1
|
Wang Y, Kalyvas JT, Evans JD, Toronjo-Urquiza L, Horsley JR, Abell AD. Expanding the therapeutic window of gramicidin S towards a safe and effective systemic treatment of methicillin-resistant S. aureus infections. Eur J Med Chem 2025; 283:117128. [PMID: 39642693 DOI: 10.1016/j.ejmech.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The rise of multidrug-resistant bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA), necessitates the development of new antibacterial therapies. Antimicrobial peptides offer a promising alternative to conventional antibiotics due to their unique mechanisms of action. Gramicidin S exhibits potent bactericidal activity against S. aureus, however, high haemolytic toxicity currently limits its application to topical use. A new series of gramicidin S analogues is presented with rational modifications to the β-turn and β-strand regions, to reduce haemolytic and nephrotoxic effects, while preserving antibacterial potency. The minimum inhibitory concentration (MIC) for each analogue was determined against benchmark methicillin-sensitive S. aureus (MSSA) and MRSA clinical isolates, with toxicity characterised in vitro using human red blood cells and human embryonic kidney cells (HEK-293). Peptide 12 demonstrated a significant two-fold increase in antibacterial activity against both MSSA and MRSA (MIC: 2 μg/mL) compared to gramicidin S (MIC: 4 μg/mL), albeit with increased cytotoxicity. Similarly, peptide 15 showed exceptional efficacy (MIC: 3 μg/mL), but with reduced cytotoxicity, culminating in a two-fold improvement to the therapeutic index (TI) of gramicidin S. Peptides 14 (HC50: 50.48 ± 1.15 μg/mL, IC50: 38.09 μg/mL) and 16 (HC50: 84.09 ± 1.02 μg/mL, IC50: 12.60 μg/mL) also significantly reduced haemolytic toxicity and nephrotoxicity, compared to gramicidin S (HC50: 12.34 ± 0.27 μg/mL, IC50: 6.45 μg/mL). Detailed NMR, CD and computational modelling were used to provide critical insights into how molecular conformation influences both antibacterial potency and cytotoxicity. Collectively, these results expand the therapeutic window of gramicidin S by up to 12-fold, with negligible cytotoxicity observed at concentrations well beyond the acceptable safety threshold, which indicates the potential for safe systemic administration in the treatment of infection caused by resistant pathogens.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - John T Kalyvas
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jack D Evans
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Luis Toronjo-Urquiza
- Department of Bioprocess Engineering, School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - John R Horsley
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Andrew D Abell
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
2
|
Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci 2024; 333:103282. [PMID: 39276418 DOI: 10.1016/j.cis.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.
Collapse
Affiliation(s)
- Nitin Yadav
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| | - Virander S Chauhan
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| |
Collapse
|
3
|
Kalyvas JT, Wang Y, Toronjo-Urquiza L, Stachura DL, Yu J, Horsley JR, Abell AD. A New Gramicidin S Analogue with Potent Antibacterial Activity and Negligible Hemolytic Toxicity. J Med Chem 2024; 67:10774-10782. [PMID: 38900970 DOI: 10.1021/acs.jmedchem.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Antibiotic resistance is an urgent threat to global health, with the decreasing efficacy of conventional drugs underscoring the urgency for innovative therapeutic strategies. Antimicrobial peptides present as promising alternatives to conventional antibiotics. Gramicidin S is one such naturally occurring antimicrobial peptide that is effective against Staphylococcus aureus, with a minimum inhibitory concentration (MIC) of 4 μg/mL (3.6 μM). Despite this potent activity, its significant hemolytic toxicity restricts its clinical use to topical applications. Herein, we present rational modifications to the key β-strand and β-turn regions of gramicidin S to concurrently mitigate hemolytic effects, while maintaining potency. Critically, peptide 9 displayed negligible hemolytic toxicity, while possessing significant antibacterial potency against a panel of methicillin-sensitive and methicillin-resistant S. aureus clinical isolates (MIC of 8 μg/mL, 7.2 μM). Given the substantial antibacterial activity and near absence of cytotoxicity, 9 presents as a potential candidate for systemic administration in the treatment of S. aureus bacteremia/sepsis.
Collapse
Affiliation(s)
- John T Kalyvas
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yifei Wang
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Luis Toronjo-Urquiza
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Damian L Stachura
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxian Yu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - John R Horsley
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
4
|
Openy J, Amrahova G, Chang J, Noisier A, Hart P‘. Solid-Phase Peptide Modification via Deaminative Photochemical Csp 3 -Csp 3 Bond Formation Using Katritzky Salts. Chemistry 2022; 28:e202201121. [PMID: 35438838 PMCID: PMC9401037 DOI: 10.1002/chem.202201121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Introduction of unnatural amino acids can significantly improve the binding affinity and stability of peptides. Commercial availability of such amino acids is limited, and their synthesis is a long and tedious process. We here describe a method that allows the functionalization of peptides directly on solid-support by converting lysine residues to Katritzky salts, and subjecting them to a photochemical Giese reaction under mild reaction conditions. The method avoids the need for amino acid synthesis and instead offers a late-stage modification route for rapid peptide diversification. While numerous modification approaches at the lysine amine have been described, this work provides the first example of deaminative functionalization of peptides at lysine. The two-step protocol is compatible with various substrates, lysine analogues, resins, and all proteinogenic amino acids. Finally, by leveraging solid-phase modification, this protocol facilitates the functionalization of longer peptides as was demonstrated using biologically relevant peptides of up to 15 amino acids.
Collapse
Affiliation(s)
- Joseph Openy
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Gulshan Amrahova
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Jen‐Yao Chang
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Anaïs Noisier
- Medicinal ChemistryResearch and Early DevelopmentCardiovascular, Renal and Metabolism BioPharmaceutical R&D, AstraZenecaGothenburgSweden
| | - Peter ‘t Hart
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| |
Collapse
|
5
|
Nanjo T, Oshita T, Matsumoto A, Takemoto Y. Late‐Stage Installation of Dehydroamino Acid Motifs into Peptides Enabled by an
N
‐Chloropeptide Strategy. Chemistry 2022; 28:e202201120. [DOI: 10.1002/chem.202201120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| | - Takuma Oshita
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| | - Ayaka Matsumoto
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo-ku, Yoshida Kyoto 606-8501 Japan
| |
Collapse
|
6
|
Zhu J, Hu C, Zeng Z, Deng X, Zeng L, Xie S, Fang Y, Jin Y, Alezra V, Wan Y. Polymyxin B-inspired non-hemolytic tyrocidine A analogues with significantly enhanced activity against gram-negative bacteria: How cationicity impacts cell specificity and antibacterial mechanism. Eur J Med Chem 2021; 221:113488. [PMID: 33991963 DOI: 10.1016/j.ejmech.2021.113488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022]
Abstract
Naturally occurring cyclic antimicrobial peptides (AMPs) such as tyrocidine A (Tyrc A) and gramicidin S (GS) are appealing targets for the development of novel antibiotics. However, their therapeutic potentials are limited by undesired hemolytic activity and relatively poor activity against Gram-negative bacteria. Inspired by polycationic lipopeptide polymyxin B (PMB), the so called 'last-resort' antibiotic for the treatment of infections caused by multidrug-resistant Gram-negative bacteria, we synthesized and biologically evaluated a series of polycationic analogues derived from Tyrc A. We were able to obtain peptide 8 that possesses 5 positive charges exhibiting potent activities against both Gram-negative and Gram-positive bacteria along with totally diminished hemolytic activity. Intriguingly, antibacterial mechanism studies revealed that, rather than the 'pore forming' model that possessed by Tyrc A, peptide 8 likely diffuses membrane in a 'detergent-like' manner. Furthermore, when treating mice with peritonitis-sepsis, peptide 8 showed excellent antibacterial and anti-inflammatory activities in vivo.
Collapse
Affiliation(s)
- Jibao Zhu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Chengfei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Zizhen Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Xiaoyu Deng
- Minist Educ, Key Lab Modern Preparat TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Lingbing Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu, Nanchang, 330006, PR China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), UMR 8182, CNRS, Université Paris-Saclay, Bât 410, Facultédes Sciences D'Orsay, Orsay, 291405, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China; Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), UMR 8182, CNRS, Université Paris-Saclay, Bât 410, Facultédes Sciences D'Orsay, Orsay, 291405, France; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yuchai Road, Guilin, 541004, PR China.
| |
Collapse
|
7
|
Lameiras P, Nuzillard JM. Tailoring the nuclear Overhauser effect for the study of small and medium-sized molecules by solvent viscosity manipulation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 123:1-50. [PMID: 34078536 DOI: 10.1016/j.pnmrs.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The nuclear Overhauser effect (NOE) is a consequence of cross-relaxation between nuclear spins mediated by dipolar coupling. Its sensitivity to internuclear distances has made it an increasingly important tool for the determination of through-space atom proximity relationships within molecules of sizes ranging from the smallest systems to large biopolymers. With the support of sophisticated FT-NMR techniques, the NOE plays an essential role in structure elucidation, conformational and dynamic investigations in liquid-state NMR. The efficiency of magnetization transfer by the NOE depends on the molecular rotational correlation time, whose value depends on solution viscosity. The magnitude of the NOE between 1H nuclei varies from +50% when molecular tumbling is fast to -100% when it is slow, the latter case corresponding to the spin diffusion limit. In an intermediate tumbling regime, the NOE may be vanishingly small. Increasing the viscosity of the solution increases the motional correlation time, and as a result, otherwise unobservable NOEs may be revealed and brought close to the spin diffusion limit. The goal of this review is to report the resolution of structural problems that benefited from the manipulation of the negative NOE by means of viscous solvents, including examples of molecular structure determination, conformation elucidation and mixture analysis (the ViscY method).
Collapse
Affiliation(s)
- Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
8
|
Jia C, Xia X, Wang H, Bertrand M, Chen G, Zhang X. Preparation of phytosteryl ornithine ester hydrochloride and improvement of its bioaccessibility and cholesterol-reducing activity in vitro. Food Chem 2020; 331:127200. [PMID: 32554308 DOI: 10.1016/j.foodchem.2020.127200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022]
|
9
|
Guan Q, Chen K, Chen Q, Hu J, Cheng K, Hu C, Zhu J, Jin Y, Miclet E, Alezra V, Wan Y. Development of Therapeutic Gramicidin S Analogues Bearing Plastic β,γ-Diamino Acids. ChemMedChem 2020; 15:1089-1100. [PMID: 32233075 DOI: 10.1002/cmdc.202000097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Gramicidin S (GS), one of the most widely investigated antimicrobial peptides (AMPs), is known for its robust antimicrobial activity. However, it is restricted to topical application due to undesired hemolytic activity. With the aim of obtaining nontoxic GS analogues, we describe herein a molecular approach in which the native GS β-turn region is replaced by synthetic β,γ-diamino acids (β,γ-DiAAs). Four β,γ-DiAA diastereomers were employed to mimic the β-turn structure to afford GS analogues GS3-6, which exhibit diminished hemolytic activity. A comparative structural study demonstrates that the (βR,γS)-DiAA is the most-stable β-turn mimic. To further improve the therapeutic index (e. g., high antibacterial activity and low hemolytic activity) and to extend the molecular diversity, GS5 and GS6 were used as structural scaffolds to introduce additional hydrophobic or hydrophilic groups. We show that GS6K, GS6F and GS display comparable antibacterial activity, and GS6K and GS6F have significantly decreased toxicity. Moreover, antibacterial mechanism studies suggest that GS6K kills bacteria mainly through the disruption of the membrane.
Collapse
Affiliation(s)
- Qinkun Guan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang, 330004, P. R. China
| | - Kaisen Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu, Nanchang, 330006, P. R. China
| | - Qiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Donghu, Nanchang, 330006, P. R. China
| | - Jianguo Hu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang, 330004, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Normal University, 15 Yuchai Road, Guilin, 541004, P. R. China
| | - Chengfei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang, 330004, P. R. China
| | - Jibao Zhu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang, 330004, P. R. China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang, 330004, P. R. China
| | - Emeric Miclet
- Laboratoire des Biomolécules, Sorbonne Université, Université PSL, CNRS, 4 Place Jussieu, Paris, 75005, France
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), Université Paris-Sud, UMR 8182 CNRS, Université Paris-Saclay, Bât. 410, Faculté des Sciences d'Orsay, Orsay, 91405, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang, 330004, P. R. China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Normal University, 15 Yuchai Road, Guilin, 541004, P. R. China.,Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), Université Paris-Sud, UMR 8182 CNRS, Université Paris-Saclay, Bât. 410, Faculté des Sciences d'Orsay, Orsay, 91405, France
| |
Collapse
|
10
|
Joaquin D, Lee MA, Kastner DW, Singh J, Morrill ST, Damstedt G, Castle SL. Impact of Dehydroamino Acids on the Structure and Stability of Incipient 3 10-Helical Peptides. J Org Chem 2019; 85:1601-1613. [PMID: 31730750 DOI: 10.1021/acs.joc.9b02747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comparative study of the impact of small, medium-sized, and bulky α,β-dehydroamino acids (ΔAAs) on the structure and stability of Balaram's incipient 310-helical peptide (1) is reported. Replacement of the N-terminal Aib residue of 1 with a ΔAA afforded peptides 2a-c that maintained the 310-helical shape of 1. In contrast, installation of a ΔAA in place of Aib-3 yielded peptides 3a-c that preferred a β-sheet-like conformation. The impact of the ΔAA on peptide structure was independent of size, with small (ΔAla), medium-sized (Z-ΔAbu), and bulky (ΔVal) ΔAAs exerting similar effects. The proteolytic stabilities of 1 and its analogs were determined by incubation with Pronase. Z-ΔAbu and ΔVal increased the resistance of peptides to proteolysis when incorporated at the 3-position and had negligible impact on stability when placed at the 1-position, whereas ΔAla-containing peptides degraded rapidly regardless of position. Exposure of peptides 2a-c and 3a-c to the reactive thiol cysteamine revealed that ΔAla-containing peptides underwent conjugate addition at room temperature, while Z-ΔAbu- and ΔVal-containing peptides were inert even at elevated temperatures. These results suggest that both bulky and more accessible medium-sized ΔAAs should be valuable tools for bestowing rigidity and proteolytic stability on bioactive peptides.
Collapse
Affiliation(s)
- Daniel Joaquin
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Michael A Lee
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - David W Kastner
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Jatinder Singh
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Shardon T Morrill
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Gracie Damstedt
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
11
|
Guan Q, Huang S, Jin Y, Campagne R, Alezra V, Wan Y. Recent Advances in the Exploration of Therapeutic Analogues of Gramicidin S, an Old but Still Potent Antimicrobial Peptide. J Med Chem 2019; 62:7603-7617. [DOI: 10.1021/acs.jmedchem.9b00156] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qinkun Guan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
| | - Shuhui Huang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
- Jiangxi Maternal and Child Hospital, Nanchang 330006, P. R. China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
| | - Rémy Campagne
- Faculté des Sciences d’Orsay, Université Paris-Sud, Laboratoire de Méthodologie, Synthèse
et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS,
Université Paris-Saclay, Bât 410, 91405 Orsay, France
| | - Valérie Alezra
- Faculté des Sciences d’Orsay, Université Paris-Sud, Laboratoire de Méthodologie, Synthèse
et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS,
Université Paris-Saclay, Bât 410, 91405 Orsay, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
- Faculté des Sciences d’Orsay, Université Paris-Sud, Laboratoire de Méthodologie, Synthèse
et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS,
Université Paris-Saclay, Bât 410, 91405 Orsay, France
| |
Collapse
|
12
|
Babii O, Afonin S, Ishchenko AY, Schober T, Negelia AO, Tolstanova GM, Garmanchuk LV, Ostapchenko LI, Komarov IV, Ulrich AS. Structure–Activity Relationships of Photoswitchable Diarylethene-Based β-Hairpin Peptides as Membranolytic Antimicrobial and Anticancer Agents. J Med Chem 2018; 61:10793-10813. [DOI: 10.1021/acs.jmedchem.8b01428] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Aleksandr Yu. Ishchenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine
- Enamine Ltd., Vul. Chervonotkatska 78, 02066 Kyiv, Ukraine
| | - Tim Schober
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anatoliy O. Negelia
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Prosp. Hlushkova 2, 03022 Kyiv, Ukraine
| | - Ganna M. Tolstanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Prosp. Hlushkova 2, 03022 Kyiv, Ukraine
| | - Liudmyla V. Garmanchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Prosp. Hlushkova 2, 03022 Kyiv, Ukraine
| | - Liudmyla I. Ostapchenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Prosp. Hlushkova 2, 03022 Kyiv, Ukraine
| | - Igor V. Komarov
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine
- Enamine Ltd., Vul. Chervonotkatska 78, 02066 Kyiv, Ukraine
- Lumobiotics GmbH, Auerstraße 2, 76227 Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Singh G, Azmi S, Ghosh JK, Ampapathi RS, Pal S. Synthesis and Conformational Studies of Taa-Containingo-Nitrobenzenesulfonamide- (o-Nosyl-) Protected GS Analogs to Prove the Importance of 6RStereochemistry of Taa over 6S. ChemistrySelect 2018. [DOI: 10.1002/slct.201800003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gajendra Singh
- NMR Research Centre; Division of SAIF; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Sarfuddin Azmi
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Present Address: Research Centre; Prince Sultan Military Medical City, Riyadh, Kingdom of; Saudi Arabia
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Ravi Sankar Ampapathi
- NMR Research Centre; Division of SAIF; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Sudip Pal
- Medicinal & Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
- Department of Chemistry, School of Physical Sciences; Sikkim University (A Central University); Gangtok 737102 India
| |
Collapse
|
14
|
Priem C, Wuttke A, Berditsch M, Ulrich AS, Geyer A. Scaling the Amphiphilic Character and Antimicrobial Activity of Gramicidin S by Dihydroxylation or Ketal Formation. J Org Chem 2017; 82:12366-12376. [DOI: 10.1021/acs.joc.7b02177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph Priem
- Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - André Wuttke
- Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Marina Berditsch
- Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Armin Geyer
- Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
15
|
Shafiee B, Hadian L, Khosropour AR. An innovation for development of Erlenmeyer–Plöchl reaction and synthesis of AT-130 analogous: a new application of continuous-flow method. RSC Adv 2016. [DOI: 10.1039/c6ra00301j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first micro-flow Erlenmeyer–Plöchl azlactone reaction and synthesis of N-benzoylglycine carbamide were established.
Collapse
Affiliation(s)
| | - Laleh Hadian
- Department of Chemistry
- University of Isfahan
- Isfahan
- Iran
| | | |
Collapse
|
16
|
Pal S, Ghosh U, Ampapathi RS, Chakraborty TK. Recent Studies on Gramicidin S Analog Structure and Antimicrobial Activity. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/7081_2015_188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Li Z, Pan Y, Zhong W, Zhu Y, Zhao Y, Li L, Liu W, Zhou H, Yang C. Synthesis and evaluation of N-acyl-substituted 1,2-benzisothiazol-3-one derivatives as caspase-3 inhibitors. Bioorg Med Chem 2015; 22:6735-45. [PMID: 25468037 DOI: 10.1016/j.bmc.2014.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
A small molecule library of N-acyl-substituted 1,2-benzisothiazol-3-one derivatives has been synthesized and evaluated as inhibitors of caspase-3 and -7, in which some of them showed nanomolar potency against caspase-3 and -7 in vitro. Meanwhile, in 10 lM concentration, both compounds 24 and 25 showed significant protection against apoptosis in camptothecin-induced Jurkat T cells system. The docking studies predicted the interactions and binding modes of the synthesized inhibitors in the caspase-3 active site.
Collapse
|
18
|
Jiang J, Ma Z, Castle SL. Bulky α,β-dehydroamino acids: their occurrence in nature, synthesis, and applications. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Salami-Ranjbaran E, Khosropour AR, Mohammadpoor-Baltork I. A domino approach for the synthesis of naphtho[2,1-b]furan-2(1H)-ones from azlactones. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2. Antimicrob Agents Chemother 2014; 58:6896-903. [PMID: 25199778 DOI: 10.1128/aac.03628-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We successfully produced two human β-defensins (hBD-1 and hBD-2) in bacteria as functional peptides and tested their antibacterial activities against Salmonella enterica serovar Typhi, Escherichia coli, and Staphylococcus aureus employing both spectroscopic and viable CFU count methods. Purified peptides showed approximately 50% inhibition of the bacterial population when used individually and up to 90% when used in combination. The 50% lethal doses (LD50) of hBD-1 against S. Typhi, E. coli, and S. aureus were 0.36, 0.40, and 0.69 μg/μl, respectively, while those for hBD-2 against the same bacteria were 0.38, 0.36, and 0.66 μg/μl, respectively. Moreover, we observed that bacterium-derived antimicrobial peptides were also effective in increasing survival time and decreasing bacterial loads in the peritoneal fluid, liver, and spleen of a mouse intraperitoneally infected with S. Typhi. The 1:1 hBD-1/hBD-2 combination showed maximum effectiveness in challenging the Salmonella infection in vitro and in vivo. We also observed less tissue damage and sepsis formation in the livers of infected mice after treatment with hBD-1 and hBD-2 peptides individually or in combination. Based on these findings, we conclude that bacterium-derived recombinant β-defensins (hBD-1 and hBD-2) are promising antimicrobial peptide (AMP)-based substances for the development of new therapeutics against typhoid fever.
Collapse
|
21
|
Wu D, Zhu J, Sheng C, Wang W, Li J. Synthesis of γ-Oxo-α,β-dehydro-α-amino Acids fromN-tert-Butyloxycarbonyl-α-Imino Esters and Carbonylmethyl 2-Pyridinylsulfones via an Mannich-Elimination Cascade. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Malek K, Królikowska A, Bukowska J. pH and Substrate Effect on Adsorption of Peptides Containing Z and E Dehydrophenylalanine. Surface-Enhanced Raman Spectroscopy Studies on Ag Nanocolloids and Electrodes. J Phys Chem B 2014; 118:4025-36. [DOI: 10.1021/jp500650p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamilla Malek
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Agata Królikowska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jolanta Bukowska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Li Y, Bionda N, Yongye A, Geer P, Stawikowski M, Cudic P, Martinez K, Houghten RA. Dissociation of Antimicrobial and Hemolytic Activities of Gramicidin S through N-Methylation Modification. ChemMedChem 2013; 8:1865-72. [DOI: 10.1002/cmdc.201300232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Indexed: 11/06/2022]
|
24
|
Sato K, Yamaguchi Y, Nagai U. Design and Synthesis of Gramicidin S Analogs with High Antibiotic Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuki Sato
- Department of Environmental Science, Fukuoka Women’s University
| | - Yoko Yamaguchi
- Department of Environmental Science, Fukuoka Women’s University
| | - Ukon Nagai
- Mitsubishi Kagaku Institute of Life Sciences
| |
Collapse
|
25
|
Saavedra CJ, Boto A, Hernández R. “Customizable” Units in Di- and Tripeptides: Selective Conversion into Substituted Dehydroamino Acids. Org Lett 2012; 14:3788-91. [DOI: 10.1021/ol301676z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología CSIC, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología CSIC, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Rosendo Hernández
- Instituto de Productos Naturales y Agrobiología CSIC, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
26
|
Rostami M, Khosropour AR, Mirkhani V, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S. [C6(MIm)2]2W10O32. 2H2O: A novel and powerful catalyst for the synthesis of 4-arylidene-2-phenyl-5(4)-oxazolones under ultrasonic condition. CR CHIM 2011. [DOI: 10.1016/j.crci.2011.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Novel and chemoselective one-pot synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones starting from benzyl alcohols promoted by [(C14H24N4)2W10O32]-[bmim]NO3. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0533-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
van der Knaap M, Lageveen LT, Busscher HJ, Mars-Groenendijk R, Noort D, Otero JM, Llamas-Saiz AL, van Raaij MJ, van der Marel GA, Overkleeft HS, Overhand M. Evaluation of Readily Accessible Azoles as Mimics of the Aromatic Ring of D-Phenylalanine in the Turn Region of Gramicidin S. ChemMedChem 2011; 6:840-7. [DOI: 10.1002/cmdc.201000539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/26/2011] [Indexed: 11/06/2022]
|
29
|
An LK, Li RL, Zuo YL, Gu LQ. Solvent-free thermocyclization of the unactivated linear gramicidin S precursor and analogues. Org Lett 2011; 13:34-7. [PMID: 21121629 DOI: 10.1021/ol102800j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient thermocyclization of the linear gramicidin S precursor and its analogues is demonstrated. With the preorganized β-sheet conformation, the unactivated linear precursors can cyclize into the corresponding head-to-tail cyclic products in high yield after being heated under solvent-free conditions.
Collapse
Affiliation(s)
- Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | |
Collapse
|
30
|
Yamada K, Kodaira M, Shinoda SS, Komagoe K, Oku H, Katakai R, Katsu T, Matsuo I. Structure–activity relationships of gramicidin S analogs containing (β-3-pyridyl)-α,β-dehydroalanine residues on membrane permeability. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00081k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Derbal S, Hensler M, Fang W, Nizet V, Ghedira K, Nefzi A. On resin amino acid side chain attachment strategy for the head to tail synthesis of new glutamine containing gramicidin-S analogs and their antimicrobial activity. Bioorg Med Chem Lett 2010; 20:5701-4. [PMID: 20800485 PMCID: PMC2963184 DOI: 10.1016/j.bmcl.2010.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The alarming increase in infections caused by multiple drug resistant bacteria including methicillin-resistant Staphylococcus aureus has prompted a desperate search for new antimicrobials. Augmenting the discoveries of completely new scaffolds with antimicrobial activity are efforts aimed at modifying existing molecules to optimize activity or reduce toxicity. We report herein the parallel solid-phase synthesis of analogues of the cationic antimicrobial peptide gramicidin S (GS) using amino acid side chain attachment strategy. The ornithine (Orn) residues were replaced by glutamine (Gln) and the aromatic D-phenylalanine (Phe) were replaced by different aromatic D-amino acids. Additional Gln containing GS analogues with all the possible combinations of the hydrophobic amino acids valine and leucine were also synthesized. In this work we also report the antibacterial activity of these analogs against several clinically-important drug-resistant Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Safa Derbal
- Laboratoire de Pharmacognosie, Faculté de Pharmacie, Rue Avicenne, 5000 Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
32
|
Solanas C, de la Torre BG, Fernández-Reyes M, Santiveri CM, Jiménez MÁ, Rivas L, Jiménez AI, Andreu D, Cativiela C. Sequence inversion and phenylalanine surrogates at the beta-turn enhance the antibiotic activity of gramicidin S. J Med Chem 2010; 53:4119-29. [PMID: 20411945 PMCID: PMC2894577 DOI: 10.1021/jm100143f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of gramicidin S (GS) analogues have been synthesized where the Phe (i + 1) and Pro (i + 2) residues of the beta-turn have been swapped while the respective chiralities (D-, L-) at each position are preserved, and Phe is replaced by surrogates with aromatic side chains of diverse size, orientation, and flexibility. Although most analogues preserve the beta-sheet structure, as assessed by NMR, their antibiotic activities turn out to be highly dependent on the bulkiness and spatial arrangement of the aromatic side chain. Significant increases in microbicidal potency against both Gram-positive and Gram-negative pathogens are observed for several analogues, resulting in improved therapeutic profiles. Data indicate that seemingly minor replacements at the GS beta-turn can have significant impact on antibiotic activity, highlighting this region as a hot spot for modulating GS plasticity and activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Andreu
- To whom correspondence should be addressed. For D.A.: phone, +34-933160868; fax, +34-933160901; . For C.C.: phone, +34-976761210; fax, +34-976761210;
| | - Carlos Cativiela
- To whom correspondence should be addressed. For D.A.: phone, +34-933160868; fax, +34-933160901; . For C.C.: phone, +34-976761210; fax, +34-976761210;
| |
Collapse
|
33
|
Mogi T, Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 2009; 66:3821-6. [PMID: 19701717 PMCID: PMC11115702 DOI: 10.1007/s00018-009-0129-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 01/02/2023]
Abstract
Gramicidin S and polymyxins are small cationic cyclic peptides and act as potent antibiotics against Gram-negative and Gram-positive bacteria by perturbing integrity of the bacterial membranes. Screening of a natural antibiotics library with bacterial membrane vesicles identified gramicidin S as an inhibitor of cytochrome bd quinol oxidase and an alternative NADH dehydrogenase (NDH-2) and polymyxin B as an inhibitor of NDH-2 and malate: quinone oxidoreductase. Our studies showed that cationic cyclic peptide antibiotics have novel molecular targets in the membrane and interfere ligand binding on the hydrophobic surface of enzymes. Improvement of the toxicity and optimization of the structures and clinical uses are urgently needed for their effective application in combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
34
|
Broda MA, Buczek A, Siodłak D, Rzeszotarska B. The effect of beta-methylation on the conformation of alpha, beta-dehydrophenylalanine: a DFT study. J Pept Sci 2009; 15:465-73. [PMID: 19408247 DOI: 10.1002/psc.1137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dehydroamino acids are non-coded amino acids that offer unique conformational properties. Dehydrophenylalanine (DeltaPhe) is most commonly used to modify bioactive peptides to constrain the topography of the phenyl ring in the side chain, which commonly serves as a pharmacophore. The Ramachandran maps (in the gas phase and in CHCl(3) mimicking environments) of DeltaPhe analogues with methyl groups at the beta position of the side chain as well as at the C-terminal amide were calculated using the B3LYP/6-31 + G** method. Unexpectedly, beta-methylation alone results in an increase of conformational freedom of the affected DeltaPhe residue. However, further modification by introducing an additional methyl group at C-terminal methyl amide results in a steric crowding that fixes the torsion angle psi of all conformers to the value 123 degrees , regardless of the Z or E position of the phenyl ring. The number of conformers is reduced and the accessible conformational space of the residues is very limited. In particular, (Z)-Delta(betaMe)Phe with the tertiary C-terminal amide can be classified as the amino acid derivative that has a single conformational state as it seems to adopt only the beta conformation.
Collapse
|
35
|
Solanas C, de la Torre BG, Fernández-Reyes M, Santiveri CM, Jiménez MA, Rivas L, Jiménez AI, Andreu D, Cativiela C. Therapeutic index of gramicidin S is strongly modulated by D-phenylalanine analogues at the beta-turn. J Med Chem 2009; 52:664-74. [PMID: 19132829 PMCID: PMC2659738 DOI: 10.1021/jm800886n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analogues of the cationic antimicrobial peptide gramicidin S (GS), cyclo(Val-Orn-Leu-D-Phe-Pro)2, with d-Phe residues replaced by different (restricted mobility, mostly) surrogates have been synthesized and used in SAR studies against several pathogenic bacteria. While all D-Phe substitutions are shown by NMR to preserve the overall beta-sheet conformation, they entail subtle structural alterations that lead to significant modifications in biological activity. In particular, the analogue incorporating D-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) shows a modest but significant increase in therapeutic index, mostly due to a sharp decrease in hemolytic effect. The fact that NMR data show a shortened distance between the D-Tic aromatic ring and the Orn delta-amino group may help explain the improved antibiotic profile of this analogue.
Collapse
Affiliation(s)
- Concepción Solanas
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gramicidin S identified as a potent inhibitor for cytochrome bd
-type quinol oxidase. FEBS Lett 2008; 582:2299-302. [DOI: 10.1016/j.febslet.2008.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 05/21/2008] [Indexed: 01/14/2023]
|
37
|
Jang WS, Lee SC, Lee YS, Shin YP, Shin KH, Sung BH, Kim BS, Lee SH, Lee IH. Antimicrobial effect of halocidin-derived peptide in a mouse model of Listeria infection. Antimicrob Agents Chemother 2007; 51:4148-56. [PMID: 17846130 PMCID: PMC2151467 DOI: 10.1128/aac.00635-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halocidin is an antimicrobial peptide found in the tunicate. A series of experiments were previously conducted in an attempt to develop a novel antibiotic derived from halocidin, as the peptide was determined to evidence profound antimicrobial activity against a variety of antibiotic-resistant microbes, with significantly less toxicity to human blood cells. In this study, we assessed the validity of one of the halocidin congeners, called Khal, as a new antibiotic for the treatment of systemic bacterial infections. Our in vitro antimicrobial tests showed that the MICs of Khal against several gram-positive bacteria were below 16 microg/ml in the presence of salt. We also determined that Khal retained sufficient target selectivity to discern microbial and human blood cells and was therefore capable of efficiently killing invading pathogens. Furthermore, Khal caused no aggregation problems upon incubation with human serum and also proved to be resistant to proteolysis by enzymes occurring in human serum. In the following experiments conducted with a mouse model of Listeria monocytogenes infection, we demonstrated that a single intravenous inoculation with Khal resulted in significant therapeutic effects on the survival of mice. In addition, our bacterial-enumeration analysis showed that after Listeria infection, livers and spleens from Khal-treated mice generated a great deal fewer recoverable CFU. Finally, the antibiotic effects of Khal were evaluated under confocal microscopy after we immunostained the liver sections with anti-Khal antibody. It was concluded that Khal bound specifically to the surfaces of bacteria colonized in the mouse liver and killed the bacteria rapidly.
Collapse
Affiliation(s)
- Woong Sik Jang
- Department of Biotechnology, Hoseo University, 165 Sechuli, Baebangmyun, Asan City, Chungnam 336-795, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ciabatti R, Maffioli SI, Panzone G, Canavesi A, Michelucci E, Tiseni PS, Marzorati E, Checchia A, Giannone M, Jabes D, Romano G, Brunati C, Candiani G, Castiglione F. Synthesis and Preliminary Biological Characterization of New Semisynthetic Derivatives of Ramoplanin. J Med Chem 2007; 50:3077-85. [PMID: 17542573 DOI: 10.1021/jm070042z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ramoplanin is a glycolipodepsipeptide antibiotic active against Gram-positive bacteria including vancomycin-resistant enterococci. Ramoplanin inhibits bacterial cell wall biosynthesis by a mechanism different from that of glycopeptides and hence does not show cross-resistance with these antibiotics. The systemic use of ramoplanin has been so far prevented because of its low local tolerability when injected intravenously. To overcome this problem, the fatty acid side chain of ramoplanin was selectively removed and replaced with a variety of different carboxylic acids. Many of the new ramoplanin derivatives showed antimicrobial activity similar to that of the natural precursor coupled with a significantly improved local tolerability. Among them the derivative in which the 2-methylphenylacetic acid has replaced the di-unsaturated fatty acid side chain (48) was selected as the most interesting compound and submitted to further in vitro and in vivo characterization studies.
Collapse
|