1
|
Cui DQ, Wang YQ, Zhou B, Ye LW. Brønsted-Acid-Catalyzed Enantioselective Desymmetrization of 1,3-Diols: Access to Chiral β-Amino Alcohol Derivatives. Org Lett 2023; 25:9130-9135. [PMID: 38112554 DOI: 10.1021/acs.orglett.3c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we describe a Brønsted-acid-catalyzed enantioselective desymmetrization of 1,3-diols with alkynes through a hydroalkoxylation/hydrolysis process. The reaction leads to the atom-economical synthesis of valuable chiral β-amino alcohols under mild reaction conditions. Further synthetic transformations based on the β-amino alcohol moiety provide divergent approaches toward chiral N-containing heterocycles.
Collapse
Affiliation(s)
- Da-Qiu Cui
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yu-Qi Wang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
2
|
Ross GA, Lu C, Scarabelli G, Albanese SK, Houang E, Abel R, Harder ED, Wang L. The maximal and current accuracy of rigorous protein-ligand binding free energy calculations. Commun Chem 2023; 6:222. [PMID: 37838760 PMCID: PMC10576784 DOI: 10.1038/s42004-023-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Computational techniques can speed up the identification of hits and accelerate the development of candidate molecules for drug discovery. Among techniques for predicting relative binding affinities, the most consistently accurate is free energy perturbation (FEP), a class of rigorous physics-based methods. However, uncertainty remains about how accurate FEP is and can ever be. Here, we present what we believe to be the largest publicly available dataset of proteins and congeneric series of small molecules, and assess the accuracy of the leading FEP workflow. To ascertain the limit of achievable accuracy, we also survey the reproducibility of experimental relative affinity measurements. We find a wide variability in experimental accuracy and a correspondence between binding and functional assays. When careful preparation of protein and ligand structures is undertaken, FEP can achieve accuracy comparable to experimental reproducibility. Throughout, we highlight reliable protocols that can help maximize the accuracy of FEP in prospective studies.
Collapse
Affiliation(s)
- Gregory A Ross
- Schrödinger Inc, New York, NY, USA.
- Isomorphic Labs, London, UK.
| | - Chao Lu
- Schrödinger Inc, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Hu R, Gong A, Liao L, Zheng YX, Liu X, Wu P, Li F, Yu H, Zhao J, Ye LW, Wang B, Li A. Biocatalytic aminohydroxylation of styrenes for efficient synthesis of enantiopure β-amino alcohols. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Wu H, Li X, Yang L, Chen W, Zou C, Deng W, Wang Z, Hu J, Li Y, Huang Y. Cathodic Carbonyl Alkylation of Aryl Ketones or Aldehydes with Unactivated Alkyl Halides. Org Lett 2022; 24:9342-9347. [PMID: 36484503 DOI: 10.1021/acs.orglett.2c04019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient cathodic carbonyl alkylation of aryl ketones or aldehydes with unactivated alkyl halides has been realized through the electrochemical activation of iron. The protocol is believed to include a radical-radical coupling or nucleophilic addition process, and the formation of ketyl radicals and alkyl radicals has been demonstrated. The protocol provides various tertiary or secondary alcohols by the formation of intermolecular C-C bonds under safe and mild conditions, is scalable, consumes little energy, and exhibits a broad substrate scope.
Collapse
Affiliation(s)
- Hongting Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Xinling Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Ling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weihao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Canlin Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weijie Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Ziliang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
5
|
Nguyen TH, Ma E. Efficient diastereoselective synthesis of cis-2-amino-1-indanol derivatives and cis- and trans-1-amino-2-indanol via Pd-catalyzed hydrogenation. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1989595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thi Ha Nguyen
- Department of Phytochemistry, National Institute of Medicinal Materials (NIMM), Hanoi, Vietnam
| | - Eunsook Ma
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| |
Collapse
|
6
|
Ngo ST, Hong ND, Quynh Anh LH, Hiep DM, Tung NT. Effective estimation of the inhibitor affinity of HIV-1 protease via a modified LIE approach. RSC Adv 2020; 10:7732-7739. [PMID: 35492181 PMCID: PMC9049864 DOI: 10.1039/c9ra09583g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
The inhibition of the Human Immunodeficiency Virus Type 1 Protease (HIV-1 PR) can prevent the synthesis of new viruses. Computer-aided drug design (CADD) would enhance the discovery of new therapies, through which the estimation of ligand-binding affinity is critical to predict the most efficient inhibitor. A time-consuming binding free energy method would reduce the usefulness of CADD. The modified linear interaction energy (LIE) approach emerges as an appropriate protocol that performs this task. In particular, the polar interaction free energy, which is obtained via numerically resolving the linear Poisson-Boltzmann equation, plays as an important role in driving the binding mechanism of the HIV-1 PR + inhibitor complex. The electrostatic interaction energy contributes to the attraction between two molecules, but the vdW interaction acts as a repulsive factor between the ligand and the HIV-1 PR. Moreover, the ligands were found to adopt a very strong hydrophobic interaction with the HIV-1 PR. Furthermore, the results obtained corroborate the high accuracy and precision of computational studies with a large correlation coefficient value R = 0.83 and a small RMSE δ RMSE = 1.25 kcal mol-1. This method is less time-consuming than the other end-point methods, such as the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and free energy perturbation (FEP) approaches. Overall, the modified LIE approach would provide ligand-binding affinity with HIV-1 PR accurately, precisely, and rapidly, resulting in a more efficient design of new inhibitors.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Nam Dao Hong
- University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Le Huu Quynh Anh
- Department of Climate Change and Renewable Energy, Ho Chi Minh City University of Natural Resources and Environment Ho Chi Minh City Vietnam
| | | | - Nguyen Thanh Tung
- Institute of Materials Science & Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
7
|
Chen FF, Cosgrove SC, Birmingham WR, Mangas-Sanchez J, Citoler J, Thompson MP, Zheng GW, Xu JH, Turner NJ. Enantioselective Synthesis of Chiral Vicinal Amino Alcohols Using Amine Dehydrogenases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03889] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sebastian C. Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - William R. Birmingham
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Juan Mangas-Sanchez
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Joan Citoler
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Matthew P. Thompson
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
8
|
Zhang JD, Zhao JW, Gao LL, Chang HH, Wei WL, Xu JH. Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. J Biotechnol 2019; 290:24-32. [DOI: 10.1016/j.jbiotec.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
|
9
|
Gupta P, Mahajan N. Biocatalytic approaches towards the stereoselective synthesis of vicinal amino alcohols. NEW J CHEM 2018. [DOI: 10.1039/c8nj00485d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The global need for clean manufacturing technologies and the management of hazardous chemicals and waste present new research challenges to both chemistry and biotechnology.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| | - Neha Mahajan
- Department of Biotechnology
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| |
Collapse
|
10
|
Ngo ST, Nguyen MT, Nguyen MT. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Ghosh AK, Osswald HL, Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem 2016; 59:5172-208. [PMID: 26799988 PMCID: PMC5598487 DOI: 10.1021/acs.jmedchem.5b01697] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 protease inhibitors continue to play an important role in the treatment of HIV/AIDS, transforming this deadly ailment into a more manageable chronic infection. Over the years, intensive research has led to a variety of approved protease inhibitors for the treatment of HIV/AIDS. In this review, we outline current drug design and medicinal chemistry efforts toward the development of next-generation protease inhibitors beyond the currently approved drugs.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Heather L. Osswald
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gary Prato
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
12
|
Motwani HV, De Rosa M, Odell LR, Hallberg A, Larhed M. Aspartic protease inhibitors containing tertiary alcohol transition-state mimics. Eur J Med Chem 2014; 90:462-90. [PMID: 25481814 DOI: 10.1016/j.ejmech.2014.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022]
Abstract
Aspartic proteases (APs) are a class of enzymes engaged in the proteolytic digestion of peptide substrates. APs play important roles in physiological and infectious pathways, making them plausible drug targets. For instance in the treatment of HIV infections, access to an efficient combination of protease and reverse transcriptase inhibitors have changed a terminal illness to a chronic but manageable disease. However, the benefits have been limited due to the emergence of drug resistant viral strains, poor pharmacokinetic properties of peptidomimetic inhibitors and adverse effects associated with the treatment. In the 1980s, D. Rich and co-workers proposed a novel strategy for the development of AP inhibitors by replacing the secondary hydroxyl group with a tertiary alcohol as part of the transition state (TS) mimicking moiety. This strategy has been extensively explored over the last decade with a common belief that masking of the polar group, e.g. by intramolecular hydrogen bonding, has the potential to enhance transcellular transport. This is the first review presenting the advances of AP inhibitors comprising a tertiary hydroxyl group. The inhibitors have been classified into different tert-hydroxy TS mimics and their design strategies, synthesis, biological activities, structure-activity-relationships and X-ray structures are discussed.
Collapse
Affiliation(s)
- Hitesh V Motwani
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Maria De Rosa
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
13
|
Schmidt TC, Welker A, Rieger M, Sahu PK, Sotriffer CA, Schirmeister T, Engels B. Protocol for Rational Design of Covalently Interacting Inhibitors. Chemphyschem 2014; 15:3226-35. [DOI: 10.1002/cphc.201402542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Indexed: 01/26/2023]
|
14
|
De Rosa M, Unge J, Motwani HV, Rosenquist Å, Vrang L, Wallberg H, Larhed M. Synthesis of P1'-functionalized macrocyclic transition-state mimicking HIV-1 protease inhibitors encompassing a tertiary alcohol. J Med Chem 2014; 57:6444-57. [PMID: 25054811 DOI: 10.1021/jm500434q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Seven novel tertiary alcohol containing linear HIV-1 protease inhibitors (PIs), decorated at the para position of the benzyl group in the P1' side with (hetero)aromatic moieties, were synthesized and biologically evaluated. To study the inhibition and antiviral activity effect of P1-P3 macrocyclization, 14- and 15-membered macrocyclic PIs were prepared by ring-closing metathesis of the corresponding linear PIs. The macrocycles were more active than the linear precursors and compound 10f, with a 2-thiazolyl group in the P1' position, was the most potent PI of this new series (Ki 2.2 nM, EC50 0.2 μM). Co-crystallized complexes of both linear and macrocyclic PIs with the HIV-1 protease enzyme were prepared and analyzed.
Collapse
Affiliation(s)
- Maria De Rosa
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University , P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Recent patents and emerging therapeutics for HIV infections: a focus on protease inhibitors. Pharm Pat Anal 2014; 2:513-38. [PMID: 24237127 DOI: 10.4155/ppa.13.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inclusion of protease inhibitors (PIs) in highly active antiretroviral therapy has significantly improved clinical outcomes in HIV-1-infected patients. To date, PIs are considered to be the most important therapeutic agents for the treatment of HIV infections. Despite high anti-HIV-1 potency, poor oral bioavailability of PIs has been a major concern. For achieving therapeutic concentrations, large doses of PIs are administered, which results in unacceptable systemic toxicities. Such severe and long-term toxicities necessitate the development of safer and potentially promising PIs. Recently, considerable attention has been paid to the development of newer compounds capable of inhibiting wild-type and resistant HIV-1 protease. Some of these PIs have displayed potent HIV-1 protease inhibitory activity. In this review, we have made an attempt to provide an overview on clinically approved and newly developing PIs, and related recent patents in the development of novel PIs.
Collapse
|
16
|
Joshi A, Véron JB, Unge J, Rosenquist Å, Wallberg H, Samuelsson B, Hallberg A, Larhed M. Design and Synthesis of P1–P3 Macrocyclic Tertiary-Alcohol-Comprising HIV-1 Protease Inhibitors. J Med Chem 2013; 56:8999-9007. [DOI: 10.1021/jm400811d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Advait Joshi
- Department
of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Jean-Baptiste Véron
- Department
of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Unge
- MAX IV-laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | | | - Hans Wallberg
- Medivir AB, P.O. Box 1086, SE-141
22 Huddinge, Sweden
| | | | - Anders Hallberg
- Department
of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Department
of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
17
|
Kabri Y, Crozet MD, Primas N, Vanelle P. One-Pot Chemoselective Bis(Suzuki-Miyaura Cross-Coupling): Efficient Access to 3,9-Bis[(hetero)aryl]-4H-pyrido[1,2-a]pyrimidin-4-one Derivatives Under Microwave Irradiation. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Wu X, Ohrngren P, Joshi AA, Trejos A, Persson M, Arvela RK, Wallberg H, Vrang L, Rosenquist A, Samuelsson BB, Unge J, Larhed M. Synthesis, X-ray analysis, and biological evaluation of a new class of stereopure lactam-based HIV-1 protease inhibitors. J Med Chem 2012; 55:2724-36. [PMID: 22376008 PMCID: PMC3310203 DOI: 10.1021/jm201620t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
In an effort to identify a new class of druglike HIV-1
protease
inhibitors, four different stereopure β-hydroxy γ-lactam-containing
inhibitors have been synthesized, biologically evaluated, and cocrystallized.
The impact of the tether length of the central spacer (two or three
carbons) was also investigated. A compound with a shorter tether and
(3R,4S) absolute configuration exhibited
high activity with a Ki of 2.1 nM and
an EC50 of 0.64 μM. Further optimization by decoration
of the P1′ side chain furnished an even more potent HIV-1 protease
inhibitor (Ki = 0.8 nM, EC50 = 0.04 μM). According to X-ray analysis, the new class of
inhibitors did not fully succeed in forming two symmetric hydrogen
bonds to the catalytic aspartates. The crystal structures of the complexes
further explain the difference in potency between the shorter inhibitors
(two-carbon spacer) and the longer inhibitors (three-carbon spacer).
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Synthesis and biological evaluation of novel amprenavir-based P1-substituted bi-aryl derivatives as ultra-potent HIV-1 protease inhibitors. Bioorg Med Chem Lett 2012; 22:1976-9. [DOI: 10.1016/j.bmcl.2012.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 11/23/2022]
|
20
|
Gising J, Odell LR, Larhed M. Microwave-assisted synthesis of small molecules targeting the infectious diseases tuberculosis, HIV/AIDS, malaria and hepatitis C. Org Biomol Chem 2012; 10:2713-29. [PMID: 22227602 DOI: 10.1039/c2ob06833h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The unique properties of microwave in situ heating offer unparalleled opportunities for medicinal chemists to speed up lead optimisation processes in early drug discovery. The technology is ideal for small-scale discovery chemistry because it allows full reaction control, short reaction times, high safety and rapid feedback. To illustrate these advantages, we herein describe applications and approaches in the synthesis of small molecules to combat four of the most prevalent infectious diseases; tuberculosis, HIV/AIDS, malaria and hepatitis C, using dedicated microwave instrumentation.
Collapse
Affiliation(s)
- Johan Gising
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Rouf A, Gupta P, Aga MA, Kumar B, Parshad R, Taneja SC. Cyclic trans-β-amino alcohols: preparation and enzymatic kinetic resolution. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Lazorova L, Hubatsch I, Ekegren JK, Gising J, Nakai D, Zaki NM, Bergström CAS, Norinder U, Larhed M, Artursson P. Structural features determining the intestinal epithelial permeability and efflux of novel HIV-1 protease inhibitors. J Pharm Sci 2011; 100:3763-72. [PMID: 21491458 PMCID: PMC3210832 DOI: 10.1002/jps.22570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/17/2022]
Abstract
The primary aim of this study was to identify structural features that alter the intestinal epithelial permeability and efflux in a series of novel HIV-1 protease inhibitors (PIs). Eleven PIs were selected containing a tertiary alcohol in a transition-state mimicking scaffold, in which two substituents (R1 and R2) were varied systematically. Indinavir was selected as a reference compound. The apical-to-basolateral permeability was investigated in 2/4/A1 and Caco-2 monolayers. In addition, the basolateral-to-apical permeability was investigated in the Caco-2 monolayers and the efflux ratios were calculated. The absence of active drug transport processes in 2/4/A1 cells allowed identification and modeling of structural elements affecting the passive permeability. For instance, small aromatic R1 substituents and a small (bromo-) R2 substituent were associated with a high passive permeability. Efflux studies in Caco-2 cells indicated that amide-substituted neutral hydrophobic amino acids, such as valine and leucine, in the R1 position, reduced the apical-to-basolateral transport and enhanced the efflux. We conclude that our investigation revealed structural features that alter the intestinal epithelial permeability and efflux in the series of PIs and hope that these results can contribute to the synthesis of PIs with improved permeability and limited efflux properties. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:3763–3772, 2011
Collapse
Affiliation(s)
- Lucia Lazorova
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Öhrngren P, Wu X, Persson M, Ekegren JK, Wallberg H, Vrang L, Rosenquist Å, Samuelsson B, Unge T, Larhed M. HIV-1 protease inhibitors with a tertiary alcohol containing transition-state mimic and various P2 and P1′ substituents. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00077b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Investigation of α-phenylnorstatine and α-benzylnorstatine as transition state isostere motifs in the search for new BACE-1 inhibitors. Bioorg Med Chem 2011; 19:145-55. [DOI: 10.1016/j.bmc.2010.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 11/12/2010] [Accepted: 11/18/2010] [Indexed: 01/14/2023]
|
25
|
Mahalingam AK, Axelsson L, Ekegren JK, Wannberg J, Kihlström J, Unge T, Wallberg H, Samuelsson B, Larhed M, Hallberg A. HIV-1 protease inhibitors with a transition-state mimic comprising a tertiary alcohol: improved antiviral activity in cells. J Med Chem 2010; 53:607-15. [PMID: 19961222 DOI: 10.1021/jm901165g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By a small modification in the core structure of the previously reported series of HIV-1 protease inhibitors that encompasses a tertiary alcohol as part of the transition-state mimicking scaffold, up to 56 times more potent compounds were obtained exhibiting EC(50) values down to 3 nM. Three of the inhibitors also displayed excellent activity against selected resistant isolates of HIV-1. The synthesis of 25 new and optically pure HIV-1 protease inhibitors is reported, along with methods for elongation of the inhibitor P1' side chain using microwave-accelerated, palladium-catalyzed cross-coupling reactions, the biological evaluation, and X-ray data obtained from one of the most potent analogues cocrystallized with both the wild type and the L63P, V82T, I84 V mutant of the HIV-1 protease.
Collapse
Affiliation(s)
- A K Mahalingam
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Approaches to the design of HIV protease inhibitors with improved resistance profiles. Curr Opin HIV AIDS 2009; 3:633-41. [PMID: 19373035 DOI: 10.1097/coh.0b013e328313911d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review describes current approaches to HIV protease inhibitor design, with a focus on improving their profile against drug-resistant mutants. Potential explanations for the flat resistance profile of some potent protease inhibitors and discrepancies between the apparent fold change of potency at the enzyme level and in cell-based assays are discussed. RECENT FINDINGS Despite new ideas and a clear rationale for designing inhibitors that bind outside the enzyme active site, all current protease inhibitors with potent antiviral activity target this site. Several bis-tetrahydrofuran-containing compounds including darunavir, brecanavir, GS-8374, and Sequoia protease inhibitors exhibit excellent potency against mutant HIV strains that are resistant to clinically used protease inhibitors. The apparently flat resistance profiles of these and some other protease inhibitors may, at least in part, be explained by their high potency against wild-type enzyme. The substrate envelope and solvent-anchoring hypotheses have been used to design and/or rationalize improved resistance profiles. Traditional approaches yielded a lysine sulfonamide PL-100 with a unique resistance profile. SUMMARY Several theories on how to design HIV protease inhibitors with improved resistance profiles have been proposed during the review period. The general concepts that are incorporated into most design strategies include maximizing the interactions with the backbone and conserved side chains of the enzyme while minimizing inhibitor size and maintaining conformational flexibility to allow for modified binding modes.
Collapse
|
27
|
Inaba Y, Yano S, Mikata Y. Preparation ofC-Glycoside Pendant β2- and β2,2-Amino Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Non-conventional methodologies for transition-metal catalysed carbon–carbon coupling: a critical overview. Part 2: The Suzuki reaction. Tetrahedron 2008. [DOI: 10.1016/j.tet.2007.12.036] [Citation(s) in RCA: 490] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Appukkuttan P, Van der Eycken E. Recent Developments in Microwave‐Assisted, Transition‐Metal‐Catalysed C–C and C–N Bond‐Forming Reactions. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701056] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prasad Appukkuttan
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, BMC, Box 574, 75123 Uppsala, Sweden
| | - Erik Van der Eycken
- Department of Chemistry, University of Leuven, 3001 Leuven, Belgium, Fax: +32‐16‐327990
| |
Collapse
|
30
|
Wu X, Ohrngren P, Ekegren JK, Unge J, Unge T, Wallberg H, Samuelsson B, Hallberg A, Larhed M. Two-carbon-elongated HIV-1 protease inhibitors with a tertiary-alcohol-containing transition-state mimic. J Med Chem 2008; 51:1053-7. [PMID: 18215014 DOI: 10.1021/jm070680h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new generation of HIV-1 protease inhibitors encompassing a tertiary-alcohol-based transition-state mimic has been developed. By elongation of the core structure of recently reported inhibitors with two carbon atoms and by varying the P1' group of the compounds, efficient inhibitors were obtained with Ki down to 2.3 nM and EC50 down to 0.17 microM. Two inhibitor-enzyme X-ray structures are reported.
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Rapid progress in the synthetic application of benzotriazole derivatives in the last 20 years has resulted in over 1000 scientific papers on the subject. This fact is reflected in Section 5.01.7, which involves almost a half of the volume of this chapter. The section is arranged according to hybridization of the C-α atom and atomic numbers of the atoms in positions β and γ to allow an easy access to the material of interest. Recent discovery of copper catalysis in [3+2] cycloadditions of azides to acetylenes, the so-called ‘click chemistry’, which boosted application of the 1,2,3-triazole derivatives, especially in medicinal chemistry, is presented in Section 5.01.9. From the point of view of practical applications, Section 5.01.11 is organized according to the number, position, and combination of the substituents at the aromatic rings. Another novel feature that has no precedence in the previous editions of Comprehensive Heterocyclic Chemistry is an addition of triazole and benzotriazole complexes with various transitions metals to Section 5.01.4.
Collapse
|
32
|
Synthesis of chiral β2,2,3-3-amino-2-hydroxyalkanoates and 3-alkyl-3-hydroxy-β-lactams by double asymmetric induction. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.05.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Guerrini A, Varchi G, Battaglia A. Stereoselective One-Pot Synthesis of Constrained N,O-Orthogonally Protected C-Glycosyl Norstatines [C(1‘)-Aminoglycosyl-1,3-dioxolan-4-ones]. J Org Chem 2006; 71:6785-95. [PMID: 16930028 DOI: 10.1021/jo0608164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A procedure for the synthesis of conformationally constrained C-glycosyl norstatines has been developed. The key step of the reaction is the addition of (S)-N-sulfinyl azomethines to chiral (2S)-enolates of dioxolanones which exploits Seebach's "SRS" principle. The trisubstituted C-glycosyl-alpha-hydroxy-beta-amino acids are formed as N,O-orthogonally protected 1'-glycosyl-sulfinylamino-dioxolan-4-ones, usually with high diastereomeric excesses. Both the sulfinyl group at the nitrogen atom and the acetal moiety of the dioxolanone ring were selectively removed, thus demonstrating the orthogonality of the two protecting groups. In fact, the MeO(-) induced methanolysis of the acetal group gave the corresponding methyl C-glycosyl-sulfinylamino-isoserinates, while the acid induced removal of the sulfinyl group gave the Nu-deprotected 1'-glycosylamino-dioxolan-4-ones, which were in several cases subjected to a one-pot base-induced cyclization yielding the corresponding glycosyl-beta-lactams. This allowed the stereochemical configuration assessment of the parent 1'-glycosyl-sulfinylamino-dioxolan-4-ones by chemical correlation methods or by NOE experiments performed on the beta-lactams.
Collapse
Affiliation(s)
- Andrea Guerrini
- ISOF-CNR, Area della Ricerca di Bologna, Via P. Gobetti 101, 40129 Bologna, Italy
| | | | | |
Collapse
|
34
|
Ekegren JK, Gising J, Wallberg H, Larhed M, Samuelsson B, Hallberg A. Variations of the P2 group in HIV-1 protease inhibitors containing a tertiary alcohol in the transition-state mimicking scaffold. Org Biomol Chem 2006; 4:3040-3. [PMID: 16886068 DOI: 10.1039/b606859f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A short synthetic protocol leading to HIV-1 protease inhibitors with a tertiary alcohol based transition-state mimicking unit and different P2 side chains has been developed.
Collapse
Affiliation(s)
- Jenny K Ekegren
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|