldwide to develop synthetic mimics of AMPs. This review focuses on the progress that has been made toward the development of small molecules that emulate the properties of AMPs, both in terms of design and biological activity. Herein we provide an extensive discussion of the structural features of various designs and we examine biological properties that have been exploited. Furthermore, we raise a number of questions for which the field has yet to provide solutions and discuss possible future research directions that remain either unexploited or underexploited.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bengaluru 560064, Karnataka (India)
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bengaluru 560064, Karnataka (India).
| |
Collapse
|
26
|
Zats GM, Kovaliov M, Albeck A, Shatzmiller S. Antimicrobial benzodiazepine-based short cationic peptidomimetics. J Pept Sci 2015; 21:512-9. [PMID: 25807936 DOI: 10.1002/psc.2771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 11/11/2022]
Abstract
Antimicrobial peptides (AMPs) appear to be good candidates for the development of new antibiotic drugs. We describe here the synthesis of peptidomimetic compounds that are based on a benzodiazepine scaffold flanked with positively charged and hydrophobic amino acids. These compounds mimic the essential properties of cationic AMPs. The new design possesses the benzodiazepine scaffold that is comprised of two glycine amino acids and which confers flexibility and aromatic hydrophobic 'back', and two arms used for further synthesis on solid phase for incorporation of charged and hydrophobic amino acids. This approach allowed us a better understanding of the influence of these features on the antimicrobial activity and selectivity. A novel compound was discovered which has MICs of 12.5 µg/ml against Staphylococcus aureus and 25 µg/ml against Escherichia coli, similar to the well-known antimicrobial peptide MSI-78. In contrast to MSI-78, the above mentioned compound has lower lytic effect against mammalian red blood cells. These peptidomimetic compounds will pave the way for future design of potent synthetic mimics of AMPs for therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Galina M Zats
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel.,Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| | - Marina Kovaliov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel.,Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| | - Amnon Albeck
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Shimon Shatzmiller
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
27
|
Trepos R, Cervin G, Pile C, Pavia H, Hellio C, Svenson J. Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling. BIOFOULING 2015; 31:393-403. [PMID: 26057499 DOI: 10.1080/08927014.2015.1048238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
A series of 13 short synthetic amphiphilic cationic micropeptides, derived from the antimicrobial iron-binding innate defence protein lactoferrin, have been evaluated for their capacity to inhibit the marine fouling process. The whole biofouling process was studied and microfouling organisms such as marine bacteria and microalgae were included as well as the macrofouling barnacle Balanus improvisus. In total 19 different marine fouling organisms (18 microfoulers and one macrofouler) were included and both the adhesion and growth of the microfoulers were investigated. It was shown that the majority of the peptides inhibited barnacle cyprid settlement via a reversible nontoxic mechanism, with IC50 values as low as 0.5 μg ml(-1). Six peptides inhibited adhesion and growth of microorganisms. Two of these were particularly active against the microfoulers with MIC-values ranging between 0.01 and 1 μg ml(-1), which is comparable with the commercial reference antifoulant SeaNine.
Collapse
Affiliation(s)
- Rozenn Trepos
- a School of Biological Sciences , University of Portsmouth , Portsmouth , UK
| | | | | | | | | | | |
Collapse
|
28
|
Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:73-80. [PMID: 25374459 PMCID: PMC4213192 DOI: 10.4137/pmc.s13215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are an essential part of innate immunity. These compounds have been considered as potential therapeutics because of their broad-spectrum activities and proven ability to avoid antimicrobial resistance, but their clinical and commercial developments have some limitations, such as susceptibility to proteases and a high cost of peptide production. To overcome these problems, many researchers have tried to develop short active peptides, their modifications and mimics with better properties while retaining their basic features of natural AMPs such as cationic charge and the amphipathic structure.
Collapse
Affiliation(s)
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
29
|
McCloskey AP, Gilmore BF, Laverty G. Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 2014; 3:791-821. [PMID: 25436505 PMCID: PMC4282886 DOI: 10.3390/pathogens3040791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 11/17/2022] Open
Abstract
Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a "bottom-up" approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.
Collapse
Affiliation(s)
- Alice P McCloskey
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, N. Ireland.
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, N. Ireland.
| | - Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, N. Ireland.
| |
Collapse
|
30
|
Lohan S, Cameotra SS, Bisht GS. Antibacterial evaluation of structurally amphipathic, membrane active small cationic peptidomimetics: Synthesized by incorporating 3-amino benzoic acid as peptidomimetic element. Eur J Med Chem 2014; 83:102-15. [DOI: 10.1016/j.ejmech.2014.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
31
|
Sivertsen A, Isaksson J, Leiros HKS, Svenson J, Svendsen JS, Brandsdal BO. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC STRUCTURAL BIOLOGY 2014; 14:4. [PMID: 24456893 PMCID: PMC3907362 DOI: 10.1186/1472-6807-14-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/17/2014] [Indexed: 11/17/2022]
Abstract
Background Many biologically active compounds bind to plasma transport proteins, and this binding can be either advantageous or disadvantageous from a drug design perspective. Human serum albumin (HSA) is one of the most important transport proteins in the cardiovascular system due to its great binding capacity and high physiological concentration. HSA has a preference for accommodating neutral lipophilic and acidic drug-like ligands, but is also surprisingly able to bind positively charged peptides. Understanding of how short cationic antimicrobial peptides interact with human serum albumin is of importance for developing such compounds into the clinics. Results The binding of a selection of short synthetic cationic antimicrobial peptides (CAPs) to human albumin with binding affinities in the μM range is described. Competitive isothermal titration calorimetry (ITC) and NMR WaterLOGSY experiments mapped the binding site of the CAPs to the well-known drug site II within subdomain IIIA of HSA. Thermodynamic and structural analysis revealed that the binding is exclusively driven by interactions with the hydrophobic moieties of the peptides, and is independent of the cationic residues that are vital for antimicrobial activity. Both of the hydrophobic moieties comprising the peptides were detected to interact with drug site II by NMR saturation transfer difference (STD) group epitope mapping (GEM) and INPHARMA experiments. Molecular models of the complexes between the peptides and albumin were constructed using docking experiments, and support the binding hypothesis and confirm the overall binding affinities of the CAPs. Conclusions The biophysical and structural characterizations of albumin-peptide complexes reported here provide detailed insight into how albumin can bind short cationic peptides. The hydrophobic elements of the peptides studied here are responsible for the main interaction with HSA. We suggest that albumin binding should be taken into careful consideration in antimicrobial peptide studies, as the systemic distribution can be significantly affected by HSA interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Bjørn Olav Brandsdal
- The Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, University of Tromsø, NO-9037 Tromsø, Norway.
| |
Collapse
|
32
|
Ausbacher D, Fallarero A, Kujala J, Määttänen A, Peltonen J, Strøm MB, Vuorela PM. Staphylococcus aureus biofilm susceptibility to small and potent β(2,2)-amino acid derivatives. BIOFOULING 2014; 30:81-93. [PMID: 24256295 DOI: 10.1080/08927014.2013.847924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Small antimicrobial β(2,2)-amino acid derivatives (Mw < 500 Da) are reported to display high antibacterial activity against suspended Gram-positive strains combined with low hemolytic activity. In the present study, the anti-biofilm activity of six β(2,2)-amino acid derivatives (A1-A6) against Staphylococcus aureus (ATCC 25923) was investigated. The derivatives displayed IC50 values between 5.4 and 42.8 μM for inhibition of biofilm formation, and concentrations between 22.4 and 38.4 μM had substantial effects on preformed biofilms. The lead derivative A2 showed high killing capacity (log R), and it caused distinct ultrastructural changes in the biofilms as shown by electron and atomic force microscopy. The anti-biofilm properties of A2 was preserved under high salinity conditions. Extended screening showed also high activity of A2 against Escherichia coli (XL1 Blue) biofilms. These advantageous features together with high activity against preformed biofilms make β(2,2)-amino acid derivatives a promising class of compounds for further development of anti-biofilm agents.
Collapse
Affiliation(s)
- Dominik Ausbacher
- a Faculty of Health Sciences, Department of Pharmacy , University of Tromsø , Tromsø , Norway
| | | | | | | | | | | | | |
Collapse
|
33
|
Gozhina OV, Svendsen JS, Lejon T. Synthesis and antimicrobial activity of α-aminoboronic-containing peptidomimetics. J Pept Sci 2013; 20:20-4. [PMID: 24222512 DOI: 10.1002/psc.2583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022]
Abstract
A library of 175 dipeptidomimetics and tripeptidomimetics containing an α-amino boronic acid or boronate has been synthesized, and the activity toward Mycobacterium tuberculosis, Candida albicans, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa has been screened. Although there is no clear structure-activity relationship, several compounds exhibit promising activity against different pathogens.
Collapse
Affiliation(s)
- Olga V Gozhina
- Department of Chemistry, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
34
|
Sivertsen A, Brandsdal BO, Svendsen JS, Andersen JH, Svenson J. Short cationic antimicrobial peptides bind to human alpha-1 acid glycoprotein with no implications for thein vitrobioactivity. J Mol Recognit 2013; 26:461-9. [DOI: 10.1002/jmr.2288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Annfrid Sivertsen
- The Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology; University of Tromsø; NO-9037; Tromsø; Norway
| | | | - John Sigurd Svendsen
- Department of Chemistry, Faculty of Science and Technology; University of Tromsø; NO-9037; Tromsø; Norway
| | - Jeanette Hammer Andersen
- Centre for Research-based Innovation on Marine Bioactivities and Drug Discovery (MABCENT); University of Tromsø; NO-9037; Tromsø; Norway
| | - Johan Svenson
- Department of Chemistry, Faculty of Science and Technology; University of Tromsø; NO-9037; Tromsø; Norway
| |
Collapse
|
35
|
Gorovoy AS, Gozhina O, Svendsen JS, Tetz GV, Domorad A, Tetz VV, Lejon T. Syntheses and anti-tubercular activity ofβ-substituted andα,β-disubstituted peptidylβ-aminoboronates and boronic acids. J Pept Sci 2013; 19:613-8. [DOI: 10.1002/psc.2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Alexey S. Gorovoy
- Department of Chemistry; University of Tromsø; N-9037; Tromsø; Norway
| | - Olga Gozhina
- Department of Chemistry; University of Tromsø; N-9037; Tromsø; Norway
| | | | - George V. Tetz
- Department of Microbiology, Virology, and Immunology; St Petersburg State Pavlov Medical University; St Petersburg; Russia
| | - Anna Domorad
- Department of Microbiology, Virology, and Immunology; St Petersburg State Pavlov Medical University; St Petersburg; Russia
| | - Victor V. Tetz
- Department of Microbiology, Virology, and Immunology; St Petersburg State Pavlov Medical University; St Petersburg; Russia
| | - Tore Lejon
- Department of Chemistry; University of Tromsø; N-9037; Tromsø; Norway
| |
Collapse
|
36
|
Liu J, Wu F, Song H, Wang Z, Zhao L. Synthesis and antibacterial activities of para-alkoxy phenyl-β-ketoaldehyde derivatives. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0429-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Gorovoy AS, Gozhina OV, Svendsen JS, Domorad AA, Tetz GV, Tetz VV, Lejon T. Boron-Containing Peptidomimetics - A Novel Class of Selective Anti-tubercular Drugs. Chem Biol Drug Des 2012; 81:408-13. [DOI: 10.1111/cbdd.12091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Baldassarre L, Pinnen F, Cornacchia C, Fornasari E, Cellini L, Baffoni M, Cacciatore I. Synthesis of short cationic antimicrobial peptidomimetics containing arginine analogues. J Pept Sci 2012; 18:567-78. [DOI: 10.1002/psc.2435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/13/2012] [Accepted: 06/20/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Leonardo Baldassarre
- Dipartimento di Scienze del Farmaco; Università G. d'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Francesco Pinnen
- Dipartimento di Scienze del Farmaco; Università G. d'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Catia Cornacchia
- Dipartimento di Scienze del Farmaco; Università G. d'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Erika Fornasari
- Dipartimento di Scienze del Farmaco; Università G. d'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Luigina Cellini
- Dipartimento di Scienze del Farmaco; Università G. d'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Marina Baffoni
- Dipartimento di Scienze del Farmaco; Università G. d'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Ivana Cacciatore
- Dipartimento di Scienze del Farmaco; Università G. d'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| |
Collapse
|
39
|
Karstad R, Isaksen G, Wynendaele E, Guttormsen Y, De Spiegeleer B, Brandsdal BO, Svendsen JS, Svenson J. Targeting the S1 and S3 Subsite of Trypsin with Unnatural Cationic Amino Acids Generates Antimicrobial Peptides with Potential for Oral Administration. J Med Chem 2012; 55:6294-305. [DOI: 10.1021/jm3002058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rasmus Karstad
- Department of Chemistry, University
of Tromsø, N-9037 Tromsø, Norway
| | - Geir Isaksen
- Department of Chemistry, University
of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology
Centre and the Centre for Theoretical and Computational Chemistry,
Department of Chemistry, University of Tromsø, N-9037 Tromsø,
Norway
| | - Evelien Wynendaele
- Drug Quality and
Registration
Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat
72, B-9000 Ghent, Belgium
| | - Yngve Guttormsen
- Department of Chemistry, University
of Tromsø, N-9037 Tromsø, Norway
| | - Bart De Spiegeleer
- Drug Quality and
Registration
Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat
72, B-9000 Ghent, Belgium
| | - Bjørn-Olav Brandsdal
- Department of Chemistry, University
of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology
Centre and the Centre for Theoretical and Computational Chemistry,
Department of Chemistry, University of Tromsø, N-9037 Tromsø,
Norway
| | | | - Johan Svenson
- Department of Chemistry, University
of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
40
|
Metabolism of small antimicrobial β2,2-amino acid derivatives by murine liver microsomes. Eur J Drug Metab Pharmacokinet 2012; 37:191-201. [DOI: 10.1007/s13318-012-0086-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/01/2012] [Indexed: 01/16/2023]
|
41
|
Rekdal Ø, Haug BE, Kalaaji M, Hunter HN, Lindin I, Israelsson I, Solstad T, Yang N, Brandl M, Mantzilas D, Vogel HJ. Relative spatial positions of tryptophan and cationic residues in helical membrane-active peptides determine their cytotoxicity. J Biol Chem 2012; 287:233-244. [PMID: 22057278 PMCID: PMC3249074 DOI: 10.1074/jbc.m111.279281] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/03/2011] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.
Collapse
Affiliation(s)
- Øystein Rekdal
- Institute of Medical Biology, Faculty of Medicine; Lytix Biopharma AS, NO-9294 Tromsø, Norway.
| | - Bengt Erik Haug
- Centre for Pharmacy and Department of Chemistry, University of Bergen, NO-5007 Bergen, Norway
| | | | - Howard N Hunter
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Inger Lindin
- Institute of Medical Biology, Faculty of Medicine
| | | | | | - Nannan Yang
- Institute of Medical Biology, Faculty of Medicine
| | - Martin Brandl
- Drug Transport and Delivery Group, Department of Pharmacy, University of Tromsø, NO-9037 Tromsø, Norway; Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Dimitrios Mantzilas
- Department of Molecular Bioscience, University of Oslo, NO-0316 Oslo, Norway
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
42
|
The potential of antimicrobial peptides as biocides. Int J Mol Sci 2011; 12:6566-96. [PMID: 22072905 PMCID: PMC3210996 DOI: 10.3390/ijms12106566] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections.
Collapse
|
43
|
Robertson M, Bremner JB, Coates J, Deadman J, Keller PA, Pyne SG, Somphol K, Rhodes DI. Synthesis and antibacterial activity of C2-symmetric binaphthyl scaffolded amino acid derivatives. Eur J Med Chem 2011; 46:4201-11. [DOI: 10.1016/j.ejmech.2011.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 05/07/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
|
44
|
Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM, Stensen W. A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem 2011; 54:5786-95. [PMID: 21732630 DOI: 10.1021/jm200450h] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
LTX 109 is a synthetic antimicrobial peptidomimetic (SAMP) currently in clinical phase II trials for topical treatment of infections of multiresistant bacterial strains. All possible eight stereoisomers of the peptidomimetic have been synthesized and tested for antimicrobial effect, hemolysis, and hydrophobicity, revealing a strong and unusual dependence on the stereochemistry for a molecule proposed to act on a general membrane mechanism. The three-dimensional structures were assessed using nuclear magnetic resonance spectroscopy (NMR) and molecular dynamics (MD) simulations in aqueous solution and in phospholipid bilayers. The solution structures of the most active stereoisomers are perfectly preorganized for insertion into the membrane, whereas the less active isomers need to pay an energy penalty in order to enter the lipid bilayer. This effect is also found to be reinforced by a significantly improved water solubility of the less active isomers due to a guanidyl-π stacking that helps to solvate the hydrophobic surfaces.
Collapse
Affiliation(s)
- Johan Isaksson
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
45
|
Flaten GE, Kottra G, Stensen W, Isaksen G, Karstad R, Svendsen JS, Daniel H, Svenson J. In Vitro Characterization of Human Peptide Transporter hPEPT1 Interactions and Passive Permeation Studies of Short Cationic Antimicrobial Peptides. J Med Chem 2011; 54:2422-32. [DOI: 10.1021/jm1015704] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gøril Eide Flaten
- Department of Pharmacy, University of Tromsø, N-9037, Tromsø, Norway
| | - Gabor Kottra
- Molecular Nutrition Unit, Technical University of Munich, D-85350 Freising, Germany
| | | | - Geir Isaksen
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
- The Norwegian Structural Biology Centre and The Centre for Theoretical and Computational Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| | - Rasmus Karstad
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| | - John S. Svendsen
- Lytix Biopharma AS, N-9294 Tromsø, Norway
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| | - Hannelore Daniel
- Molecular Nutrition Unit, Technical University of Munich, D-85350 Freising, Germany
| | - Johan Svenson
- Department of Chemistry, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
46
|
Rationale-based, de novo design of dehydrophenylalanine-containing antibiotic peptides and systematic modification in sequence for enhanced potency. Antimicrob Agents Chemother 2011; 55:2178-88. [PMID: 21321136 DOI: 10.1128/aac.01493-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased microbial drug resistance has generated a global requirement for new anti-infective agents. As part of an effort to develop new, low-molecular-mass peptide antibiotics, we used a rationale-based minimalist approach to design short, nonhemolytic, potent, and broad-spectrum antibiotic peptides with increased serum stability. These peptides were designed to attain an amphipathic structure in helical conformations. VS1 was used as the lead compound, and its properties were compared with three series of derivates obtained by (i) N-terminal amino acid addition, (ii) systematic Trp substitution, and (iii) peptide dendrimerization. The Trp substitution approach underlined the optimized sequence of VS2 in terms of potency, faster membrane permeation, and cost-effectiveness. VS2 (a variant of VS1 with two Trp substitutions) was found to exhibit good antimicrobial activity against both the Gram-negative Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. It was also found to have noncytolytic activity and the ability to permeate and depolarize the bacterial membrane. Lysis of the bacterial cell wall and inner membrane by the peptide was confirmed by transmission electron microscopy. A combination of small size, the presence of unnatural amino acids, high antimicrobial activity, insignificant hemolysis, and proteolytic resistance provides fundamental information for the de novo design of an antimicrobial peptide useful for the management of infectious disease.
Collapse
|
47
|
Bera S, Zhanel GG, Schweizer F. Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates. Carbohydr Res 2011; 346:560-8. [PMID: 21353205 DOI: 10.1016/j.carres.2011.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
Abstract
Amphiphilic lysine-ligated neomycin B building blocks were prepared by reductive amination of a protected C5″-modified neomycin B-based aldehyde and side chain-unprotected lysine or lysine-containing peptides. It was demonstrated that a suitably protected lysine-ligated neomycin B conjugate (NeoK) serves as a building block for peptide synthesis, enabling incorporation of aminoglycoside binding sites into peptides. Antibacterial testing of three amphiphilic lysine-ligated neomycin B conjugates against a representative panel of Gram-positive and Gram-negative strains demonstrates that C5″-modified neomycin-lysine conjugate retains antibacterial activity. However, in most cases the lysine-ligated neomycin B analogs display reduced potency against Gram-positive strains when compared to unmodified neomycin B or unligated peptide. An exception is MRSA where an eightfold enhancement was observed. When compared to unmodified neomycin B, the prepared lysine-neomycin conjugates exhibited a 4-8-fold enhanced Gram-negative activity against Pseudomonas aeruginosa and up to 12-fold enhanced activity was observed when compared to unligated reference peptides.
Collapse
Affiliation(s)
- Smritilekha Bera
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | |
Collapse
|
48
|
Díaz MD, Palomino-Schätzlein M, Corzana F, Andreu C, Carbajo RJ, del Olmo M, Canales-Mayordomo A, Pineda-Lucena A, Asensio G, Jiménez-Barbero J. Antimicrobial Peptides and Their Superior Fluorinated Analogues: Structure-Activity Relationships as Revealed by NMR Spectroscopy and MD Calculations. Chembiochem 2010; 11:2424-32. [DOI: 10.1002/cbic.201000424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Zhong J, Chau Y. Synthesis, characterization, and thermodynamic study of a polyvalent lytic peptide-polymer conjugate as novel anticancer agent. Bioconjug Chem 2010; 21:2055-64. [PMID: 20964334 DOI: 10.1021/bc1002899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed and synthesized a new polyvalent lytic peptide-polymer conjugate as a novel chemotherapeutic agent capable of overcoming multidrug resistance. A hexapeptide (KWKWKW or (KW)₃) was designed and conjugated to dextran in multiple copies to afford a polyvalent conjugate. A robust synthesis procedure involving click chemistry and the detailed characterization of the conjugate were reported here. The conjugate Dex-(KW)₃ exhibited significantly enhanced anticancer potency in vitro by up to 500-fold compared to monomeric (KW)₃. The LC₅₀ value was comparable to that of conventional lytic peptides which have more than 20 residues. No hemolytic activity was shown by the conjugates up to 300 μM. Thermodynamic study indicated that the binding of conjugates was predominantly entropy-driven while the binding of free peptides was mainly enthalpy-driven, implying a deeper penetration of conjugate into the core of lipid bilayer. The binding affinity of conjugate to neutral membrane is much higher than that to free peptide (K(conj) ≈ 8822.9 M⁻¹, K(pep) ≈ 1884.7 M⁻¹). In binding to negatively charged membrane, the conjugate surpassed free peptides at high concentrations when the binding of free peptides became saturated. The higher binding capability, attributed to the high local concentration of peptides mounted on a polymer backbone, explains the superior anticancer activity of polyvalent Dex-(KW)₃.
Collapse
Affiliation(s)
- Jieying Zhong
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, China
| | | |
Collapse
|
50
|
Karstad R, Isaksen G, Brandsdal BO, Svendsen JS, Svenson J. Unnatural Amino Acid Side Chains as S1, S1′, and S2′ Probes Yield Cationic Antimicrobial Peptides with Stability toward Chymotryptic Degradation. J Med Chem 2010; 53:5558-66. [DOI: 10.1021/jm1006337] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rasmus Karstad
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Geir Isaksen
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology Centre and the Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Bjørn-Olav Brandsdal
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
- The Norwegian Structural Biology Centre and the Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | - Johan Svenson
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|