1
|
Damalanka VC, Banas V, De Bona P, Kashipathy MM, Battaile K, Lovell S, Janetka JW. Mechanism-Based Macrocyclic Inhibitors of Serine Proteases. J Med Chem 2024; 67:4833-4854. [PMID: 38477709 DOI: 10.1021/acs.jmedchem.3c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Protease inhibitor drug discovery is challenged by the lack of cellular and oral permeability, selectivity, metabolic stability, and rapid clearance of peptides. Here, we describe the rational design, synthesis, and evaluation of peptidomimetic side-chain-cyclized macrocycles which we converted into covalent serine protease inhibitors with the addition of an electrophilic ketone warhead. We have identified potent and selective inhibitors of TMPRSS2, matriptase, hepsin, and HGFA and demonstrated their improved protease selectivity, metabolic stability, and pharmacokinetic (PK) properties. We obtained an X-ray crystal structure of phenyl ether-cyclized tripeptide VD4162 (8b) bound to matriptase, revealing an unexpected binding conformation. Cyclic biphenyl ether VD5123 (11) displayed the best PK properties in mice with a half-life of 4.5 h and compound exposure beyond 24 h. These new cyclic tripeptide scaffolds can be used as easily modifiable templates providing a new strategy to overcoming the obstacles presented by linear acyclic peptides in protease inhibitor drug discovery.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Victoria Banas
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Paolo De Bona
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin Battaile
- New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
2
|
Müller P, Zimmer C, Frey A, Holzmann G, Weldert AC, Schirmeister T. Ligand-Based Design of Selective Peptidomimetic uPA and TMPRSS2 Inhibitors with Arg Bioisosteres. Int J Mol Sci 2024; 25:1375. [PMID: 38338655 PMCID: PMC10855164 DOI: 10.3390/ijms25031375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.
Collapse
Affiliation(s)
| | | | | | | | | | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany; (P.M.); (C.Z.); (A.F.); (G.H.); (A.C.W.)
| |
Collapse
|
3
|
van Eijk N, Schmacke LC, Steinmetzer T, Pilgram O, Poór M, Pászti-Gere E. In vitro testing of host-targeting small molecule antiviral matriptase/TMPRSS2 inhibitors in 2D and 3D cell-based assays. Biomed Pharmacother 2023; 168:115761. [PMID: 37865989 DOI: 10.1016/j.biopha.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic strongly stimulated the development of small molecule antivirals selectively targeting type II transmembrane serine proteases (TTSP), required for the host-cell entry of numerous viruses. A set of 3-amidinophenylalanine derivatives (MI-21, MI-472, MI-477, MI-485, MI-1903 and MI-1904), which inhibit the cleavage of certain viral glycoproteins was characterized in 2D and 3D primary human hepatocyte models on collagen- and Matrigel-coating using a CCK-8 assay to evaluate their cytotoxicity, a resorufin-based method to detect redox imbalances, fluorescence and ultrafiltration experiments to evaluate their interactions with human serum albumin (HSA) and α-acidic glycoprotein (AGP), and luminescence measurement to assess CYP3A4 modulation. For elucidation of selectivity of the applied compounds towards matriptase, transmembrane serine protease 2 (TMPRRS2), thrombin and factor Xa (FXa) Ki values were determined. It was proven that cell viability was only deteriorated by inhibitor MI-1903, and redox status was not influenced by administration of the selected inhibitors at 50 µM for 24 h. MI-472 and MI-477 formed relatively stable complexes with AGP. CYP3A4 inhibition was found to be strong in PHHs exposed to all inhibitors with the exception of MI-21, which seems to be a promising drug candidate also due to its better selectivity towards matriptase and TMPRSS2 over the blood clotting proteases thrombin and FXa. Our in vitro pharmacokinetic screening with these inhibitors helps to select the compounds with the best selectivity and safety profile suitable for a further preclinical characterization without animal sacrifice.
Collapse
Affiliation(s)
- Nicholas van Eijk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Department of Pharmacy, Philipps University Marburg, Marbacher Weg 6-10, Marburg 35037, Germany
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, Budapest H-1078, Hungary.
| |
Collapse
|
4
|
Hammerschmidt SJ, Maus H, Weldert AC, Gütschow M, Kersten C. Improving binding entropy by higher ligand symmetry? - A case study with human matriptase. RSC Med Chem 2023; 14:969-982. [PMID: 37252099 PMCID: PMC10211324 DOI: 10.1039/d3md00125c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding different contributions to the binding entropy of ligands is of utmost interest to better predict affinity and the thermodynamic binding profiles of protein-ligand interactions and to develop new strategies for ligand optimization. To these means, the largely neglected effects of introducing higher ligand symmetry, thereby reducing the number of energetically distinguishable binding modes on binding entropy using the human matriptase as a model system, were investigated. A set of new trivalent phloroglucinol-based inhibitors that address the roughly symmetric binding site of the enzyme was designed, synthesized, and subjected to isothermal titration calorimetry. These highly symmetric ligands that can adopt multiple indistinguishable binding modes exhibited high entropy-driven affinity in line with affinity-change predictions.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Annabelle C Weldert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
5
|
El‐Hussieny M, Mansour ST, Hashem AI, Fouad MA, Abd‐El‐Maksoud MA. Design, synthesis, and biological evaluation of new heterocycles bearing both silicon and phosphorus as potent
MMP
‐2 inhibitors. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marwa El‐Hussieny
- Organometallic and Organometalloid Chemistry Department National Research Centre Giza Egypt
| | - Shaimaa T. Mansour
- Organometallic and Organometalloid Chemistry Department National Research Centre Giza Egypt
| | - Ahmed I. Hashem
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy Cairo University Giza Egypt
| | | |
Collapse
|
6
|
Improving the selectivity of 3-amidinophenylalanine-derived matriptase inhibitors. Eur J Med Chem 2022; 238:114437. [DOI: 10.1016/j.ejmech.2022.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
7
|
Brinkmann S, Semmler S, Kersten C, Patras MA, Kurz M, Fuchs N, Hammerschmidt SJ, Legac J, Hammann PE, Vilcinskas A, Rosenthal PJ, Schirmeister T, Bauer A, Schäberle TF. Identification, Characterization, and Synthesis of Natural Parasitic Cysteine Protease Inhibitors: Pentacitidins Are More Potent Falcitidin Analogues. ACS Chem Biol 2022; 17:576-589. [PMID: 35262340 DOI: 10.1021/acschembio.1c00861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protease inhibitors represent a promising therapeutic option for the treatment of parasitic diseases such as malaria and human African trypanosomiasis. Falcitidin was the first member of a new class of inhibitors of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. Using a metabolomics dataset of 25 Chitinophaga strains for molecular networking enabled identification of over 30 natural analogues of falcitidin. Based on MS/MS spectra, they vary in their amino acid chain length, sequence, acyl residue, and C-terminal functionalization; therefore, they were grouped into the four falcitidin peptide families A-D. The isolation, characterization, and absolute structure elucidation of two falcitidin-related pentapeptide aldehyde analogues by extensive MS/MS spectrometry and NMR spectroscopy in combination with advanced Marfey's analysis was in agreement with the in silico analysis of the corresponding biosynthetic gene cluster. Total synthesis of chosen pentapeptide analogues followed by in vitro testing against a panel of proteases revealed selective parasitic cysteine protease inhibition and, additionally, low-micromolar inhibition of α-chymotrypsin. The pentapeptides investigated here showed superior inhibitory activity compared to falcitidin.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
| | - Sandra Semmler
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, R&D, Frankfurt am Main 65926, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Stefan J. Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California 94143, United States
| | | | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen 35392, Germany
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California 94143, United States
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D, Frankfurt am Main 65926, Germany
| | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen 35392, Germany
| |
Collapse
|
8
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
9
|
Damalanka VC, Voss JJLP, Mahoney MW, Primeau T, Li S, Klampfer L, Janetka JW. Macrocyclic Inhibitors of HGF-Activating Serine Proteases Overcome Resistance to Receptor Tyrosine Kinase Inhibitors and Block Lung Cancer Progression. J Med Chem 2021; 64:18158-18174. [PMID: 34902246 DOI: 10.1021/acs.jmedchem.1c01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors. The new series of cyclic tripeptides has superior metabolic stability and significantly improved pharmacokinetics in mice relative to the corresponding linear peptides. We identified the lead compound VD2173 that potently inhibits matriptase and hepsin, which was tested in parallel alongside the acyclic inhibitor ZFH7116 using both in vitro and in vivo models of lung cancer. We demonstrated that both compounds block pro-HGF activation, abrogate HGF-mediated wound healing, and overcome resistance to EGFR- and MET-targeted therapy in lung cancer models. Furthermore, VD2173 inhibited HGF-dependent growth of lung cancer tumors in mice.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jorine J L P Voss
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew W Mahoney
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - Tina Primeau
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lidija Klampfer
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States.,ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| |
Collapse
|
10
|
Enzyme inhibition as a potential therapeutic strategy to treat COVID-19 infection. Bioorg Med Chem 2021; 48:116389. [PMID: 34543844 PMCID: PMC8448535 DOI: 10.1016/j.bmc.2021.116389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
With the emergence of the third infectious and virulent coronavirus within the past two decades, it has become increasingly important to understand how the virus causes infection. This will inform therapeutic strategies that target vulnerabilities in the vital processes through which the virus enters cells. This review identifies enzymes responsible for SARS-CoV-2 viral entry into cells (ACE2, Furin, TMPRSS2) and discuss compounds proposed to inhibit viral entry with the end goal of treating COVID-19 infection. We argue that TMPRSS2 inhibitors show the most promise in potentially treating COVID-19, in addition to being a pre-existing medication with fewer predicted side-effects.
Collapse
|
11
|
A facile approach towards amidinophenylalanine derivatives as building blocks for the synthesis of non-natural peptides and peptidomimetics. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Müller P, Maus H, Hammerschmidt SJ, Knaff P, Mailänder V, Schirmeister T, Kersten C. Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Curr Med Chem 2021; 29:635-665. [PMID: 34042026 DOI: 10.2174/0929867328666210526111318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023]
Abstract
Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since currently, there is no causative drug against this viral infection available, science is striving for new drugs and approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARS-CoV-2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.
Collapse
Affiliation(s)
- Patrick Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Philip Knaff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Christian Kersten
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
13
|
The Effects of Matriptase Inhibition on the Inflammatory and Redox Homeostasis of Chicken Hepatic Cell Culture Models. Biomedicines 2021; 9:biomedicines9050450. [PMID: 33919461 PMCID: PMC8143509 DOI: 10.3390/biomedicines9050450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
The function of the transmembrane serine protease matriptase is well described in mammals, but it has not been elucidated in avian species yet. Hence, the aim of the present study was to assess the effects of the 3-amidinophenylalanine (3-AphA)-type matriptase inhibitors MI432 and MI460 on the inflammatory and oxidative state of chicken primary hepatocyte mono-cultures and hepatocyte-nonparenchymal cell co-cultures, the latter serving as a proper model of hepatic inflammation in birds. Cell cultures were exposed to MI432 and MI460 for 4 and 24 h at 10, 25, and 50 µM concentrations, and thereafter the cellular metabolic activity, extracellular interleukin (IL-)6, IL-8, H2O2 and malondialdehyde concentrations were monitored. Both inhibitors caused a transient moderate reduction in the metabolic activity following 4 h exposure, which was restored after 24 h, reflecting the fast hepatic adaptation potential to matriptase inhibitor administration. Furthermore, MI432 triggered an intense elevation in the cellular proinflammatory IL-6 and IL-8 production after both incubation times in all concentrations, which was not coupled to enhanced oxidative stress and lipid peroxidation based on unchanged H2O2 production, malondialdehyde levels and glutathione peroxidase activity. These data suggest that physiological matriptase activities might have a key function in retaining the metabolic and inflammatory homeostasis of the liver in chicken, without being a major modulator of the hepatocellular redox state.
Collapse
|
14
|
Pászti-Gere E, Pomothy J, Jerzsele Á, Pilgram O, Steinmetzer T. Exposure of human intestinal epithelial cells and primary human hepatocytes to trypsin-like serine protease inhibitors with potential antiviral effect. J Enzyme Inhib Med Chem 2021; 36:659-668. [PMID: 33641565 PMCID: PMC7928042 DOI: 10.1080/14756366.2021.1886093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human intestinal epithelial cell line-6 (HIEC-6) cells and primary human hepatocytes (PHHs) were treated with 3-amidinophenylalanine-derived inhibitors of trypsin-like serine proteases for 24 hours. It was proven that treatment with MI-1900 and MI-1907 was tolerated up to 50 μM in HIEC-6. These inhibitors did not cause elevations in extracellular H2O2 levels and in the concentrations of interleukin (IL)-6 and IL-8 and did not alter occludin distribution in HIEC-6. It was also found that MI-1900 and MI-1907 up to 50 μM did not affect cell viability, IL-6 and IL-8 and occludin levels of PHH. Based on our findings, these inhibitors could be safely applicable at 50 μM in HIEC-6 and in PHH; however, redox status was disturbed in case of PHH. Moreover, it has recently been demonstrated that MI-1900 prevents the replication and spread of the new SARS-CoV-2 in infected Calu-3 cells, most-likely via an inhibition of the membrane-bound host protease TMPRSS2.
Collapse
Affiliation(s)
- Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Judit Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Oliver Pilgram
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
15
|
Nazeri MT, Beygzade Nowee A, Shaabani A. A new one-pot synthesis of pseudopeptide connected to sulfonamide via the tandem N-sulfonylation/Ugi reactions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05878e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, an efficient one-pot reaction is reported for the synthesis of a new class of pseudopeptide connected to sulfonamide via a tandem N-sulfonylation/Ugi four-component reaction (Ugi-4CR) strategy under mild conditions in high yields.
Collapse
Affiliation(s)
| | | | - Ahmad Shaabani
- Faculty of Chemistry
- Shahid Beheshti University
- G.C
- Tehran
- Iran
| |
Collapse
|
16
|
Fuentes-Prior P. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J Biol Chem 2020; 296:100135. [PMID: 33268377 PMCID: PMC7834812 DOI: 10.1074/jbc.rev120.015980] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
17
|
Murza A, Dion SP, Boudreault PL, Désilets A, Leduc R, Marsault É. Inhibitors of type II transmembrane serine proteases in the treatment of diseases of the respiratory tract - A review of patent literature. Expert Opin Ther Pat 2020; 30:807-824. [PMID: 32887532 DOI: 10.1080/13543776.2020.1817390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Type II transmembrane serine proteases (TTSPs) of the human respiratory tract generate high interest owing to their ability, among other roles, to cleave surface proteins of respiratory viruses. This step is critical in the viral invasion of coronaviruses, including SARS-CoV-2 responsible for COVID-19, but also influenza viruses and reoviruses. Accordingly, these cell surface enzymes constitute appealing therapeutic targets to develop host-based therapeutics against respiratory viral diseases. Additionally, their deregulated levels or activity has been described in non-viral diseases such as fibrosis, cancer, and osteoarthritis, making them potential targets in these indications. AREAS COVERED Areas covered: This review includes WIPO-listed patents reporting small molecules and peptide-based inhibitors of type II transmembrane serine proteases of the respiratory tract. EXPERT OPINION Expert opinion: Several TTSPs of the respiratory tract represent attractive pharmacological targets in the treatment of respiratory infectious diseases (notably COVID-19 and influenza), but also against idiopathic pulmonary fibrosis and lung cancer. The current emphasis is primarily on TMPRSS2, matriptase, and hepsin, yet other TTSPs await validation. Compounds listed herein are predominantly peptidomimetic inhibitors, some with covalent reversible mechanisms of action and high potencies. Their selectivity profile, however, are often only partially characterized. Preclinical data are promising and warrant further advancement in the above diseases.
Collapse
Affiliation(s)
- Alexandre Murza
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Sébastien P Dion
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Antoine Désilets
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Richard Leduc
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| |
Collapse
|
18
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
19
|
Pászti-Gere E, Szombath G, Gütschow M, Steinmetzer T, Székács A. 3-Amidinophenylalanine-derived matriptase inhibitors can modulate hepcidin production in vitro. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:511-520. [PMID: 31659405 PMCID: PMC7280348 DOI: 10.1007/s00210-019-01743-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
Matriptase-2 (MT-2) is a type II transmembrane serine protease and predominantly attached to the surface of hepatocytes. MT-2 decreases the production of hepcidin, a key regulator of iron homeostasis. In this study, the effects of four 3-amidinophenylalanine-derived combined matriptase-1/matriptase-2 (MT-1/2) inhibitors (MI-432, MI-441, MI-460, and MI-461) on hepcidin production were investigated in hepatocyte mono- and hepatocyte-Kupffer cell co-cultures. In MI-461-treated cell cultures, the extracellular hydrogen peroxide contents and the interleukin-6 and -8 (IL-6 and IL-8) levels were determined and compared to controls. Hepcidin overproduction was observed in hepatocytes upon treatment with MI-432, MI-441 and MI-461 at 50 μM. In contrast, extracellular hydrogen peroxide levels were not elevated significantly after matriptase inhibition with MI-461. Furthermore, MI-461 did not induce increases in IL-6 and IL-8 levels in these hepatic models. A model of the binding mode of inhibitor MI-461 in complex with MT-2 revealed numerous polar contacts contributing to the nanomolar potency of this compound. Based on the in vitro data on hepcidin regulation, treatment with MI-461 might be valuable in pathological states of iron metabolism without causing excessive oxidative stress.
Collapse
Affiliation(s)
- Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Szombath
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| |
Collapse
|
20
|
Sasaki M, Miyahisa I, Itono S, Yashiro H, Hiyoshi H, Tsuchimori K, Hamagami K, Moritoh Y, Watanabe M, Tohyama K, Sasaki M, Sakamoto J, Kawamoto T. Discovery and characterization of a small-molecule enteropeptidase inhibitor, SCO-792. Pharmacol Res Perspect 2019; 7:e00517. [PMID: 31508234 PMCID: PMC6726858 DOI: 10.1002/prp2.517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Enteropeptidase, localized into the duodenum brush border, is a key enzyme catalyzing the conversion of pancreatic trypsinogen proenzyme to active trypsin, thereby regulating protein digestion and energy homeostasis. We report the discovery and pharmacological profiles of SCO-792, a novel inhibitor of enteropeptidase. A screen employing fluorescence resonance energy transfer was performed to identify enteropeptidase inhibitors. Inhibitory profiles were determined by in vitro assays. To evaluate the in vivo inhibitory effect on protein digestion, an oral protein challenge test was performed in rats. Our screen identified a series of enteropeptidase inhibitors, and compound optimization resulted in identification of SCO-792, which inhibited enteropeptidase activity in vitro, with IC 50 values of 4.6 and 5.4 nmol/L in rats and humans, respectively. In vitro inhibition of enteropeptidase by SCO-792 was potentiated by increased incubation time, and the calculated Kinact/KI was 82 000/mol/L s. An in vitro dissociation assay showed that SCO-792 had a dissociation half-life of almost 14 hour, with a calculated koff rate of 0.047/hour, which suggested that SCO-792 is a reversible enteropeptidase inhibitor. In normal rats, a ≤4 hour prior oral dose of SCO-792 effectively inhibited plasma elevation of branched-chain amino acids in an oral protein challenge test, which indicated that SCO-792 effectively inhibited protein digestion in vivo. In conclusion, our new screen system identified SCO-792 as a potent and reversible inhibitor against enteropeptidase. SCO-792 slowly dissociated from enteropeptidase in vitro and inhibited protein digestion in vivo. Further study using SCO-792 could reveal the effects of inhibiting enteropeptidase on biological actions.
Collapse
Affiliation(s)
- Masako Sasaki
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | - Ikuo Miyahisa
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | - Sachiko Itono
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
- Present address:
Axcelead Drug Discovery Partners, Inc.FujisawaKanagawaJapan
| | - Hiroaki Yashiro
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | - Hideyuki Hiyoshi
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | - Kazue Tsuchimori
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | | | | | | | - Kimio Tohyama
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | - Minoru Sasaki
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
| | - Jun‐ichi Sakamoto
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
- Present address:
Axcelead Drug Discovery Partners, Inc.FujisawaKanagawaJapan
| | - Tomohiro Kawamoto
- ResearchTakeda Pharmaceutical Company LimitedFujisawaKanagawaJapan
- Present address:
Axcelead Drug Discovery Partners, Inc.FujisawaKanagawaJapan
| |
Collapse
|
21
|
Löw K, Hardes K, Fedeli C, Seidah NG, Constam DB, Pasquato A, Steinmetzer T, Roulin A, Kunz S. A novel cell-based sensor detecting the activity of individual basic proprotein convertases. FEBS J 2019; 286:4597-4620. [PMID: 31276291 DOI: 10.1111/febs.14979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The basic proprotein convertases (PCs) furin, PC1/3, PC2, PC5/6, PACE4, PC4, and PC7 are promising drug targets for human diseases. However, developing selective inhibitors remains challenging due to overlapping substrate recognition motifs and limited structural information. Classical drug screening approaches for basic PC inhibitors involve homogeneous biochemical assays using soluble recombinant enzymes combined with fluorogenic substrate peptides that may not accurately recapitulate the complex cellular context of the basic PC-substrate interaction. Herein we report basic PC sensor (BPCS), a novel cell-based molecular sensor that allows rapid screening of candidate inhibitors and their selectivity toward individual basic PCs within mammalian cells. BPCS consists of Gaussia luciferase linked to a sortilin-1 membrane anchor via a cleavage motif that allows efficient release of luciferase specifically if individual basic PCs are provided in the same membrane. Screening of selected candidate peptidomimetic inhibitors revealed that BPCS can readily distinguish between general and selective PC inhibitors in a high-throughput screening format. The robust and cost-effective assay format of BPCS makes it suitable to identify novel specific small-molecule inhibitors against basic PCs for therapeutic application. Its cell-based nature will allow screening for drug targets in addition to the catalytically active mature enzyme, including maturation, transport, and cellular factors that modulate the enzyme's activity. This broadened 'target range' will enhance the likelihood to identify novel small-molecule compounds that inhibit basic PCs in a direct or indirect manner and represents a conceptual advantage.
Collapse
Affiliation(s)
- Karin Löw
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Kornelia Hardes
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Chiara Fedeli
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, (Affiliated to the University of Montreal), Canada
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Switzerland
| | - Antonella Pasquato
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| |
Collapse
|
22
|
Damalanka VC, Wildman SA, Janetka JW. Piperidine carbamate peptidomimetic inhibitors of the serine proteases HGFA, matriptase and hepsin. MEDCHEMCOMM 2019; 10:1646-1655. [PMID: 31803403 DOI: 10.1039/c9md00234k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Matriptase and hepsin are type II transmembrane serine proteases (TTSPs). Along with related S1 trypsin like serine protease HGFA (hepatocyte growth factor activator), their unregulated proteolytic activity has been associated with cancer including tumor progression and metastasis. These three proteases have two substrates in common, hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), the ligands for MET and recepteur d'origine nantais (RON) receptor tyrosine kinases. Mechanism-based tetrapeptide and benzamidine inhibitors of these proteases have been shown to block HGF/MET and MSP/RON cancer cell signaling. Herein, we have rationally designed a new class of peptidomimetic hybrid small molecule piperidine carbamate dipeptide inhibitors comparable in potency to much larger tetrapeptides. We have identified multiple compounds which have potent activity against matriptase and hepsin and with excellent selectivity over the off-target serine proteases factor Xa and thrombin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| | - Scott A Wildman
- University of Wisconsin Carbone Cancer Center , Drug Development Core , University of Wisconsin-Madison , Madison , Wisconsin , USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| |
Collapse
|
23
|
Recent progress on inhibitors of the type II transmembrane serine proteases, hepsin, matriptase and matriptase-2. Future Med Chem 2019; 11:743-769. [DOI: 10.4155/fmc-2018-0446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the type II transmembrane serine proteases (TTSP) family play a vital role in cell growth and development but many are also implicated in disease. Two of the well-studied TTSPs, matriptase and hepsin proteolytically process multiple protein substrates such as the inactive single-chain zymogens pro-HGF and pro-macrophage stimulating protein into the active heterodimeric forms, HGF and macrophage stimulating protein. These two proteases also have many other substrates which are associated with cancer and tumor progression. Another related TTSP, matriptase-2 is expressed in the liver and functions by regulating iron homoeostasis through the cleavage of hemojuvelin and thus is implicated in iron overload diseases. In the present review, we will discuss inhibitor design strategy and Structure activity relationships of TTSP inhibitors, which have been reported in the literature.
Collapse
|
24
|
Wang D, Yang Y, Jiang L, Wang Y, Li J, Andreasen PA, Chen Z, Huang M, Xu P. Suppression of Tumor Growth and Metastases by Targeted Intervention in Urokinase Activity with Cyclic Peptides. J Med Chem 2019; 62:2172-2183. [PMID: 30707839 DOI: 10.1021/acs.jmedchem.8b01908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urokinase-type plasminogen activator (uPA) is a diagnostic marker for breast and prostate cancers recommended by American Society for Clinical Oncology and German Breast Cancer Society. Inhibition of uPA was proposed as an efficient strategy for cancer treatments. In this study, we report peptide-based uPA inhibitors with high potency and specificity comparable to monoclonal antibodies. We revealed the binding and inhibitory mechanisms by combining crystallography, molecular dynamic simulation, and other biophysical and biochemical approaches. Besides, we showed that our peptides efficiently inhibited the invasion of cancer cells via intervening with the processes of the degradation of extracellular matrices. Furthermore, our peptides significantly suppressed the tumor growth and the cancer metastases in tumor-bearing mice. This study demonstrates that these uPA peptides are highly potent anticancer agents and reveals the mechanistic insights of these uPA inhibitors, which can be useful for developing other serine protease inhibitors.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , No.19 (A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Yongshuai Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , No.19 (A) Yuquan Road , Shijingshan District, Beijing 100049 , China.,College of Life Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Longguang Jiang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Wang
- College of Life Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Jinyu Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics , Aarhus University , Aarhus C 8000 , Denmark
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Peng Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China
| |
Collapse
|
25
|
Audran G, Bosco L, Brémond P, Jugniot N, Marque SRA, Massot P, Mellet P, Moussounda Moussounda Koumba T, Parzy E, Rivot A, Thiaudière E, Voisin P, Wedl C, Yamasaki T. Enzymatic triggering of C–ON bond homolysis of alkoxyamines. Org Chem Front 2019. [DOI: 10.1039/c9qo00899c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alkoxyamine 1 is selectively hydrolyzed by chymotrypsin and substilisin A into alkoxyamine 2H+ for which C–ON bond homolysis occurred with a 4-fold increase in rate constants compared to 1 while non-specific proteases had no effect.
Collapse
|
26
|
Wang ZC, Shen FQ, Yang MR, You LX, Chen LZ, Zhu HL, Lu YD, Kong FL, Wang MH. Dihydropyrazothiazole derivatives as potential MMP-2/MMP-8 inhibitors for cancer therapy. Bioorg Med Chem Lett 2018; 28:3816-3821. [DOI: 10.1016/j.bmcl.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 01/24/2023]
|
27
|
Xu P, Huang M. Small Peptides as Modulators of Serine Proteases. Curr Med Chem 2018; 27:3686-3705. [PMID: 30332941 DOI: 10.2174/0929867325666181016163630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Serine proteases play critical roles in many physiological and pathological processes, and are proven diagnostic and therapeutic targets in a number of clinical indications. Suppression of the aberrant proteolytic activities of these proteases has been clinically used for the treatments of relevant diseases. Polypeptides with 10-20 residues are of great interests as medicinal modulators of serine proteases, because these peptides demonstrate the characteristics of both small molecule drugs and macromolecular drugs. In this review, we summarized the recent development of peptide-based inhibitors against serine proteases with potent inhibitory and high specificity comparable to monoclonal antibodies. In addition, we also discussed the strategies of enhancing plasma half-life and bioavailability of peptides in vivo, which is the main hurdle that limits the clinical translation of peptide-based drugs. This review advocates new avenue for the development of effective serine protease inhibitors and highlights the prospect of the medicinal use of these inhibitors.
Collapse
Affiliation(s)
- Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
28
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. The Antiviral Potential of Host Protease Inhibitors. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122247 DOI: 10.1007/978-3-319-75474-1_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influenza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infection by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable targets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher probability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
29
|
Shin WJ, Seong BL. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Expert Opin Drug Discov 2017; 12:1139-1152. [DOI: 10.1080/17460441.2017.1372417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
30
|
Murray AS, Varela FA, List K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol Chem 2017; 397:815-26. [PMID: 27078673 DOI: 10.1515/hsz-2016-0131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor microenvironment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens.
Collapse
|
31
|
Wilkinson DJ, Wang H, Habgood A, Lamb HK, Thompson P, Hawkins AR, Désilets A, Leduc R, Steinmetzer T, Hammami M, Lee MS, Craik CS, Watson S, Lin H, Milner JM, Rowan AD. Matriptase Induction of Metalloproteinase-Dependent Aggrecanolysis In Vitro and In Vivo: Promotion of Osteoarthritic Cartilage Damage by Multiple Mechanisms. Arthritis Rheumatol 2017; 69:1601-1611. [PMID: 28464560 PMCID: PMC5599990 DOI: 10.1002/art.40133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/18/2017] [Indexed: 01/23/2023]
Abstract
Objective To assess the ability of matriptase, a type II transmembrane serine proteinase, to promote aggrecan loss from the cartilage of patients with osteoarthritis (OA) and to determine whether its inhibition can prevent aggrecan loss and cartilage damage in experimental OA. Methods Aggrecan release from human OA cartilage explants and human stem cell–derived cartilage discs was evaluated, and cartilage‐conditioned media were used for Western blotting. Gene expression was analyzed by real‐time polymerase chain reaction. Murine OA was induced by surgical destabilization of the medial meniscus, and matriptase inhibitors were administered via osmotic minipump or intraarticular injection. Cartilage damage was scored histologically and aggrecan cleavage was visualized immunohistochemically using specific neoepitope antibodies. Results The addition of soluble recombinant matriptase promoted a time‐dependent release of aggrecan (and collagen) from OA cartilage, which was sensitive to metalloproteinase inhibition and protease‐activated receptor 2 antagonism. Although engineered human (normal) cartilage discs failed to release aggrecan following matriptase addition, both matrix metalloproteinase– and aggrecanase‐mediated cleavages of aggrecan were detected in human OA cartilage. Additionally, while matriptase did not directly degrade aggrecan, it promoted the accumulation of low‐density lipoprotein receptor–related protein 1 (LRP‐1) in conditioned media of the OA cartilage explants. Matriptase inhibition via neutralizing antibody or small molecule inhibitor significantly reduced cartilage damage scores in murine OA, which was associated with reduced generation of metalloproteinase‐mediated aggrecan cleavage. Conclusion Matriptase potently induces the release of metalloproteinase‐generated aggrecan fragments as well as soluble LRP‐1 from OA cartilage. Therapeutic targeting of matriptase proteolytic activity reduces metalloproteinase activity, further suggesting that this serine proteinase may have potential as a disease‐modifying therapy in OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Leduc
- Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | - Hua Lin
- Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
32
|
Friis S, Tadeo D, Le-Gall SM, Jürgensen HJ, Sales KU, Camerer E, Bugge TH. Matriptase zymogen supports epithelial development, homeostasis and regeneration. BMC Biol 2017; 15:46. [PMID: 28571576 PMCID: PMC5452369 DOI: 10.1186/s12915-017-0384-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its zymogen displays measurable enzymatic activity. Results Here, we used gain and loss of function genetics to investigate the possible biological functions of zymogen matriptase. Unexpectedly, transgenic mice mis-expressing a zymogen-locked version of matriptase in the epidermis displayed pathologies previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible with these observations, wildtype and zymogen-locked matriptase were equipotent activators of PAR-2 inflammatory signaling. Conclusion The study demonstrates that the matriptase zymogen is biologically active and is capable of executing developmental and homeostatic functions of the protease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stine Friis
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Section for Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Georgetown University School of Medicine, Washington, DC, 20057, USA
| | - Sylvain M Le-Gall
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Henrik Jessen Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA
| | - Katiuchia Uzzun Sales
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Department of Cell and Molecular Biology, Ribierão Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Häußler D, Schulz-Fincke AC, Beckmann AM, Keils A, Gilberg E, Mangold M, Bajorath J, Stirnberg M, Steinmetzer T, Gütschow M. A Fluorescent-Labeled Phosphono Bisbenzguanidine As an Activity-Based Probe for Matriptase. Chemistry 2017; 23:5205-5209. [DOI: 10.1002/chem.201700319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | | | - Anna-Madeleine Beckmann
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Aline Keils
- Institute of Pharmaceutical Chemistry; Philipps University of Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstr. 2 53113 Bonn Germany
| | - Martin Mangold
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstr. 2 53113 Bonn Germany
| | - Marit Stirnberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry; Philipps University of Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
34
|
Beckmann AM, Gilberg E, Gattner S, Huang TL, Vanden Eynde JJ, Mayence A, Bajorath J, Stirnberg M, Gütschow M. Evaluation of bisbenzamidines as inhibitors for matriptase-2. Bioorg Med Chem Lett 2016; 26:3741-5. [DOI: 10.1016/j.bmcl.2016.05.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
|
35
|
Maiwald A, Hammami M, Wagner S, Heine A, Klebe G, Steinmetzer T. Changing the selectivity profile – from substrate analog inhibitors of thrombin and factor Xa to potent matriptase inhibitors. J Enzyme Inhib Med Chem 2016; 31:89-97. [DOI: 10.3109/14756366.2016.1172574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexander Maiwald
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Maya Hammami
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Sebastian Wagner
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Andreas Heine
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany
| |
Collapse
|
36
|
Han Z, Harris PKW, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem 2016; 11:585-99. [PMID: 26889658 DOI: 10.1002/cmdc.201500600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Peter K W Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Ben Y Owusu
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - Scott A Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Lidija Klampfer
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Furtmann N, Häußler D, Scheidt T, Stirnberg M, Steinmetzer T, Bajorath J, Gütschow M. Limiting the Number of Potential Binding Modes by Introducing Symmetry into Ligands: Structure-Based Design of Inhibitors for Trypsin-Like Serine Proteases. Chemistry 2015; 22:610-25. [DOI: 10.1002/chem.201503534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/18/2022]
|
38
|
Sulfonamide derivatives containing dihydropyrazole moieties selectively and potently inhibit MMP-2/MMP-9: Design, synthesis, inhibitory activity and 3D-QSAR analysis. Bioorg Med Chem Lett 2015; 25:4664-71. [DOI: 10.1016/j.bmcl.2015.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022]
|
39
|
Häußler D, Scheidt T, Stirnberg M, Steinmetzer T, Gütschow M. A Bisbenzamidine Phosphonate as a Janus-faced Inhibitor for Trypsin-like Serine Proteases. ChemMedChem 2015; 10:1641-6. [PMID: 26306030 DOI: 10.1002/cmdc.201500319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 12/19/2022]
Abstract
A hybrid approach was applied for the design of an inhibitor of trypsin-like serine proteases. Compound 16 [(R,R)- and (R,S)-diphenyl (4-(1-(4-amidinobenzylamino)-1-oxo-3-phenylpropan-2-ylcarbamoyl)phenylamino)(4-amidinophenyl)methylphosphonate hydrochloride], prepared in a convergent synthetic procedure, possesses a phosphonate warhead prone to react with the active site serine residue in a covalent, irreversible manner. Each of the two benzamidine moieties of 16 can potentially be accommodated in the S1 pocket of the target enzyme, but only the benzamidine close to the phosphonate group would then promote an irreversible interaction. The Janus-faced inhibitor 16 was evaluated against several serine proteases and caused a pronounced inactivation of human thrombin with a second-order rate constant (kinac /Ki) of 59 500 M(-1) s(-1). With human matriptase, 16 showed preference for a reversible mode of inhibition (IC50 =2.6 μM) as indicated by linear progress curves and enzyme reactivation.
Collapse
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Tamara Scheidt
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Marit Stirnberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg (Germany)
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).
| |
Collapse
|
40
|
Keller M, Tränkle C, She X, Pegoli A, Bernhardt G, Buschauer A, Read RW. M2 Subtype preferring dibenzodiazepinone-type muscarinic receptor ligands: Effect of chemical homo-dimerization on orthosteric (and allosteric?) binding. Bioorg Med Chem 2015; 23:3970-90. [PMID: 25650309 DOI: 10.1016/j.bmc.2015.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
41
|
Pászti-Gere E, Barna RF, Ujhelyi G, Steinmetzer T. Interaction exists between matriptase inhibitors and intestinal epithelial cells. J Enzyme Inhib Med Chem 2015; 31:736-41. [PMID: 26118419 DOI: 10.3109/14756366.2015.1060483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro.
Collapse
Affiliation(s)
- Erzsebet Pászti-Gere
- a Faculty of Veterinary Science, Department of Pharmacology and Toxicology , Szent István University , Budapest , Hungary
| | - Réka Fanni Barna
- a Faculty of Veterinary Science, Department of Pharmacology and Toxicology , Szent István University , Budapest , Hungary
| | - Gabriella Ujhelyi
- b Faculty of Pharmacy , Semmelweis University , Budapest , Hungary , and
| | - Torsten Steinmetzer
- c Institute of Pharmaceutical Chemistry, Philipps University , Marburg , Germany
| |
Collapse
|
42
|
Häußler D, Gütschow M. Synthesis of a Fluorescent-Labeled Bisbenzamidine Containing the Central (6,7-Dimethoxy-4-coumaryl)Alanine Building Block. HETEROATOM CHEMISTRY 2015. [DOI: 10.1002/hc.21269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; D-53121 Bonn Germany
| | - Michael Gütschow
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; D-53121 Bonn Germany
| |
Collapse
|
43
|
Franco FM, Jones DE, Harris PK, Han Z, Wildman SA, Jarvis CM, Janetka JW. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorg Med Chem 2015; 23:2328-43. [DOI: 10.1016/j.bmc.2015.03.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
|
44
|
Goswami R, Wohlfahrt G, Mukherjee S, Ghadiyaram C, Nagaraj J, Satyam LK, Subbarao K, Gopinath S, Krishnamurthy NR, Subramanya HS, Ramachandra M. Discovery of O-(3-carbamimidoylphenyl)-l-serine amides as matriptase inhibitors using a fragment-linking approach. Bioorg Med Chem Lett 2015; 25:616-20. [DOI: 10.1016/j.bmcl.2014.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/27/2022]
|
45
|
Han Z, Harris PKW, Jones DE, Chugani R, Kim T, Agarwal M, Shen W, Wildman SA, Janetka JW. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer. ACS Med Chem Lett 2014; 5:1219-24. [PMID: 25408834 DOI: 10.1021/ml500254r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with K is = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Peter K. W. Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Darin E. Jones
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Ryan Chugani
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Manjula Agarwal
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Wei Shen
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Scott A. Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
46
|
Schaab C, Kling RC, Einsiedel J, Hübner H, Clark T, Seebach D, Gmeiner P. Structure-based evolution of subtype-selective neurotensin receptor ligands. ChemistryOpen 2014; 3:206-18. [PMID: 25478316 PMCID: PMC4234217 DOI: 10.1002/open.201402031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 11/08/2022] Open
Abstract
Subtype-selective agonists of the neurotensin receptor NTS2 represent a promising option for the treatment of neuropathic pain, as NTS2 is involved in the mediation of μ-opioid-independent anti-nociceptive effects. Based on the crystal structure of the subtype NTS1 and previous structure-activity relationships (SARs) indicating a potential role for the sub-pocket around Tyr11 of NT(8-13) in subtype-specific ligand recognition, we have developed new NTS2-selective ligands. Starting from NT(8-13), we replaced the tyrosine unit by β(2)-amino acids (type 1), by heterocyclic tyrosine bioisosteres (type 2) and peptoid analogues (type 3). We were able to evolve an asymmetric synthesis of a 5-substituted azaindolylalanine and its application as a bioisostere of tyrosine capable of enhancing NTS2 selectivity. The S-configured test compound 2 a, [(S)-3-(pyrazolo[1,5-a]pyridine-5-yl)-propionyl(11)]NT(8-13), exhibits substantial NTS2 affinity (4.8 nm) and has a nearly 30-fold NTS2 selectivity over NTS1. The (R)-epimer 2 b showed lower NTS2 affinity but more than 600-fold selectivity over NTS1.
Collapse
Affiliation(s)
- Carolin Schaab
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| | - Ralf Christian Kling
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail: ; Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich Alexander University Nägelsbachstraße 25, 91052 Erlangen (Germany)
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| | - Tim Clark
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich Alexander University Nägelsbachstraße 25, 91052 Erlangen (Germany)
| | - Dieter Seebach
- Departement of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| |
Collapse
|
47
|
Qiu HY, Wang ZC, Wang PF, Yan XQ, Wang XM, Yang YH, Zhu HL. Design, synthesis, evaluation and 3D-QSAR analysis of benzosulfonamide benzenesulfonates as potent and selective inhibitors of MMP-2. RSC Adv 2014. [DOI: 10.1039/c4ra06438k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Goswami R, Mukherjee S, Ghadiyaram C, Wohlfahrt G, Sistla RK, Nagaraj J, Satyam LK, Subbarao K, Palakurthy RK, Gopinath S, Krishnamurthy NR, Ikonen T, Moilanen A, Subramanya HS, Kallio P, Ramachandra M. Structure-guided discovery of 1,3,5 tri-substituted benzenes as potent and selective matriptase inhibitors exhibiting in vivo antitumor efficacy. Bioorg Med Chem 2014; 22:3187-203. [PMID: 24794746 DOI: 10.1016/j.bmc.2014.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 11/25/2022]
Abstract
Matriptase is a serine protease implicated in cancer invasion and metastasis. Expression of matriptase is frequently dysregulated in human cancers and matriptase has been reported to activate latent growth factors such as hepatocyte growth factor/scatter factor, and proteases such as urokinase plasminogen activator suggesting that matriptase inhibitors could have therapeutic potential in treatment of cancer. Here we report a structure-based approach which led to the discovery of selective and potent matriptase inhibitors with benzene as central core having 1,3,5 tri-substitution pattern. X-ray crystallography of one of the potent analogs in complex with matriptase revealed strong hydrogen bonding and salt-bridge interactions in the S1 pocket, as well as strong CH-π contacts between the P2/P4 cyclohexyl and Trp215 side-chain. An additional interaction of the pendant amine at cyclohexyl with Gln175 side-chain results in substantial improvement in matriptase inhibition and selectivity against other related serine proteases. Compounds 15 and 26 showed tumor growth inhibition in a subcutaneous DU-145 prostate cancer mouse model. These compounds could be useful as tools to further explore the biology of matriptase as a drug target.
Collapse
Affiliation(s)
- Rajeev Goswami
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Subhendu Mukherjee
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Chakshusmathi Ghadiyaram
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Gerd Wohlfahrt
- Orion Corporation, Orionintie 1, FIN-02101 Espoo, Finland
| | - Ramesh K Sistla
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Jwala Nagaraj
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Leena K Satyam
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Krishnaprasad Subbarao
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Rajendra K Palakurthy
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Sreevalsam Gopinath
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Narasimha R Krishnamurthy
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Tarja Ikonen
- Orion Corporation, Orionintie 1, FIN-02101 Espoo, Finland
| | - Anu Moilanen
- Orion Corporation, Tengströminkatu 8, FIN-20101 Turku, Finland
| | - Hosahalli S Subramanya
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India
| | - Pekka Kallio
- Orion Corporation, Tengströminkatu 8, FIN-20101 Turku, Finland
| | - Murali Ramachandra
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic City Phase II, Bangalore 560 100, India.
| |
Collapse
|
49
|
Gray K, Elghadban S, Thongyoo P, Owen KA, Szabo R, Bugge TH, Tate EW, Leatherbarrow RJ, Ellis V. Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II. Thromb Haemost 2014; 112:402-11. [PMID: 24696092 DOI: 10.1160/th13-11-0895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/10/2014] [Indexed: 12/14/2022]
Abstract
Matriptase is a type-II transmembrane serine protease involved in epithelial homeostasis in both health and disease, and is implicated in the development and progression of a variety of cancers. Matriptase mediates its biological effects both via as yet undefined substrates and pathways, and also by proteolytic cleavage of a variety of well-defined protein substrates, several of which it shares with the closely-related protease hepsin. Development of targeted therapeutic strategies will require discrimination between these proteases. Here we have investigated cyclic microproteins of the squash Momordica cochinchinensis trypsin-inhibitor family (generated by total chemical synthesis) and found MCoTI-II to be a high-affinity (Ki 9 nM) and highly selective (> 1,000-fold) inhibitor of matriptase. MCoTI-II efficiently inhibited the proteolytic activation of pro-hepatocyte growth factor (HGF) by matriptase but not by hepsin, in both purified and cell-based systems, and inhibited HGF-dependent cell scattering. MCoTI-II also selectively inhibited the invasion of matriptase-expressing prostate cancer cells. Using a model of epithelial cell tight junction assembly, we also found that MCoTI-II could effectively inhibit the re-establishment of tight junctions and epithelial barrier function in MDCK-I cells after disruption, consistent with the role of matriptase in regulating epithelial integrity. Surprisingly, MCoTI-II was unable to inhibit matriptase-dependent proteolytic activation of prostasin, a GPI-anchored serine protease also implicated in epithelial homeostasis. These observations suggest that the unusually high selectivity afforded by MCoTI-II and its biological effectiveness might represent a useful starting point for the development of therapeutic inhibitors, and further highlight the role of matriptase in epithelial maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - V Ellis
- Vincent Ellis, PhD, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK, Tel.: +44 1603 592570, E-mail:
| |
Collapse
|
50
|
Chu LL, Xu Y, Yang JR, Hu YA, Chang HH, Lai HY, Tseng CC, Wang HY, Johnson MD, Wang JK, Lin CY. Human cancer cells retain modest levels of enzymatically active matriptase only in extracellular milieu following induction of zymogen activation. PLoS One 2014; 9:e92244. [PMID: 24663123 PMCID: PMC3963879 DOI: 10.1371/journal.pone.0092244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
The type 2 transmembrane serine protease matriptase is broadly expressed in human carcinomas and hematological cancers. The proteolytic activity of matriptase is a potential target of drugs and imaging probes. We assessed the fate of active matriptase following the induction of matriptase zymogen activation. Exposing eight human carcinoma cells to pH 6.0 buffer induced robust matriptase zymogen activation followed by rapid inhibition of the nascent active matriptase by hepatocyte growth factor activator inhibitor (HAI)-1. Consequently, no enzymatically active matriptase was detected in these cells. Some active matriptase is, however, rapidly shed to the extracellular milieu by these carcinoma cells. The lack of cell-associated active matriptase and the shedding of active matriptase were also observed in two hematological cancer lines. Matriptase shedding is correlated closely with the induction of matriptase activation, suggesting that matriptase activation and shedding are kinetically coupled. The coupling allows a proportion of active matriptase to survive HAI-1 inhibition by rapid shedding from cell surface. Our study suggests that cellular free, active matriptase is scarce and might not be an effective target for in vivo imaging and drug development.
Collapse
Affiliation(s)
- Li-Ling Chu
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yuan Xu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jie-Ru Yang
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-An Hu
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsiang-Hua Chang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hong-Yu Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Biology, Carleton College, Northfield, Minnesota, United States of America
| | - Hue-Yu Wang
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail: (C-YL); (J-KW)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- * E-mail: (C-YL); (J-KW)
| |
Collapse
|