1
|
Čakić Semenčić M, Kovačević M, Barišić L. Recent Advances in the Field of Amino Acid-Conjugated Aminoferrocenes-A Personal Perspective. Int J Mol Sci 2024; 25:4810. [PMID: 38732028 PMCID: PMC11084972 DOI: 10.3390/ijms25094810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The development of turn-based inhibitors of protein-protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences.
Collapse
Affiliation(s)
| | | | - Lidija Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.Č.S.); (M.K.)
| |
Collapse
|
2
|
Yan J, Yue K, Fan X, Xu X, Wang J, Qin M, Zhang Q, Hou X, Li X, Wang Y. Synthesis and bioactivity evaluation of ferrocene-based hydroxamic acids as selective histone deacetylase 6 inhibitors. Eur J Med Chem 2023; 246:115004. [PMID: 36516583 DOI: 10.1016/j.ejmech.2022.115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes and emerges as a promising target for treating cancer and neurodegenerative diseases. Benefited from the unique sandwich conformation of ferrocene, a series of ferrocene-based hydroxamic acids have been developed as novel HDAC6 inhibitors in this paper, especially the two ansa-ferrocenyl complexes with IC50s at the nanomolar level. [3]-Ferrocenophane hydroxamic acid analog II-5 displays the most potent inhibitory activity on HDAC6 and establishes remarkable selectivity towards other HDAC isoforms. Compound II-5 dose-dependently induces accumulation of acetylated α-tubulin while having a negligible effect on the level of acetylated Histone H3, confirming its isoform selectivity. Further biological evaluation of II-5 on cancer cells corroborates its antiproliferative effect, which mainly contributed to the induction of cellular apoptosis. It is worth noting that compound II-5 demonstrates an optimal profile on human plasma stability. These results strengthen ferrocene's unique role in developing selective protein inhibitors and indicate that compound II-5 may be a suitable lead for further evaluation and development for treating HDAC6-associated disorders and diseases.
Collapse
Affiliation(s)
- Jiangkun Yan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Mengting Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| |
Collapse
|
3
|
Hess J. Rational approaches towards inorganic and organometallic antibacterials. Biol Chem 2021; 403:363-375. [PMID: 34253000 DOI: 10.1515/hsz-2021-0253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
The occurrence of drug-resistant bacteria is drastically rising and new and effective antibiotic classes are urgently needed. However, most of the compounds in development are minor modifications of previously used drugs to which bacteria can easily develop resistance. The investigation of inorganic and organometallic compounds as antibiotics is an alternative approach that holds great promises due to the ability of such molecules to trigger metal-specific mechanisms of action, which results in lethal consequences for pathogens. In this review, a selection of concepts to rationally design inorganic and organometallic antibiotics is discussed, highlighting their advantages by comparing them to classical drug discovery programmes. The review concludes with a short perspective for the future of antibiotic drug development and the role metal-based compounds will play in the field.
Collapse
Affiliation(s)
- Jeannine Hess
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
4
|
Wilde M, Arzur D, Baratte B, Lefebvre D, Robert T, Roisnel T, Le Jossic-Corcos C, Bach S, Corcos L, Erb W. Regorafenib analogues and their ferrocenic counterparts: synthesis and biological evaluation. NEW J CHEM 2020. [DOI: 10.1039/d0nj05334a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
New ferrocene analogues of regorafenib have been prepared and their biological activity was evaluated in kinase and cellular assays.
Collapse
|
5
|
Gozzi M, Schwarze B, Hey-Hawkins E. Half- and mixed-sandwich metallacarboranes for potential applications in medicine. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Today, medicinal chemistry is still clearly dominated by organic chemistry, and commercially available boron-based drugs are rare. In contrast to hydrocarbons, boranes prefer the formation of polyhedral clusters via delocalized 3c2e bonds, such as polyhedral dicarba-closo-dodecaborane(12) (closo-C2B10H12). These clusters have remarkable biological stability, and the three isomers, 1,2- (ortho), 1,7- (meta), and 1,12-dicarba-closo-dodecaborane(12) (para), have attracted much interest due to their unique structural features. Furthermore, anionic nido clusters ([7,8-C2B9H11]2−), derived from the neutral icosahedral closo cluster 1,2-dicarba-closo-dodecaborane(12) by deboronation followed by deprotonation are suitable ligands for transition metals and offer the possibility to form metallacarboranes, for example via coordination through the upper pentagonal face of the cluster. The isolobal analogy between the cyclopentadienyl(–1) ligand (Cp−) and [C2B9H11]2− clusters (dicarbollide anion, Cb2−) is the motivation in using Cb2− as ligand for coordination to a metal center to design compounds for various applications. This review focuses on potential applications of half- and mixed-sandwich-type transition metal complexes in medicine.
Collapse
Affiliation(s)
- Marta Gozzi
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Benedikt Schwarze
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Evamarie Hey-Hawkins
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany , Phone: +49-341-9736151, Fax: +49-341-9739319
| |
Collapse
|
6
|
Alachkar A, Latacz G, Siwek A, Lubelska A, Honkisz E, Gryboś A, Łażewska D, Handzlik J, Stark H, Kiec-Kononowicz K, Sadek B. Anticonvulsant evaluation of novel non-imidazole histamine H3R antagonists in different convulsion models in rats. Pharmacol Biochem Behav 2018; 170:14-24. [PMID: 29729290 DOI: 10.1016/j.pbb.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 11/26/2022]
Abstract
Novel non-imidazole histamine H3 receptor (H3R) antagonists (2-8) were developed and assessed for in-vitro antagonist binding affinities at the human histamine H1-H4R. These novel H3R antagonists (2-8) were examined in-vivo for anticonvulsant effects in three different convulsion models in male adult rats. Compound 6 significantly and dose-dependently exhibited decreased duration of tonic hind limb extension (THLE) in the maximal electroshock (MES)- and fully protected animals against pentylenetetrazole (PTZ)-induced convulsion, following acute systemic administration (5, 10, and 20 mg/kg, i.p.). Contrary, all compounds 2-8 showed moderate protection in the strychnine (STR)-induced convulsion model following acute pretreatment (10 mg/kg, i.p.). Moreover, the acute systemic administration of H3R antagonist 6 (10 mg/kg, i.p.) significantly prolonged latency time for MES convulsions. Furthermore, the anticonvulsant effect observed with compound 6 in MES-model was entirely abrogated when rats were co-injected with the brain penetrant H1R antagonist pyrilamine (PYR) but not the brain penetrant H2R antagonist zolantidine (ZOL). However, PYR and ZOL failed to abolish the full protection provided by the H3R antagonist 6 in PTZ- and STR-models. No mutagenic or antiproliferative effects or potential metabolic interactions were shown for compound 6 when assessing its antiproliferative activities and metabolic profiling applying in-vitro methods. These findings demonstrate the potential of non-imidazole H3R antagonists as novel antiepileptic drugs (AEDs) either for single use or in addition to currently available epilepsy medications.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Ewelina Honkisz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kiec-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
Alachkar A, Łażewska D, Kieć-Kononowicz K, Sadek B. The Histamine H3 Receptor Antagonist E159 Reverses Memory Deficits Induced by Dizocilpine in Passive Avoidance and Novel Object Recognition Paradigm in Rats. Front Pharmacol 2017; 8:709. [PMID: 29075190 PMCID: PMC5643952 DOI: 10.3389/fphar.2017.00709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022] Open
Abstract
The involvement of histamine H3 receptors (H3Rs) in memory is well known, and the potential of H3R antagonists in therapeutic management of neuropsychiatric diseases, e.g., Alzheimer disease (AD) is well established. Therefore, the effects of histamine H3 receptor (H3R) antagonist E159 (2.5–10 mg/kg, i.p.) in adult male rats on dizocilpine (DIZ)-induced memory deficits were studied in passive avoidance paradigm (PAP) and in novel object recognition (NOR) using pitolisant (PIT) and donepezil (DOZ) as standard drugs. Upon acute systemic pretreatment of E159 at three different doses, namely 2.5, 5, and 10 mg/kg, i.p., 2.5 and 5 but not 10 mg/kg of E159 counteracted the DIZ (0.1 mg)-induced memory deficits, and this E159 (2.5 mg)-elicited memory-improving effects in DIZ-induced amnesic model were moderately abrogated after acute systemic administration of scopolamine (SCO), H2R antagonist zolantidine (ZOL), but not with H1R antagonist pyrilamine to the animals. Moreover, the observed memory-enhancing effects of E159 (2.5 mg/kg, i.p.) were strongly abrogated when animals were administered with a combination of SCO and ZOL. Furthermore, the E159 (2.5 mg)-provided significant memory-improving effect of in DIZ-induced short-term memory (STM) impairment in NOR was comparable to the DOZ-provided memory-enhancing effect, and was abolished when animals were injected with the CNS-penetrant histamine H3R agonist R-(α)-methylhistamine (RAMH). However, E159 at a dose of 2.5 mg/kg failed to exhibit procognitive effect on DIZ-induced long-term memory (LTM) in NOR. Furthermore, the results observed revealed that E159 (2.5 mg/kg) did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM), demonstrating that improved performances with E159 (2.5 mg/kg) in PAP or NOR are unrelated to changes in emotional responding or in spontaneous locomotor activity. These results provide evidence for the potential of drugs targeting H3Rs for the treatment of neuropsychiatric disorders, e.g., AD.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
|
9
|
Lachmann D, Studte C, Männel B, Hübner H, Gmeiner P, König B. Photochromic Dopamine Receptor Ligands Based on Dithienylethenes and Fulgides. Chemistry 2017. [PMID: 28650111 DOI: 10.1002/chem.201702147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe the incorporation of the well-investigated class of photochromic dithienylethenes (DTEs) and fulgides into known dopamine receptor ligands such as 1,4-disubstituted aromatic and hydroxybenzoxazinone piperazines as well as aminoindanes. Subtype and functional selective photochromic ligands were obtained and characterized by NMR and UV/VIS spectroscopic measurements. The photophysical properties of the DTE based dopamine ligands revealed a high fatigue resistance for the diarylmaleimides, but the ringclosure could not be accomplished in polar solvents due to a known twisted intramolecular charge transfer (TICT). Several cyclopentene-DTEs showed high PSS, but a fast degradation by forming an irreversible byproduct. Focusing on the fulgides, high photostationary states and switching in polar solvents were possible. The compounds 43, 45 and 46 containing the isopropyl group showed only isomerization between the open E-form and the closed C-form. At a concentration of 1 nm, the cyclopentene-DTE 29-open showed a more than 11-fold higher activation of D2S , a pharmacologically important G protein-coupled receptor, than its photochromic congener 29-closed. Interestingly, the fulgimide-based pair 52-(E)-open/52-closed could be discovered as an alternative photoswitch with inverse activation properties exhibiting four-fold higher activity in the closed state.
Collapse
Affiliation(s)
- Daniel Lachmann
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Carolin Studte
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Barbara Männel
- Department of Chemistry and Pharmacy, Friedrich-Alexander University, Emil Fischer Center, Schuhstrasse 19, 91052, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Friedrich-Alexander University, Emil Fischer Center, Schuhstrasse 19, 91052, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander University, Emil Fischer Center, Schuhstrasse 19, 91052, Erlangen, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
10
|
Synthesis, characterization, crystal structure and in vitro anticancer potentials of mono and bimetallic palladium(II)–N–heterocyclic carbene complexes. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2016.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Sadek B, Saad A, Latacz G, Kuder K, Olejarz A, Karcz T, Stark H, Kieć-Kononowicz K. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3879-3898. [PMID: 27932863 PMCID: PMC5135077 DOI: 10.2147/dddt.s116192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of twelve novel non-imidazole-based ligands (3–14) was developed and evaluated for its in vitro binding properties at the human histamine H3 receptor (hH3R). The novel ligands were investigated for their in vivo protective effects in different seizure models in male adult rats. Among the H3R ligands (3–14) tested, ligand 14 showed significant and dose-dependent reduction in the duration of tonic hind limb extension in maximal electroshock (MES)-induced seizure model subsequent to acute systemic administration (5, 10, and 20 mg/kg, intraperitoneally), whereas ligands 4, 6, and 7 without appreciable protection in MES model were most promising in pentylenetetrazole (PTZ) model. Moreover, the protective effect observed for ligand 14 in MES model was lower than that observed for the reference drug phenytoin and was entirely abrogated when rats were co-administered with the brain-penetrant H1R antagonist pyrilamine (PYR) but not the brain-penetrant H2R antagonist zolantidine (ZOL), demonstrating that histaminergic neurotransmission by activation of postsynaptically located H1Rs seems to be involved in the protective action. On the contrary, PYR and ZOL failed to abrogate the full protection provided by 4 in PTZ model and the moderate protective effect by 14 in strychnine (STR) model. Moreover, the experimental and in silico estimation of properties such as metabolism was performed for five selected test compounds. Also, lipophilicity using planar reversed-phase thin-layer chromatography method was included for better understanding of the molecular properties of the tested compounds. Additionally, the absorption, distribution, metabolism, and elimination and toxicity parameters were evaluated for the most promising compounds 2, 4, 6, 7, and 14 utilizing in vitro methods. These interesting results highlight the potential of H3R ligands as new antiepileptic drugs or as adjuvants to available epilepsy medications.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Holger Stark
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
12
|
Sadek B, Saad A, Schwed JS, Weizel L, Walter M, Stark H. Anticonvulsant effects of isomeric nonimidazole histamine H 3 receptor antagonists. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3633-3651. [PMID: 27853355 PMCID: PMC5106240 DOI: 10.2147/dddt.s114147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α)-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Miriam Walter
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Slootweg JC, Albada HB, Siegmund D, Metzler-Nolte N. Efficient Reagent-Saving Method for the N-Terminal Labeling of Bioactive Peptides with Organometallic Carboxylic Acids by Solid-Phase Synthesis. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jack C. Slootweg
- Mercachem, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
- Lehrstuhl
für Anorganische Chemie I−Bioanorganische Chemie, Fakultät
für Chemie und Biochemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - H. Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Lehrstuhl
für Anorganische Chemie I−Bioanorganische Chemie, Fakultät
für Chemie und Biochemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Daniel Siegmund
- Lehrstuhl
für Anorganische Chemie I−Bioanorganische Chemie, Fakultät
für Chemie und Biochemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Lehrstuhl
für Anorganische Chemie I−Bioanorganische Chemie, Fakultät
für Chemie und Biochemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|
14
|
Substitution of Metallocenes with [2.2]Paracyclophane to Enable Confocal Microscopy Imaging in Living Cells. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Sadek B, Saad A, Subramanian D, Shafiullah M, Łażewska D, Kieć-Kononowiczc K. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology 2015; 106:46-55. [PMID: 26525191 DOI: 10.1016/j.neuropharm.2015.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
It has become clear that histamine H3 receptors (H3Rs) are implicated in modulating epilepsy and memory in laboratory animals. The new non-imidazole H3R antagonist DL77 has excellent selectivity profile and shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 values of 2.1 ± 0.2 mg/kg and 8.4 ± 1.3 [nM], respectively. In the present study, the anticonvulsant effects of DL77 on maximal electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced seizure models were investigated. Moreover, the procognitive properties of DL77 were tested on acquisition, consolidation and retrieval processes in a one-trial inhibitory avoidance task in male Wistar rats. The results indicate that DL77 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently reduced MES-induced seizure duration, whereas no protection was observed in PTZ- or STR-induced seizures. Importantly, the protective action observed for DL77 in MES-induced seizure was comparable to that of the reference antiepileptic drug (AED) phenytoin (PHT), and was also reversed when rats were pretreated with the CNS penetrant pyrilamine (PYR) (10 mg/kg, i.p.), or with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg, i.p.). Furthermore, the procognitive studies indicate that acute pre-training systemic administration of DL77 (2.5 mg/kg, i.p.) facilitated acquisition, whereas pre-testing acute administration of DL77 (5 and 10 mg/kg, i.p.) improved retrieval. Interestingly, the procognitive effect of DL77 on retrieval was completely abrogated when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL) but not the centrally acting H1R antagonist PYR, indicating that histaminergic pathways through activation of H2Rs appear to be participating in neuronal circuits involved in retrieval processes. Taken together, our results show that DL77 demonstrates anticonvulsant properties in the MES-induced seizure model and improves cognitive performance through actions on different memory stages. Therefore, H3Rs may have implications for the treatment of degenerative disorders associated with impaired memory function and may represent a novel therapeutic pharmacological target to tackle cognitive problems associated with the chronic use of antiepileptic drugs. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dhanasekaran Subramanian
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Shafiullah
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowiczc
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
16
|
Boateng CA, Bakare OM, Zhan J, Banala AK, Burzynski C, Pommier E, Keck TM, Donthamsetti P, Javitch JA, Rais R, Slusher BS, Xi ZX, Newman AH. High Affinity Dopamine D3 Receptor (D3R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D3R Knockout Mice. J Med Chem 2015. [PMID: 26203768 PMCID: PMC4937837 DOI: 10.1021/acs.jmedchem.5b00776] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
dopamine D3 receptor (D3R) is a promising
target for the development of pharmacotherapeutics to treat substance
use disorders. Several D3R-selective antagonists are effective
in animal models of drug abuse, especially in models of relapse. Nevertheless,
poor bioavailability, metabolic instability, and/or predicted toxicity
have impeded success in translating these drug candidates to clinical
use. Herein, we report a series of D3R-selective 4-phenylpiperazines
with improved metabolic stability. A subset of these compounds was
evaluated for D3R functional efficacy and off-target binding
at selected 5-HT receptor subtypes, where significant overlap in SAR
with D3R has been observed. Several high affinity D3R antagonists, including compounds 16 (Ki = 0.12 nM) and 32 (Ki = 0.35 nM), showed improved metabolic stability
compared to the parent compound, PG648 (6). Notably, 16 and the classic D3R antagonist SB277011A (2) were effective in reducing self-administration of heroin
in wild-type but not D3R knockout mice.
Collapse
Affiliation(s)
- Comfort A Boateng
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Oluyomi M Bakare
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jia Zhan
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Ashwini K Banala
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Caitlin Burzynski
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Elie Pommier
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Thomas M Keck
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Prashant Donthamsetti
- ∥Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Jonathan A Javitch
- ∥Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Rana Rais
- §Department of Neurology, Brain Science Institute, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Barbara S Slusher
- §Department of Neurology, Brain Science Institute, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Zheng-Xiong Xi
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- †Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
17
|
Bahi A, Sadek B, Nurulain SM, Łażewska D, Kieć-Kononowicz K. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice. Physiol Behav 2015; 151:189-97. [PMID: 26169446 DOI: 10.1016/j.physbeh.2015.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/28/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022]
Abstract
It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University-Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
18
|
Wu C, Shah A, Ye H, Chen X, Ye J, Jiang H, Chen B, Wang X, Yan H. Droplet electrochemical study of the pH dependent redox behavior of novel ferrocenyl-carborane derivatives and its application in specific cancer cell recognition. Anal Chim Acta 2015; 857:39-45. [DOI: 10.1016/j.aca.2014.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
|
19
|
Sadek B, Schwed JS, Subramanian D, Weizel L, Walter M, Adem A, Stark H. Non-imidazole histamine H3 receptor ligands incorporating antiepileptic moieties. Eur J Med Chem 2014; 77:269-79. [PMID: 24650714 DOI: 10.1016/j.ejmech.2014.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/23/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
A small series of histamine H3 receptor (H3R) ligands (1-5) incorporating different antiepileptic structural motifs has been newly synthesized. All compounds exhibited moderate to high in vitro hH3R affinities up to a sub-nanomolar concentration range with pKi values in the range of 6.25-9.62 with varying preferences for this receptor subtype. The compounds (1-5) were further investigated in vivo on anticonvulsant effects against maximum electroshock (MES)-induced and pentylenetetrazole (PTZ)-kindled convulsions in rats having phenytoin (PHT) as the reference antiepileptic drug (AED). Surprisingly, animals pretreated with 1 mg/kg, i.p. of 5,5-diphenyl-3-(3-(piperidin-1-yl)propyl)imidazolidine-2,4-dione (4) were only moderately protected and no protection was observed for compounds 1-3 and 5 in three different doses (1 mg, 5 mg, and 10 mg/kg i.p.). Compound 4 (1 mg/kg, i.p.) failed to modify PTZ-kindled convulsion. However, a dose of 10 mg/kg significantly reduced convulsions in both models. In contrast, 5,5-diphenyl-3-(4-(3-(piperidin-1-yl)propoxy)benzyl)imidazolidine-2,4-dione (5) (1, 5, and 10 mg/kg, i.p.) showed proconvulsant effects in the MES model with further confirmation of these results in the PTZ model as no protection was observed against convulsion in the doses tested (1 and 10 mg/kg). In addition, compound 4 (10 mg/kg, i.p.) significantly prolonged myoclonic latency time and shortened total convulsion duration when compared to control, PHT or standard H3R inverse agonist/antagonist pitolisant (PIT). Our results showed that H3R pharmacophores could successfully be structurally combined to antiepileptic moieties, especially phenytoin partial structures, maintaining the H3R affinity. However, the new derivatives for multiple-target approaches in epilepsy models are complex and show that pharmacophore elements are not easily pharmacologically combinable.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates.
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Dhanasekaran Subramanian
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Miriam Walter
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, P.O. Box 17666, Al Ain 0097, United Arab Emirates University, United Arab Emirates
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
20
|
|
21
|
Albada HB, Prochnow P, Bobersky S, Bandow JE, Metzler-Nolte N. Highly active antibacterial ferrocenoylated or ruthenocenoylated Arg-Trp peptides can be discovered by anl-to-dsubstitution scan. Chem Sci 2014. [DOI: 10.1039/c4sc01822b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By taking a systematic approach several short organometallic AMP conjugates were discovered which have very low hemolytic activity but virtually the same antimicrobial activity against MRSA as that of vancomycin.
Collapse
Affiliation(s)
- H. Bauke Albada
- Inorganic Chemistry I – Bioinorganic Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology
- Faculty for Biology and Biotechnology
- Ruhr University Bochum
- Bochum, Germany
| | - Sandra Bobersky
- Inorganic Chemistry I – Bioinorganic Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology
- Faculty for Biology and Biotechnology
- Ruhr University Bochum
- Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I – Bioinorganic Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- Bochum, Germany
| |
Collapse
|
22
|
Hocke C, Cumming P, Maschauer S, Kuwert T, Gmeiner P, Prante O. Biodistribution studies of two 18F-labeled pyridinylphenyl amides as subtype selective radioligands for the dopamine D3 receptor. Nucl Med Biol 2013; 41:223-8. [PMID: 24480780 DOI: 10.1016/j.nucmedbio.2013.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Dopamine D3 receptors are implicated in various neuropsychiatric diseases, drug abuse and alcoholism, but specific agents for D3 molecular imaging are lacking. We evaluated two in vitro selective fluorine-18-labeled radioligand candidates ([(18)F]5 and [(18)F]6) for positron emission tomography (PET) imaging of D3 receptor availability in the brain. METHODS Biodistribution was evaluated in Sprague-Dawley rats using ex vivo autoradiography and small-animal PET. Protein binding studies were conducted in human plasma and cerebrospinal fluid. RESULTS [(18)F]5 showed rapid blood-brain barrier penetration and fast washout after intravenous injection, whereas the rat brain penetration of [(18)F]6 was lower. The total distribution volume (VT) of [(18)F]5 was 20-26 mL g(-1) throughout brain. Co-injection with the D3 antagonist BP897 resulted in globally increased cerebral washout of [(18)F]5 and [(18)F]6, but SUV analysis and parametric mapping of binding potential (BPND) relative to the cerebellum did not reveal specific binding of either ligand in D3-rich brain regions, i.e. the ventral striatum. However, there was substantial displaceable binding of [(18)F]5, and to a lesser extent [(18)F]6, in the pituitary. CONCLUSION These radioligands reveal dopamine D3 receptors in the pituitary, but are not suitable for PET imaging of in brain, possibly due to low specific signal relative to the globally high VT.
Collapse
Affiliation(s)
- Carsten Hocke
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Paul Cumming
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Simone Maschauer
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Torsten Kuwert
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
23
|
García-Barrantes PM, Lamoureux GV, Pérez AL, García-Sánchez RN, Martínez AR, San Feliciano A. Synthesis and biological evaluation of novel ferrocene–naphthoquinones as antiplasmodial agents. Eur J Med Chem 2013; 70:548-57. [DOI: 10.1016/j.ejmech.2013.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 11/28/2022]
|
24
|
Determination of key receptor–ligand interactions of dopaminergic arylpiperazines and the dopamine D2 receptor homology model. J Mol Model 2013; 19:1751-62. [DOI: 10.1007/s00894-012-1731-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
25
|
The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol 2012; 16:84-91. [PMID: 22366385 DOI: 10.1016/j.cbpa.2012.01.013] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/26/2022]
Abstract
Organometallic complexes have unique physico-chemical properties, which have been widely used in homogenous catalysis, for example, for the synthesis of lead compounds and drug candidates. Over the past two decades, a few scientists from all over the world have extended the use of the specific characteristics of these compounds (e.g. structural diversity, possibility of ligand exchange, redox and catalytic properties) for medicinal purposes. The results are stunning. A few organometallic compounds have already entered clinical trials and it can be anticipated that several more will follow in coming years. In this short review, we present the specific advantages that organometallic metal complexes have over purely organic and also coordination compounds. Furthermore, using specific examples, we illustrate how these particular properties can be put to good use in medicinal chemistry. The examples we present have an emphasis on, but are not restricted to, anti-cancer activity.
Collapse
|
26
|
Kügler F, Sihver W, Ermert J, Hübner H, Gmeiner P, Prante O, Coenen HH. Evaluation of 18F-labeled benzodioxine piperazine-based dopamine D4 receptor ligands: lipophilicity as a determinate of nonspecific binding. J Med Chem 2011; 54:8343-52. [PMID: 22039961 DOI: 10.1021/jm200762g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Derivatization of the putative neuroleptic 1-(2,3-dihydrobenzo[1,4]dioxin-6-yl)-4-(4-fluorobenzyl)piperazine (3a) led to a series of new dopamine receptor D4 ligands displaying high affinity (Ki=1.1-15 nM) and D2/D4 subtype selectivities of about 800-6700. These ligands were labeled with the short-lived positron emitter fluorine-18 and analyzed for their potential application for imaging studies by positron emission tomography (PET). In vitro autoradiography was used to determine their nonspecific binding behavior as a result of their structural and thus physicochemical properties. The biodistribution, in vivo stability, and brain uptake of the most promising D4 radioligand candidate were determined. This proved to be 1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-4-((6-fluoropyridin-3-yl)methyl)piperazine ([18F]3d), which revealed an excellent binding pattern with a high selectivity and limited nonspecific binding in vitro. This analogue also exhibited a high stability and an extremely high brain uptake in vivo with specific binding in hippocampus, cortex, colliculus, and cerebellum as determined by ex vivo autoradiography. Thus, [18F]3d appears as a suitable D4 radioligand for in vivo imaging, encouraging continued evaluation by PET studies.
Collapse
Affiliation(s)
- Fabian Kügler
- Institute of Neuroscience and Medicine, INM-5, Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Ortega R, Hübner H, Gmeiner P, Masaguer CF. Aromatic ring functionalization of benzolactam derivatives: New potent dopamine D3 receptor ligands. Bioorg Med Chem Lett 2011; 21:2670-4. [DOI: 10.1016/j.bmcl.2010.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 01/20/2023]
|
28
|
Kekewska A, Hübner H, Gmeiner P, Pertz HH. The Bulky N(6) Substituent of Cabergoline Is Responsible for Agonism of This Drug at 5-Hydroxytryptamine (5-HT)2A and 5-HT2B Receptors and Thus Is a Determinant of Valvular Heart Disease. J Pharmacol Exp Ther 2011; 338:381-91. [DOI: 10.1124/jpet.111.181255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Louie AS, Vasdev N, Valliant JF. Preparation, Characterization, and Screening of a High Affinity Organometallic Probe for α-Adrenergic Receptors. J Med Chem 2011; 54:3360-7. [PMID: 21428421 DOI: 10.1021/jm2001162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anika S. Louie
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W., Hamilton, Ontario, L8S 4M1, Canada
| | - Neil Vasdev
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W., Hamilton, Ontario, L8S 4M1, Canada
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W., Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
30
|
Micheli F. Recent Advances in the Development of Dopamine D3 Receptor Antagonists: a Medicinal Chemistry Perspective. ChemMedChem 2011; 6:1152-62. [DOI: 10.1002/cmdc.201000538] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 11/08/2022]
|
31
|
|
32
|
Patwa AN, Gonnade RG, Kumar VA, Bhadbhade MM, Ganesh KN. Ferrocene−Bis(thymine/uracil) Conjugates: Base Pairing Directed, Spacer Dependent Self-Assembly and Supramolecular Packing. J Org Chem 2010; 75:8705-8. [DOI: 10.1021/jo101813z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Krishna N. Ganesh
- Division of Organic Chemistry
- Indian Institute of Science education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
33
|
Bollinger S, Hübner H, Heinemann FW, Meyer K, Gmeiner P. Novel pyridylmethylamines as highly selective 5-HT(1A) superagonists. J Med Chem 2010; 53:7167-79. [PMID: 20860381 DOI: 10.1021/jm100835q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To further improve the maximal serotonergic efficacy and better understand the configurational requirements for 5-HT(1A) binding and activation, we generated and biologically investigated structural variants of the lead structure befiradol. For a bioisosteric replacement of the 3-chloro-4-fluoro moiety, a focused library of 63 compounds by solution phase parallel synthesis was developed. Target binding of our compound collection was investigated, and their affinities for 5-HT(2), α(1), and α(2)-adrenergic as well as D(1)-D(4) dopamine receptors were compared. For particularly interesting test compounds, intrinsic activities at 5-HT(1A) were examined in vitro employing a GTPγS assay. The investigation guided us to highly selective 5HT(1A) superagonists. The benzothiophene-3-carboxamide 8bt revealed almost exclusive 5HT(1A) recognition with a K(i) value of 2.7 nM and a maximal efficacy of 124%. To get insights into the bioactive conformation of our compound collection, we synthesized conformationally constrained bicyclic scaffolds when SAR data indicated a chair-type geometry and an equatorially dispositioned aminomethyl substituent for the 4,4-disubstituted piperidine moiety.
Collapse
Affiliation(s)
- Stefan Bollinger
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | | | | | | | | |
Collapse
|
34
|
Plażuk D, Zakrzewski J, Salmain M. Biotin as acylating agent in the Friedel-Crafts reaction. Avidin affinity of biotinyl derivatives of ferrocene, ruthenocene and pyrene and fluorescence properties of 1-biotinylpyrene. Org Biomol Chem 2010; 9:408-17. [PMID: 20967359 DOI: 10.1039/c0ob00319k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(D)-Biotin was used for Friedel-Crafts acylation of electron-rich aromatic molecules--ferrocene, ruthenocene and pyrene. The reaction carried out in the presence of trifluoroacetic anhydride and trifluoromethanesulfonic acid afforded the corresponding biotinylarenes in moderate yields. These compounds, although lacking an amide bond, exhibited high affinity for avidin, with the ability to displace 2-(4'-hydroxyphenylazo)-benzoic acid (HABA) in its complex with avidin. Their affinity for avidin was determined by a solid-phase competitive enzymatic assay, which gave IC(50) values in the range of 33-58 nM (under the same conditions biotin showed IC(50) = 24 ± 7 nM). 1-Biotinylpyrene (1c) excited at 355 nm displayed fluorescence emission in aqueous solutions with λ(max) = 461 nm. The fluorescence maximum was shifted to 425 nm upon binding of 1c to avidin. Formation of the avidin-1c complex was also evidenced by quenching of the fluorescence from the protein tryptophan residues (342 nm) and appearance of the emission band of the avidin-bound 1c at 430 nm as a result of a Förster resonance energy transfer (FRET) phenomenon.
Collapse
Affiliation(s)
- Damian Plażuk
- Department of Organic Chemistry, University of Łódź, 91-403 Łódź, Tamka 12, Poland
| | | | | |
Collapse
|
35
|
Skultety M, Hübner H, Löber S, Gmeiner P. Bioisosteric Replacement Leading to Biologically Active [2.2]Paracyclophanes with Altered Binding Profiles for Aminergic G-Protein-Coupled Receptors. J Med Chem 2010; 53:7219-28. [DOI: 10.1021/jm100899z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marika Skultety
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|
36
|
Sander K, Kottke T, Hoffend C, Walter M, Weizel L, Camelin JC, Ligneau X, Schneider EH, Seifert R, Schwartz JC, Stark H. First Metal-Containing Histamine H3 Receptor Ligands. Org Lett 2010; 12:2578-81. [DOI: 10.1021/ol100419y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kerstin Sander
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Tim Kottke
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Claas Hoffend
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Miriam Walter
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lilia Weizel
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jean-Claude Camelin
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Xavier Ligneau
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Erich H. Schneider
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Roland Seifert
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jean-Charles Schwartz
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Holger Stark
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany, Bioprojet-Biotech, 4 Rue du Chesnay-Beauregard, 35762 Saint Grégoire Cedex, France, University of Regensburg, Department of Pharmacology and Toxicology, Universitätsstrasse 1, 93053 Regensburg, Germany, and Medical School of Hannover, Institute of Pharmacology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
37
|
Hocke C, Maschauer S, Hübner H, Löber S, Utz W, Kuwert T, Gmeiner P, Prante O. A Series of 18F-Labelled Pyridinylphenyl Amides as Subtype-Selective Radioligands for the Dopamine D3 Receptor. ChemMedChem 2010; 5:941-8. [DOI: 10.1002/cmdc.201000067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Tschammer N, Dörfler M, Hübner H, Gmeiner P. Engineering a GPCR-ligand pair that simulates the activation of D(2L) by Dopamine. ACS Chem Neurosci 2010; 1:25-35. [PMID: 22778805 DOI: 10.1021/cn900001b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/03/2009] [Indexed: 02/05/2023] Open
Abstract
In the past decade, engineered G-protein-coupled receptors activated solely by synthetic ligands (RASSLs) have been implemented as a new means to study neurotransmission, which is controlled by G-protein-coupled receptors in vitro and in vivo. In this study, we report an engineered dopamine receptor D(2L) F390(6.52)W, which is the first identified RASSL for the dopamine receptor family. The mutant receptor is characterized by a disrupted ligand binding and complete loss of efficacy for the endogenous ligand, dopamine, which is putatively due to a sterically induced perturbation of H-bonding with conserved serine residues in TM5. Based on this model, we rationally developed an aminoindane-derived set of agonists. Because these agonists forgo analogous H-bonding functionalities, their binding energy does not depend on the respective interactions. Binding affinity and potency were optimized by ligand modifications bearing molecular appendages that obviously interact with a secondary recognition site provided by four hydrophobic residues in TM2 and TM3. Thus, the ferrocenyl carboxamide 5b (FAUC 185) was identified as a synthetic agonist that is able to stimulate the mutant receptor in a manner similar to that by which endogenous dopamine activates the D(2L) wild-type receptor. The engineered dopamine receptor D(2L) F390(6.52)W in combination with FAUC 185 (5b) provides a new tool to probe GPCR functions selectively in specific cell populations in vitro and in vivo.
Collapse
Affiliation(s)
- Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Miriam Dörfler
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| |
Collapse
|
39
|
Huber D, Hübner H, Gmeiner P. 1,1′-Disubstituted Ferrocenes as Molecular Hinges in Mono- and Bivalent Dopamine Receptor Ligands. J Med Chem 2009; 52:6860-70. [DOI: 10.1021/jm901120h] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniela Huber
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|
40
|
|
41
|
Parallel synthesis of potent dopaminergic N-phenyltriazole carboxamides applying a novel click chemistry based phenol linker. Bioorg Med Chem 2009; 17:5482-7. [DOI: 10.1016/j.bmc.2009.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/18/2022]
|
42
|
Gross A, Metzler-Nolte N. Synthesis and characterisation of a ruthenocenoyl bioconjugate with the cyclic octapeptide octreotate. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2008.09.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Löber S, Tschammer N, Hübner H, Melis MR, Argiolas A, Gmeiner P. The Azulene Framework as a Novel Arene Bioisostere: Design of Potent Dopamine D4 Receptor Ligands Inducing Penile Erection. ChemMedChem 2009; 4:325-8. [DOI: 10.1002/cmdc.200800395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Weidner T, Rössler K, Ecorchard P, Lang H, Grunze M, Zharnikov M. Self-assembled monolayers of ruthenocene-substituted biphenyl ethynyl thiols on gold. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2007.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Patwa AN, Gupta S, Gonnade RG, Kumar VA, Bhadbhade MM, Ganesh KN. Ferrocene-Linked Thymine/Uracil Conjugates: Base Pairing Directed Self-Assembly and Supramolecular Packing. J Org Chem 2008; 73:1508-15. [DOI: 10.1021/jo7023416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amit N. Patwa
- Division of Organic Synthesis and Center for Materials Characterization, National Chemical Laboratory, Pune 411008, India and Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| | - Susmita Gupta
- Division of Organic Synthesis and Center for Materials Characterization, National Chemical Laboratory, Pune 411008, India and Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| | - Rajesh G. Gonnade
- Division of Organic Synthesis and Center for Materials Characterization, National Chemical Laboratory, Pune 411008, India and Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| | - Vaijayanti A. Kumar
- Division of Organic Synthesis and Center for Materials Characterization, National Chemical Laboratory, Pune 411008, India and Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| | - Mohan M. Bhadbhade
- Division of Organic Synthesis and Center for Materials Characterization, National Chemical Laboratory, Pune 411008, India and Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| | - Krishna N. Ganesh
- Division of Organic Synthesis and Center for Materials Characterization, National Chemical Laboratory, Pune 411008, India and Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
46
|
Görnemann T, Hübner H, Gmeiner P, Horowski R, Latté KP, Flieger M, Pertz HH. Characterization of the Molecular Fragment That Is Responsible for Agonism of Pergolide at Serotonin 5-Hydroxytryptamine2B and 5-Hydroxytryptamine2A Receptors. J Pharmacol Exp Ther 2007; 324:1136-45. [DOI: 10.1124/jpet.107.133165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Rodriguez Loaiza P, Löber S, Hübner H, Gmeiner P. Click chemistry based solid phase supported synthesis of dopaminergic phenylacetylenes. Bioorg Med Chem 2007; 15:7248-57. [PMID: 17827018 DOI: 10.1016/j.bmc.2007.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 08/09/2007] [Accepted: 08/21/2007] [Indexed: 11/22/2022]
Abstract
'Click resins' enable solid phase supported reactions to work under nearly perfect conditions fulfilling the requirements of click chemistry. Utilizing the formylpyrrolylmethyltriazole (FPMT) linker 6, which is readily available via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a BAL strategy could be successfully applied for a parallel synthesis of dopaminergic phenylacetylens. A focused library of 20 test compounds revealing three points of diversity was generated by a four-step SPOS approach including microwave assisted Sonogashira coupling. GPCR-ligand binding assays indicated excellent dopamine D3 and D4 receptor binding affinities which were identified to cause a partial agonist activity for the most potent test compounds 2c,e,i,k.
Collapse
Affiliation(s)
- Pilar Rodriguez Loaiza
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | | | | | | |
Collapse
|
48
|
Stark D, Piel M, Hübner H, Gmeiner P, Gründer G, Rösch F. In vitro affinities of various halogenated benzamide derivatives as potential radioligands for non-invasive quantification of D2-like dopamine receptors. Bioorg Med Chem 2007; 15:6819-29. [PMID: 17765546 DOI: 10.1016/j.bmc.2007.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 07/12/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
Benzamide derivatives as radiotracers have played an important role in diagnosing malfunction in dopaminergic neurotransmission. A variety of halogenated and two unsubstituted benzamide derivatives were synthesised and their in vitro affinities to dopaminergic, serotonergic and adrenergic receptors and their lipophilicities were determined. As references IBZM (3), raclopride (4) and FLB457 (5) were tested as well. The two iodinated compounds NAE (27) and NADE (28) displayed K(i) values of 0.68 and 14 nM for the D(2) receptor. The well-established radiotracers FP (1) and DMFP (2) showed affinities in the same range as did the brominated compounds NABrE (29) and NABrDE (30). The log D(7.4) values of 2.91 for NAE (27) and of 2.81 for NADE (28) are in the range of those found for IBZM (3), FP (1) and DMFP (2). These facts allow to expect good properties for the two iodinated compounds NAE (27) and NADE (28) regarding in vivo imaging with SPECT.
Collapse
Affiliation(s)
- Daniela Stark
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Synthesis and structural characterization of metallated bioconjugates: C-terminal labeling of amino acids with aminoferrocene. J Organomet Chem 2007. [DOI: 10.1016/j.jorganchem.2007.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Boeckler F, Gmeiner P. Dopamine D3 receptor ligands—Recent advances in the control of subtype selectivity and intrinsic activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:871-87. [PMID: 17274946 DOI: 10.1016/j.bbamem.2006.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 12/04/2006] [Indexed: 12/30/2022]
Abstract
Various pharmacological studies have implicated the dopamine D(3) receptor as an interesting therapeutic target in the treatment of different neurological disorders. Because of these putative therapeutic applications, D(3) receptor ligands with diverse intrinsic activities have been an active field of research in recent years. Separation of purely D(3)-mediated drug effects from effects produced by interactions with similar biogenic amine receptors allows to verify the therapeutic impact of D(3) receptors and to reduce possible side-effects caused by "promiscuous" receptor interactions. The requirement to gain control of receptor selectivity and in particular subtype selectivity has been a challenging task in rational drug discovery for quite a few years. In this review, recently developed structural classes of D(3) ligands are discussed, which cover a broad spectrum of intrinsic activities and show interesting selectivities.
Collapse
Affiliation(s)
- Frank Boeckler
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany.
| | | |
Collapse
|