1
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
2
|
Roy T, Petersen NN, Gopalan G, Gising J, Hallberg M, Larhed M. 2-Alkyl substituted benzimidazoles as a new class of selective AT2 receptor ligands. Bioorg Med Chem 2022; 66:116804. [PMID: 35576659 DOI: 10.1016/j.bmc.2022.116804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Ligands comprising a benzimidazole rather than the imidazole ring that is common in AT2R ligands e.g. in the AT2R agonist C21, can provide both high affinity and receptor selectivity. In particular, compounds encompassing benzimidazoles, substituted in the 2-position with small bulky groups such as an isopropyl (Ki = 4.0 nM) or a tert-butyl (Ki = 5.3 nM) or alternatively a thiazole heterocycle (Ki = 5.1 nM) demonstrate high affinity and AT2R selectivity. An n-butyl chain, as found in the AT1R selective sartans, makes the ligand less receptor selective. The isobutyl group on the biaryl scaffold present in most AT2R selective ligands reported so far was originally derived from the nonselective potent AT1R/AT2R ligand L-162,313. Notably, in all ligands discussed herein, the isobutyl group was substituted by an n-propyl group and ligands with high affinity to AT2R were provided and in addition the majority of them demonstrate a favorable AT2R/AT1R selectivity. The introduction of fluoro atoms in various positions had no pronounced effect on the affinity data. Ligands with a thiazole or a tert-butyl group attached to the 2-position and with a terminal trifluoromethyl butoxycarbonyl sidechain exhibited a similar stability as C21 in human liver microsomes, while other ligands examined were less stable in the microsome assay.
Collapse
Affiliation(s)
- Tamal Roy
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Greeshma Gopalan
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
3
|
Gopalan G, Palo-Nieto C, Petersen NN, Hallberg M, Larhed M. Angiotensin II AT2 receptor ligands with phenylthiazole scaffolds. Bioorg Med Chem 2022; 65:116790. [PMID: 35550979 DOI: 10.1016/j.bmc.2022.116790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
The syntheses and the AT1R and AT2R binding data of a series of new small molecule ligands are reported. These ligands comprise a phenylthiazole scaffold rather than the biphenyl or phenylthiophene scaffolds found in essentially all of the previously described ligands originating from the nonselective AT1R/AT2R ligand L-162,313 and the AT2R selective agonist C21, the latter now in Phase II/III clinical trials. A phenylthiazole rather than the phenylthiophene scaffold that is present in the AT2R selective agonist C21 and in the AT2R selective antagonist C38 had a deleterious effect on the affinity to AT2R. Nevertheless, a significant improvement could be accomplished by introduction of a small bulky alkyl group in the 2-position of the imidazole ring attached through a methylene group bridge to the phenylthiazole scaffold. Hence, a combination of a 2-tert-butyl or a 2-isopropyl group and a butoxycarbonyl furnished potent AT2R selective ligands. Furthermore, a high affinity ligand derived from L-162,313 and exhibiting a > 35 fold selectivity for AT1R was identified (10). The ligand 21 with the 2-tert-butyl group and ∼ 35 fold selectivity for AT2R, demonstrated high stability in human, rat and mouse liver microsomes and a very attractive profile with regard to the inhibition of common drug-metabolizing CYP enzymes. Thus, very low levels of inhibition of CYP 3A (5%), 2D6 (12%), 2C8 (26%), 2C9 (23%) and 2B6 (24%) were observed with the 2-tert-butyl derivative comprising the methoxycarbonyl sulfonamide function, levels that are significantly lower than those obtained with C21 under the same experimental conditions.
Collapse
Affiliation(s)
- Greeshma Gopalan
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Carlos Palo-Nieto
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
4
|
Ranjit A, Khajehpour S, Aghazadeh-Habashi A. Update on Angiotensin II Subtype 2 Receptor: Focus on Peptide and Nonpeptide Agonists. Mol Pharmacol 2021; 99:469-487. [PMID: 33795351 DOI: 10.1124/molpharm.121.000236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (Ang II) is the most dominant effector component of the renin-angiotensin system (RAS) that generally acts through binding to two main classes of G protein-coupled receptors, namely Ang II subtype 1 receptor (AT1R) and angiotensin II subtype 2 receptor (AT2R). Despite some controversial reports, the activation of AT2R generally antagonizes the effects of Ang II binding on AT1R. Studying AT2R signaling, function, and its specific ligands in cell culture or animal studies has confirmed its beneficial effects throughout the body. These characteristics classify AT2R as part of the protective arm of the RAS that, along with functions of Ang (1-7) through Mas receptor signaling, modulates the harmful effects of Ang II on AT1R in the activated classic arm of the RAS. Although Ang II is the primary ligand for AT2R, we have summarized other natural or synthetic peptide and nonpeptide agonists with critical evaluation of their structure, mechanism of action, and biologic activity. SIGNIFICANCE STATEMENT: AT2R is one of the main components of the RAS and has a significant prospective for mediating the beneficial action of the RAS through its protective arm on the body's homeostasis. Targeting AT2R offers substantial clinical application possibilities for modulating various pathological conditions. This review provided concise information regarding the AT2R peptide and nonpeptide agonists and their potential clinical applications for various diseases.
Collapse
Affiliation(s)
- Arina Ranjit
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | - Sana Khajehpour
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | | |
Collapse
|
5
|
Vasile S, Hallberg A, Sallander J, Hallberg M, Åqvist J, Gutiérrez-de-Terán H. Evolution of Angiotensin Peptides and Peptidomimetics as Angiotensin II Receptor Type 2 (AT2) Receptor Agonists. Biomolecules 2020; 10:E649. [PMID: 32340100 PMCID: PMC7226584 DOI: 10.3390/biom10040649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II receptor type 1 and 2 (AT1R and AT2R) are two G-protein coupled receptors that mediate most biological functions of the octapeptide Angiotensin II (Ang II). AT2R is upregulated upon tissue damage and its activation by selective AT2R agonists has become a promising approach in the search for new classes of pharmaceutical agents. We herein analyzed the chemical evolution of AT2R agonists starting from octapeptides, through shorter peptides and peptidomimetics to the first drug-like AT2R-selective agonist, C21, which is in Phase II clinical trials and aimed for idiopathic pulmonary fibrosis. Based on the recent crystal structures of AT1R and AT2R in complex with sarile, we identified a common binding model for a series of 11 selected AT2R agonists, consisting of peptides and peptidomimetics of different length, affinity towards AT2R and selectivity versus AT1R. Subsequent molecular dynamics simulations and free energy perturbation (FEP) calculations of binding affinities allowed the identification of the bioactive conformation and common pharmacophoric points, responsible for the key interactions with the receptor, which are maintained by the drug-like agonists. The results of this study should be helpful and facilitate the search for improved and even more potent AT2R-selective drug-like agonists.
Collapse
Affiliation(s)
- Silvana Vasile
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden;
| | - Jessica Sallander
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden;
| | - Johan Åqvist
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| | - Hugo Gutiérrez-de-Terán
- Sweden and Science for Life Laboratory, Department of Cell and Molecular Biology, BMC (H.G.T.), Biomedical Centre (BMC), Uppsala University, P.O. BOX 596, SE-751 24 Uppsala, Sweden; (S.V.); (J.S.); (J.Å.)
| |
Collapse
|
6
|
Abstract
The active hormone of the renin-angiotensin system (RAS), angiotensin II (Ang II), is involved in several human diseases, driving the development and clinical use of several therapeutic drugs, mostly angiotensin I converting enzyme (ACE) inhibitors and angiotensin receptor type I (AT1R) antagonists. However, angiotensin peptides can also bind to receptors different from AT1R, in particular, angiotensin receptor type II (AT2R), resulting in biological and physiological effects different, and sometimes antagonistic, of their binding to AT1R. In the present Perspective, the components of the RAS and the therapeutic tools developed to control it will be reviewed. In particular, the characteristics of AT2R and tools to modulate its functions will be discussed. Agonists or antagonists to AT2R are potential therapeutics in cardiovascular diseases, for agonists, and in the control of pain, for antagonists, respectively. However, controlling their binding properties and their targeting to the target tissues must be optimized.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Chemin des Boveresses 155, CH1011 Lausanne, Switzerland
| |
Collapse
|
7
|
Isaksson R, Lindman J, Wannberg J, Sallander J, Backlund M, Baraldi D, Widdop R, Hallberg M, Åqvist J, Gutierrez de Teran H, Gising J, Larhed M. A Series of Analogues to the AT 2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode. ChemistryOpen 2019; 8:114-125. [PMID: 30697513 PMCID: PMC6346239 DOI: 10.1002/open.201800282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
We here report on our continued studies of ligands binding to the promising drug target angiotensin II type 2 receptor (AT2R). Two series of compounds were synthesized and investigated. The first series explored the effects of adding small substituents to the phenyl ring of the known selective nonpeptide AT2R antagonist C38, generating small but significant shifts in AT2R affinity. One compound in the first series was equipotent to C38 and showed similar kinetic solubility, and stability in both human and mouse liver microsomes. The second series was comprised of new bicyclic derivatives, amongst which one ligand exhibited a five-fold improved affinity to AT2R as compared to C38. The majority of the compounds in the second series, including the most potent ligand, were inferior to C38 with regard to stability in both human and mouse microsomes. In contrast to our previously reported findings, ligands with shorter carbamate alkyl chains only demonstrated slightly improved stability in microsomes. Based on data presented herein, a more adequate, tentative model of the binding modes of ligand analogues to the prototype AT2R antagonist C38 is proposed, as deduced from docking redefined by molecular dynamic simulations.
Collapse
Affiliation(s)
- Rebecka Isaksson
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Jens Lindman
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Johan Wannberg
- SciLifeLab Drug Discovery & Development Platform, Medicinal Chemistry – Lead Identification, Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Jessica Sallander
- Department of Cell and Molecular BiologyUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Maria Backlund
- SciLifeLab Drug Discovery & Development Platform, ADME of Therapeutics, Department of PharmacyUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Dhaniel Baraldi
- Department of PharmacologyMonash UniversityClayton, Victoria3800AUSTRALIA
| | - Robert Widdop
- Department of PharmacologyMonash UniversityClayton, Victoria3800AUSTRALIA
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical BiosciencesUppsala UniversitySE-751 24UppsalaSWEDEN
| | - Johan Åqvist
- Department of Cell and Molecular BiologyUppsala UniversitySE-751 23UppsalaSWEDEN
| | | | - Johan Gising
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| | - Mats Larhed
- Department of Medicinal ChemistryUppsala UniversitySE-751 23UppsalaSWEDEN
| |
Collapse
|
8
|
Sallander J, Wallinder C, Hallberg A, Åqvist J, Gutiérrez-de-Terán H. Structural determinants of subtype selectivity and functional activity of angiotensin II receptors. Bioorg Med Chem Lett 2015; 26:1355-9. [PMID: 26810314 DOI: 10.1016/j.bmcl.2015.10.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023]
Abstract
Agonists of the angiotensin II receptor type 2 (AT2), a G-protein coupled receptor, promote tissue protective effects in cardiovascular and renal diseases, while antagonists reduce neuropathic pain. We here report detailed molecular models that explain the AT2 receptor selectivity of our recent series of non-peptide ligands. In addition, minor structural changes of these ligands that provoke different functional activity are rationalized at a molecular level, and related to the selectivity for the different receptor conformations. These findings should pave the way to structure based drug discovery of AT2 receptor ligands.
Collapse
Affiliation(s)
- Jessica Sallander
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Charlotta Wallinder
- Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
9
|
Kellici TF, Tzakos AG, Mavromoustakos T. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules 2015; 20:3868-97. [PMID: 25738535 PMCID: PMC6272512 DOI: 10.3390/molecules20033868] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/06/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.
Collapse
Affiliation(s)
- Tahsin F Kellici
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece.
| |
Collapse
|
10
|
Behrends M, Wallinder C, Wieckowska A, Guimond MO, Hallberg A, Gallo-Payet N, Larhed M. N-Aryl Isoleucine Derivatives as Angiotensin II AT2 Receptor Ligands. ChemistryOpen 2014; 3:65-75. [PMID: 24808993 PMCID: PMC4000169 DOI: 10.1002/open.201300040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 01/25/2023] Open
Abstract
A novel series of ligands for the recombinant human AT2 receptor has been synthesized utilizing a fast and efficient palladium-catalyzed procedure for aminocarbonylation as the key reaction. Molybdenum hexacarbonyl [Mo(CO)6] was employed as the carbon monoxide source, and controlled microwave heating was applied. The prepared N-aryl isoleucine derivatives, encompassing a variety of amide groups attached to the aromatic system, exhibit binding affinities at best with K i values in the low micromolar range versus the recombinant human AT2 receptor. Some of the new nonpeptidic isoleucine derivatives may serve as starting points for further structural optimization. The presented data emphasize the importance of using human receptors in drug discovery programs.
Collapse
Affiliation(s)
- Malte Behrends
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Charlotta Wallinder
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Anna Wieckowska
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Marie-Odile Guimond
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Anders Hallberg
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| | - Nicole Gallo-Payet
- Service of Endocrinology and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC J1H 5N4 (Canada)
| | - Mats Larhed
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University P.O. Box 574, SE-751 23 Uppsala (Sweden)
| |
Collapse
|
11
|
Veron JB, Joshi A, Wallinder C, Larhed M, Odell LR. Synthesis and evaluation of isoleucine derived angiotensin II AT(2) receptor ligands. Bioorg Med Chem Lett 2013; 24:476-9. [PMID: 24388688 DOI: 10.1016/j.bmcl.2013.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Sixteen new C-terminally modified analogues of 2, a previously described potent and selective AT2R ligand, were designed, synthesized and evaluated for their affinity to the AT2R receptor. The introduction of large, hydrophobic substituents was shown to be beneficial and the most active compound (17, Ki=8.5 μM) was over 12-times more potent than the lead compound 2.
Collapse
Affiliation(s)
- Jean-Baptiste Veron
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Advait Joshi
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Charlotta Wallinder
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R Odell
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
12
|
AT2 Receptor-Interacting Proteins ATIPs in the Brain. Int J Hypertens 2013; 2013:513047. [PMID: 23431421 PMCID: PMC3566609 DOI: 10.1155/2013/513047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/22/2012] [Indexed: 12/13/2022] Open
Abstract
A complete renin-angiotensin system (RAS) is locally expressed in the brain and fulfills important functions. Angiotensin II, the major biologically active peptide of the RAS, acts via binding to two main receptor subtypes designated AT1 and AT2. The present paper focuses on AT2 receptors, which have been reported to have neuroprotective effects on stroke, degenerative diseases, and cognitive functions. Our group has identified a family of AT2 receptor interacting proteins (ATIPs) comprising three major members (ATIP1, ATIP3, and ATIP4) with different intracellular localization. Of interest, all ATIP members are expressed in brain tissues and carry a conserved domain able to interact with the AT2 receptor intracellular tail, suggesting a role in AT2-mediated brain functions. We summarize here current knowledge on the ATIP family of proteins, and we present new experimental evidence showing interaction defects between ATIP1 and two mutant forms of the AT2 receptor identified in cases of mental retardation. These studies point to a functional role of the AT2/ATIP1 axis in cognition.
Collapse
|
13
|
Shum M, Pinard S, Guimond MO, Labbé SM, Roberge C, Baillargeon JP, Langlois MF, Alterman M, Wallinder C, Hallberg A, Carpentier AC, Gallo-Payet N. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am J Physiol Endocrinol Metab 2013; 304:E197-210. [PMID: 23149621 PMCID: PMC3543572 DOI: 10.1152/ajpendo.00149.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipocytes/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Size/drug effects
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Dietary Carbohydrates/adverse effects
- Dietary Fats/adverse effects
- Fructose/adverse effects
- Insulin Resistance/genetics
- Insulin Resistance/physiology
- Male
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
Collapse
Affiliation(s)
- Michaël Shum
- Division of Endocrinology, Department of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guimond MO, Wallinder C, Alterman M, Hallberg A, Gallo-Payet N. Comparative functional properties of two structurally similar selective nonpeptide drug-like ligands for the angiotensin II type-2 (AT2) receptor. Effects on neurite outgrowth in NG108-15 cells. Eur J Pharmacol 2013; 699:160-71. [DOI: 10.1016/j.ejphar.2012.11.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/11/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023]
|
15
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
16
|
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. JOURNAL OF NATURAL PRODUCTS 2012; 75:311-35. [PMID: 22316239 PMCID: PMC3721181 DOI: 10.1021/np200906s] [Citation(s) in RCA: 3135] [Impact Index Per Article: 241.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This review is an updated and expanded version of the three prior reviews that were published in this journal in 1997, 2003, and 2007. In the case of all approved therapeutic agents, the time frame has been extended to cover the 30 years from January 1, 1981, to December 31, 2010, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2010 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a "natural product mimic" or "NM" to join the original primary divisions and have added a new designation, "natural product botanical" or "NB", to cover those botanical "defined mixtures" that have now been recognized as drug entities by the FDA and similar organizations. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 175 small molecules, 131, or 74.8%, are other than "S" (synthetic), with 85, or 48.6%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are able to identify only one de novo combinatorial compound approved as a drug in this 30-year time frame. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore we consider that this area of natural product research should be expanded significantly.
Collapse
Affiliation(s)
- David J Newman
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, P.O. Box B, Frederick, Maryland 21702, United States.
| | | |
Collapse
|
17
|
Murugaiah AMS, Wu X, Wallinder C, Mahalingam AK, Wan Y, Sköld C, Botros M, Guimond MO, Joshi A, Nyberg F, Gallo-Payet N, Hallberg A, Alterman M. From the first selective non-peptide AT(2) receptor agonist to structurally related antagonists. J Med Chem 2012; 55:2265-78. [PMID: 22248302 DOI: 10.1021/jm2015099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A para substitution pattern of the phenyl ring is a characteristic feature of the first reported selective AT(2) receptor agonist M024/C21 (1) and all the nonpeptidic AT(2) receptor agonists described so far. Two series of compounds structurally related to 1 but with a meta substitution pattern have now been synthesized and biologically evaluated for their affinity to the AT(1) and AT(2) receptors. A high AT(2)/AT(1) receptor selectivity was obtained with all 41 compounds synthesized, and the majority exhibited K(i) ranging from 2 to 100 nM. Five compounds were evaluated for their functional activity at the AT(2) receptor, applying a neurite outgrowth assay in NG108-15 cells. Notably, four of the five compounds, with representatives from both series, acted as potent AT(2) receptor antagonists. These compounds were found to be considerably more effective than PD 123,319, the standard AT(2) receptor antagonist used in most laboratories. No AT(2) receptor antagonists were previously reported among the derivatives with a para substitution pattern. Hence, by a minor modification of the agonist 1 it could be transformed into the antagonist, compound 38. These compounds should serve as valuable tools in the assessment of the role of the AT(2) receptor in more complex physiological models.
Collapse
Affiliation(s)
- A M S Murugaiah
- Department of Medicinal Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gallo-Payet N, Guimond MO, Bilodeau L, Wallinder C, Alterman M, Hallberg A. Angiotensin II, a Neuropeptide at the Frontier between Endocrinology and Neuroscience: Is There a Link between the Angiotensin II Type 2 Receptor and Alzheimer's Disease? Front Endocrinol (Lausanne) 2011; 2:17. [PMID: 22649365 PMCID: PMC3355904 DOI: 10.3389/fendo.2011.00017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/20/2011] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β peptide deposition, abnormal hyperphosphorylation of tau, as well as inflammation and vascular damage, are associated with the development of Alzheimer's disease (AD). Angiotensin II (Ang II) is a peripheral hormone, as well as a neuropeptide, which binds two major receptors, namely the Ang II type 1 receptor (AT1R) and the type 2 receptor (AT2R). Activation of the AT2R counteracts most of the AT1R-mediated actions, promoting vasodilation, decreasing the expression of pro-inflammatory cytokines, both in the brain and in the cardiovascular system. There is evidence that treatment with AT1R blockers (ARBs) attenuates learning and memory deficits. Studies suggest that the therapeutic effects of ARBs may reflect this unopposed activation of the AT2R in addition to the inhibition of the AT1R. Within the context of AD, modulation of AT2R signaling could improve cognitive performance not only through its action on blood flow/brain microcirculation but also through more specific effects on neurons. This review summarizes the current state of knowledge and potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT2R activation by non-peptide and highly selective agonists, acting on neuronal plasticity, could represent new pharmacological tools that may help improve impaired cognitive performance in AD and other neurological cognitive disorders.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Service of Endocrinology, Department of Medicine, Faculty of Medicine, Centre de recherche clinique Étienne-Le Bel du Centre hospitalier universitaire de Sherbrooke, Université de SherbrookeSherbrooke, QC, Canada
- *Correspondence: Nicole Gallo-Payet, Service d’Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4. e-mail:
| | - Marie-Odile Guimond
- Service of Endocrinology, Department of Medicine, Faculty of Medicine, Centre de recherche clinique Étienne-Le Bel du Centre hospitalier universitaire de Sherbrooke, Université de SherbrookeSherbrooke, QC, Canada
| | - Lyne Bilodeau
- Service of Endocrinology, Department of Medicine, Faculty of Medicine, Centre de recherche clinique Étienne-Le Bel du Centre hospitalier universitaire de Sherbrooke, Université de SherbrookeSherbrooke, QC, Canada
| | - Charlotta Wallinder
- Department of Medicinal Chemistry, Biomedicinska Centrum, Uppsala UniversityUppsala, Sweden
| | - Mathias Alterman
- Department of Medicinal Chemistry, Biomedicinska Centrum, Uppsala UniversityUppsala, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry, Biomedicinska Centrum, Uppsala UniversityUppsala, Sweden
| |
Collapse
|
19
|
Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 2008; 120:292-316. [PMID: 18804122 PMCID: PMC7112668 DOI: 10.1016/j.pharmthera.2008.08.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) is intricately involved in normal cardiovascular homeostasis. Excessive stimulation by the octapeptide angiotensin II contributes to a range of cardiovascular pathologies and diseases via angiotensin type 1 receptor (AT1R) activation. On the other hand, tElsevier Inc.he angiotensin type 2 receptor (AT2R) is thought to counter-regulate AT1R function. In this review, we describe the enhanced expression and function of AT2R in various cardiovascular disease settings. In addition, we illustrate that the RAS consists of a family of angiotensin peptides that exert cardiovascular effects that are often distinct from those of Ang II. During cardiovascular disease, there is likely to be an increased functional importance of AT2R, stimulated by Ang II, or even shorter angiotensin peptide fragments, to limit AT1R-mediated overactivity and cardiovascular pathologies.
Collapse
Key Words
- angiotensin ii
- at2 receptor
- at1 receptor
- cardiovascular disease
- ace, angiotensin converting enzyme
- ace2, angiotensin converting enzyme 2
- ang ii, angiotensin ii
- ang iii, angiotensin iii
- ang iv, angiotensin iv
- ang (1–7), angiotensin (1–7)
- atbp50, at2r-binding protein of 50 kda
- atip-1, at2 receptor interacting protein-1
- at1r, angiotensin ii type 1 receptor
- at2r, angiotensin ii type 2 receptor
- at4r, angiotensin ii type 4 receptor
- bk, bradykinin
- bp, blood pressure
- cgmp, cyclic guanine 3′,5′-monophosphate
- ecm, extracellular matrix
- enos, endothelial nitric oxide synthase
- erk-1/2, extracellular-regulated kinases-1,2
- irap, insulin-regulated aminopeptidase
- l-name, ng-nitro-l arginine methyl ester
- lvh, left ventricular hypertrophy
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemoattractant protein-1
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mrna, messenger ribonucleic acid
- nf-κβ, nuclear transcription factor-κβ
- no, nitric oxide
- o2−, superoxide
- pc12w, rat pheochromocytoma cell line
- ras, renin angiotensin system
- ros, reactive oxygen species
- shr, spontaneously hypertensive rat
- timp-1, tissue inhibitor of metalloproteinase-1
- tnfα, tumour-necrosis factor α
- vsmc, vascular smooth muscle cell
- wky, wistar-kyoto rat
Collapse
Affiliation(s)
- Emma S Jones
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|