1
|
Kuang X, Su M, Li H, Sheng X, Cai H, Xie S, Liu Z. Preparation of Menthyl 3-amino-4-(2,4,5-trifluorophenyl) Butyrate and Investigation of its Hypoglycemic Activity. Curr Mol Med 2024; 24:1550-1556. [PMID: 39420727 PMCID: PMC11497135 DOI: 10.2174/0115665240256416231120105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2024]
Abstract
BACKGROUND 3-Amino-4-(2,4,5-trifluorophenyl) butyric acid has potential pharmacological effects in promoting insulin secretion. Menthol promotes drug transdermal absorption and hypoglycemic effects. OBJECTIVE The objective of the study was to combine the 3-amino-4-(2,4,5- trifluorophenyl) butyric acid and menthol to develop a new candidate drug molecule that can be used as a hypoglycemic drug in type II diabetes. METHODS In this study, the molecular structure of 3-amino-4-(2,4,5-trifluorophenyl) butyric acid in sitagliptin was modified by replacing pyrazine imidazole with menthol. The structure of the target compound was characterized by nuclear magnetic resonance (NMR). The anti-diabetic activity of BHF in N000180 BKS.Cg-Dock7m+/ +Leprdb/Nju mice with spontaneous diabetes was preliminarily studied. RESULTS A potential multi-target drug molecule, 3-amino-4-(2,4,5-trifluorophenyl) butyrate (BHF), was synthesized by combining 3-amino-4-(2,4,5-trifluorophenyl) butyric acid and menthol. BHF is suitable for hyperglycemic mice and has a significant hypoglycemic effect; the low dose of 10 mg/kg-1 started to be effective, and the high dose of 40 mg/kg-1 was more effective than the positive drug metformin. CONCLUSION In this study, BHF has been synthesized and presented significant antidiabetic activities.
Collapse
Affiliation(s)
- Xinmou Kuang
- Zhejiang Collaborative Innovation Center for High-value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
- School of Chemical Engineering, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
| | - Minru Su
- SGS-CSTC Standards Technical Services (Ningbo) Co., Ltd. Ningbo Branch, Ningbo Zhejiang 315103, China
| | - Hao Li
- Zhejiang Collaborative Innovation Center for High-value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
- School of Chemical Engineering, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
| | - Xiaolan Sheng
- Zhejiang Collaborative Innovation Center for High-value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
- School of Chemical Engineering, Ningbo Polytechnic, Ningbo Zhejiang 315800, China
| | - Huan Cai
- Department of Rehabilitation, Zhongshan People’s Hospital, Zhongshan Guangdong 528403, China
| | - Shuilin Xie
- School of Biology and Biological, Engineering, South China University of Technology, Guangzhou Guangdong 510006, China
| | - Zhonghua Liu
- Department of Rehabilitation, Zhongshan People’s Hospital, Zhongshan Guangdong 528403, China
| |
Collapse
|
2
|
Li Q, Deng X, Xu YJ, Dong L. Development of Long-Acting Dipeptidyl Peptidase-4 Inhibitors: Structural Evolution and Long-Acting Determinants. J Med Chem 2023; 66:11593-11631. [PMID: 37647598 DOI: 10.1021/acs.jmedchem.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Considerable effort has been made to achieve less frequent dosing in the development of DPP-4 inhibitors. Enthusiasm for long-acting DPP-4 inhibitors is based on the promise that such agents with less frequent dosing regimens are associated with improved patient adherence, but the rational design of long-acting DPP-4 inhibitors remains a major challenge. In this Perspective, the development of long-acting DPP-4 inhibitors is comprehensively summarized to highlight the evolution of initial lead compounds on the path toward developing long-acting DPP-4 inhibitors over nearly three decades. The determinants for long duration of action are then examined, including the nature of the target, potency, binding kinetics, crystal structures, selectivity, and preclinical and clinical pharmacokinetic and pharmacodynamic profiles. More importantly, several possible approaches for the rational design of long-acting drugs are discussed. We hope that this information will facilitate the design and development of safer and more effective long-acting DPP-4 inhibitors and other oral drugs.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoyan Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan-Jun Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Dong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Li K, Lv Y, Lu Z, Yun X, Yan S. An environmentally benign multi-component reaction: Highly regioselective synthesis of functionalized 2-(diarylphosphoryl)-1,2-dihydro-pyridine derivatives. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
4
|
Kumar S, Mittal A, Mittal A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg Med Chem 2021; 46:116354. [PMID: 34428715 DOI: 10.1016/j.bmc.2021.116354] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the highly prevalence disorder and increasing day by day worldwidely. T2DM is a metabolic disorder, which is characterized by deficiency in insulin or resistance to insulin and thus increases the glucose levels in the blood. Various approaches are there to treat diabetes but still there is no cure for this disease. DPP-4 inhibitor is a privileged target in the field of drug discovery and provides various opportunities in exploring this target for development of molecules as antidiabetic agents. DPP-4 acts by inhibiting the incretin action and thus decreases the level of blood glucose by imparting minimal side effects. Sitagliptin, vildagliptin, linagliptin etc. are the different DPP-4 based drugs approved throughout the world for the treatment of diabetes mellitus. Cyanopyrrolidines, triazolopiperazine amide, pyrrolidines are basic core nucleus present in various DPP-4 inhibitors and has potential effects. In the past few years, researchers had applied various approaches to synthesize potent DPP-4 inhibitors as antidiabetic agent without side effects like weight gain, cardiovascular risks, retinopathy etc. This review will also emphasize the recent strategies and rationale utilized by researchers for the development of DPP-4 inhibitors. This review also reveals about the various other approaches like molecular modelling, ligand based drug designing, high throughput screening etc. are used by the various research group for the development of potential DPP-4 inhibitors.
Collapse
Affiliation(s)
- Shubham Kumar
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozepur Road, Ludhiana 142021, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India
| | - Anu Mittal
- Department of Chemistry, Guru Nanak Dev University College, Patti, Distt. Tarn Taran, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India.
| |
Collapse
|
5
|
Nair PC, Chau N, McKinnon RA, Miners JO. Arginine-259 of UGT2B7 Confers UDP-Sugar Selectivity. Mol Pharmacol 2020; 98:710-718. [PMID: 33008919 DOI: 10.1124/molpharm.120.000104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 11/22/2022] Open
Abstract
Enzymes of the human UDP-glycosyltransferase (UGT) superfamily typically catalyze the covalent addition of the sugar moiety from a UDP-sugar cofactor to relatively low-molecular weight lipophilic compounds. Although UDP-glucuronic acid (UDP-GlcUA) is most commonly employed as the cofactor by UGT1 and UGT2 family enzymes, UGT2B7 and several other enzymes can use both UDP-GlcUA and UDP-glucose (UDP-Glc), leading to the formation of glucuronide and glucoside conjugates. An investigation of UGT2B7-catalyzed morphine glycosidation indicated that glucuronidation is the principal route of metabolism because the binding affinity of UDP-GlcUA is higher than that of UDP-Glc. Currently, it is unclear which residues in the UGT2B7 cofactor binding domain are responsible for the preferential binding of UDP-GlcUA. Here, molecular dynamics (MD) simulations were performed together with site-directed mutagenesis and enzyme kinetic studies to identify residues within the UGT2B7 binding site responsible for the selective cofactor binding. MD simulations demonstrated that Arg259, which is located within the N-terminal domain, specifically interacts with UDP-GlcUA, whereby the side chain of Arg259 H-bonds and forms a salt bridge with the carboxylate group of glucuronic acid. Consistent with the MD simulations, substitution of Arg259 with Leu resulted in the loss of morphine, 4-methylumbelliferone, and zidovudine glucuronidation activity, but morphine glucosidation was preserved. SIGNIFICANCE STATEMENT: Despite the importance of uridine diphosphate glycosyltransferase (UGT) enzymes in drug and chemical metabolism, cofactor binding interactions are incompletely understood, as is the molecular basis for preferential glucuronidation by UGT1 and UGT2 family enzymes. The study demonstrated that long timescale molecular dynamics (MD) simulations with a UGT2B7 homology model can be used to identify critical binding interactions of a UGT protein with UDP-sugar cofactors. Further, the data provide a basis for the application of MD simulations to the elucidation of UGT-aglycone interactions.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| |
Collapse
|
6
|
Futatsugi K, Smith AC, Tu M, Raymer B, Ahn K, Coffey SB, Dowling MS, Fernando DP, Gutierrez JA, Huard K, Jasti J, Kalgutkar AS, Knafels JD, Pandit J, Parris KD, Perez S, Pfefferkorn JA, Price DA, Ryder T, Shavnya A, Stock IA, Tsai AS, Tesz GJ, Thuma BA, Weng Y, Wisniewska HM, Xing G, Zhou J, Magee TV. Discovery of PF-06835919: A Potent Inhibitor of Ketohexokinase (KHK) for the Treatment of Metabolic Disorders Driven by the Overconsumption of Fructose. J Med Chem 2020; 63:13546-13560. [PMID: 32910646 DOI: 10.1021/acs.jmedchem.0c00944] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased fructose consumption and its subsequent metabolism have been implicated in metabolic disorders such as nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH) and insulin resistance. Ketohexokinase (KHK) converts fructose to fructose-1-phosphate (F1P) in the first step of the metabolic cascade. Herein we report the discovery of a first-in-class KHK inhibitor, PF-06835919 (8), currently in phase 2 clinical trials. The discovery of 8 was built upon our originally reported, fragment-derived lead 1 and the recognition of an alternative, rotated binding mode upon changing the ribose-pocket binding moiety from a pyrrolidinyl to an azetidinyl ring system. This new binding mode enabled efficient exploration of the vector directed at the Arg-108 residue, leading to the identification of highly potent 3-azabicyclo[3.1.0]hexane acetic acid-based KHK inhibitors by combined use of parallel medicinal chemistry and structure-based drug design.
Collapse
Affiliation(s)
- Kentaro Futatsugi
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Aaron C Smith
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Meihua Tu
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Brian Raymer
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kay Ahn
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Steven B Coffey
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew S Dowling
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dilinie P Fernando
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jemy A Gutierrez
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kim Huard
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jayasankar Jasti
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John D Knafels
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kevin D Parris
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sylvie Perez
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jeffrey A Pfefferkorn
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - David A Price
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Tim Ryder
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andre Shavnya
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ingrid A Stock
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andy S Tsai
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory J Tesz
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Benjamin A Thuma
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yan Weng
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Hanna M Wisniewska
- Pfizer Inc. Medicine Design, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gang Xing
- Pfizer Inc. Internal Medicine Research Unit, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jun Zhou
- Pfizer Inc. Drug Safety R&D, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas V Magee
- Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Emami L, Faghih Z, Sakhteman A, Rezaei Z, Faghih Z, Salehi F, Khabnadideh S. Design, synthesis, molecular simulation, and biological activities of novel quinazolinone-pyrimidine hybrid derivatives as dipeptidyl peptidase-4 inhibitors and anticancer agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj03774e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Twelve novel quinazolinone–pyrimidine hybrids were synthesized, of which some of them showed dual functions as DPP-4 inhibitors and anti-cancer agents.
Collapse
Affiliation(s)
- Leila Emami
- Department of Medicinal Chemistry
- School of Pharmacy
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research
- Medical School
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry
- School of Pharmacy
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry
- School of Pharmacy
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Zeinab Faghih
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Farnaz Salehi
- Department of Medicinal Chemistry
- School of Pharmacy
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Soghra Khabnadideh
- Department of Medicinal Chemistry
- School of Pharmacy
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| |
Collapse
|
8
|
Pantaleão SQ, Philot EA, de Oliveira Almeida M, Lima AN, de Sairre MI, Scott AL, Honorio KM. Integrated Protocol to Design Potential Inhibitors of Dipeptidyl Peptidase- 4 (DPP-4). Curr Top Med Chem 2019; 20:209-226. [PMID: 31878857 DOI: 10.2174/1568026620666191226101543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND A strategy for the treatment of type II diabetes mellitus is the inhibition of the enzyme known as dipeptidyl peptidase-4 (DPP-4). AIMS This study aims to investigate the main interactions between DPP-4 and a set of inhibitors, as well as proposing potential candidates to inhibit this enzyme. METHODS We performed molecular docking studies followed by the construction and validation of CoMFA and CoMSIA models. The information provided from these models was used to aid in the search for new candidates to inhibit DPP-4 and the design of new bioactive ligands from structural modifications in the most active molecule of the studied series. RESULTS We were able to propose a set of analogues with biological activity predicted by the CoMFA and CoMSIA models, suggesting that our protocol can be used to guide the design of new DPP-4 inhibitors as drug candidates to treat diabetes. CONCLUSION Once the integration of the techniques mentioned in this article was effective, our strategy can be applied to design possible new DPP-4 inhibitors as candidates to treat diabetes.
Collapse
Affiliation(s)
- Simone Queiroz Pantaleão
- Center for Sciences Natural and Human, Federal University of ABC, Santo Andre, Sao Paulo, Brazil
| | - Eric Allison Philot
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo Andre, Sao Paulo, Brazil
| | | | - Angelica Nakagawa Lima
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil
| | - Mirela Inês de Sairre
- Center for Sciences Natural and Human, Federal University of ABC, Santo Andre, Sao Paulo, Brazil
| | - Ana Ligia Scott
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo Andre, Sao Paulo, Brazil
| | - Kathia Maria Honorio
- Center for Sciences Natural and Human, Federal University of ABC, Santo Andre, Sao Paulo, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Pienaar DP, Butsi KR, Rousseau AL, Brady D. A green, economical synthesis of β-ketonitriles and trifunctionalized building blocks from esters and lactones. Beilstein J Org Chem 2019; 15:2930-2935. [PMID: 31839839 PMCID: PMC6902896 DOI: 10.3762/bjoc.15.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
The acylation of the acetonitrile anion with lactones and esters in ethereal solvents was successfully exploited using inexpensive KOt-Bu to obtain a variety of β-ketonitriles and trifunctionalized building blocks, including useful O-unprotected diols. It was discovered that lactones react to produce the corresponding derivatized cyclic hemiketals. Furthermore, the addition of a catalytic amount of isopropanol, or 18-crown-6, was necessary to facilitate the reaction and to reduce side-product formation under ambient conditions.
Collapse
Affiliation(s)
- Daniel P Pienaar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Kamogelo R Butsi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Amanda L Rousseau
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| |
Collapse
|
10
|
Kang Z, Wang Y, Zhang D, Wu R, Xu X, Hu W. Asymmetric Counter-Anion-Directed Aminomethylation: Synthesis of Chiral β-Amino Acids via Trapping of an Enol Intermediate. J Am Chem Soc 2019; 141:1473-1478. [DOI: 10.1021/jacs.8b12832] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhenghui Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Shanghai Engineering
Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Shanghai Engineering
Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
De S, Banerjee S, Kumar SA, Paira P. Critical Role of Dipeptidyl Peptidase IV: A Therapeutic Target for Diabetes and Cancer. Mini Rev Med Chem 2018; 19:88-97. [DOI: 10.2174/1389557518666180423112154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus is an emerging predator and affecting around 422 million adults worldwide.
Higher levels of circulating insulin and increased pressure on the pancreas to produce insulin
have been inferred as possible etiology for diabetes leading to a higher risk of pancreatic cancer. Out of
several drug targets in hypoglycemic discovery, Dipeptidyl peptidase-IV (DPP-IV) has been considered
an emerging target. It is a protease enzyme which inactivates incretin hormones i.e., Glucagonlike
peptide 1 (GLP-1) and glucose-dependent insulin tropic polypeptide (GIP). Inhibition of DPP-4
results in the longer action of GLP-1 and GIP, therefore, DPP-4 inhibitors play an important role in
maintaining glucose homeostasis. In comparison to early oral hypoglycemic, DPP-IV inhibitors are
well tolerated and provide a better glycemic control over a longer period. These enzymes are expressed
in a dimeric form on the surface of different cells such as prostate, liver and small intestinal
epithelium cells. Disruption of the local signaling environment is an emerging factor in cancer development.
Till date, not even a single DPP-IV inhibitor as anticancer has been developed. This review
focuses on various features of the enzyme and their suitable inhibitors for target disease.
Collapse
Affiliation(s)
- Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Subhasis Banerjee
- Department of Chemistry, Gupta College of Technological Sciences, Asansol-713301, West Bengal, India
| | - S.K. Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
12
|
Rohilla A, Gupta T, Pathak A, Akhtar MJ, Haider MR, Haider K, Shahar Yar M. Emergence of promising novel DPP-4 inhibitory heterocycles as anti-diabetic agents: A review. Arch Pharm (Weinheim) 2018; 351:e1800127. [PMID: 29878387 DOI: 10.1002/ardp.201800127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
Abstract
Diabetes has turned out to be an epidemic in the recent years all over the world, and today it has become a burden on the healthcare system. Over the years, with technological advancements, different classes of antidiabetic medications have emerged, like sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones, but these are often loaded with serious aftermaths like hypoglycemia, weight gain, cardiovascular and renal issues. Dipeptidyl peptidase-4 (DPP-4) inhibition is an exciting and new approach in the treatment of type-2 diabetes. DPP-4 inhibitors or "gliptins" are weight neutral, pose lesser risk of hypoglycemia, and provide a long-term post-meal glycemic control. In this review, an attempt has been made to investigate novel potential compounds that can be added to the existing list of anti-diabetic drugs.
Collapse
Affiliation(s)
- Ankit Rohilla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Tanya Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Md J Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Md R Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| |
Collapse
|
13
|
Ojeda-Montes MJ, Gimeno A, Tomas-Hernández S, Cereto-Massagué A, Beltrán-Debón R, Valls C, Mulero M, Pujadas G, Garcia-Vallvé S. Activity and selectivity cliffs for DPP-IV inhibitors: Lessons we can learn from SAR studies and their application to virtual screening. Med Res Rev 2018; 38:1874-1915. [PMID: 29660786 DOI: 10.1002/med.21499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
The inhibition of dipeptidyl peptidase-IV (DPP-IV) has emerged over the last decade as one of the most effective treatments for type 2 diabetes mellitus, and consequently (a) 11 DPP-IV inhibitors have been on the market since 2006 (three in 2015), and (b) 74 noncovalent complexes involving human DPP-IV and drug-like inhibitors are available at the Protein Data Bank (PDB). The present review aims to (a) explain the most important activity cliffs for DPP-IV noncovalent inhibition according to the binding site structure of DPP-IV, (b) explain the most important selectivity cliffs for DPP-IV noncovalent inhibition in comparison with other related enzymes (i.e., DPP8 and DPP9), and (c) use the information deriving from this activity/selectivity cliff analysis to suggest how virtual screening protocols might be improved to favor the early identification of potent and selective DPP-IV inhibitors in molecular databases (because they have not succeeded in identifying selective DPP-IV inhibitors with IC50 ≤ 100 nM). All these goals are achieved with the help of available homology models for DPP8 and DPP9 and an analysis of the structure-activity studies used to develop the noncovalent inhibitors that form part of some of the complexes with human DPP-IV available at the PDB.
Collapse
Affiliation(s)
- María José Ojeda-Montes
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Aleix Gimeno
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Sarah Tomas-Hernández
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Adrià Cereto-Massagué
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Raúl Beltrán-Debón
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Cristina Valls
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Miquel Mulero
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| |
Collapse
|
14
|
Huang Z, Cheng Y, Chen X, Wang HF, Du CX, Li Y. Regioselectivity inversion tuned by iron(iii) salts in palladium-catalyzed carbonylations. Chem Commun (Camb) 2018; 54:3967-3970. [DOI: 10.1039/c8cc01190g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We disclose the Pd-catalyzed carbonylation of alkenes and alcohols, with the regioselectivity tuned by the anion of Fe(iii) salts.
Collapse
Affiliation(s)
- Zijun Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Yazhe Cheng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Xipeng Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Hui-Fang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Chen-Xia Du
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
15
|
Duroux R, Rami M, Landagaray E, Ettaoussi M, Caignard DH, Delagrange P, Melnyk P, Yous S. Synthesis and biological evaluation of new naphtho- and quinolinocyclopentane derivatives as potent melatoninergic (MT 1 /MT 2 ) and serotoninergic (5-HT 2C ) dual ligands. Eur J Med Chem 2017; 141:552-566. [DOI: 10.1016/j.ejmech.2017.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/02/2023]
|
16
|
Deng X, Han L, Zhou J, Zhang H, Li Q. Discovery of triazole-based uracil derivatives bearing amide moieties as novel dipeptidyl peptidase-IV inhibitors. Bioorg Chem 2017; 75:357-367. [PMID: 29096096 DOI: 10.1016/j.bioorg.2017.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/12/2017] [Accepted: 10/22/2017] [Indexed: 01/02/2023]
Abstract
Dipeptidyl peptidase-IV (DPP-4) is a validated target for T2DM treatment. We previously reported a novel series of triazole-based uracil derivatives bearing aliphatic carboxylic acids with potent DPP-4 inhibitory activities in vitro, but these compounds showed poor hypoglycemic effects in vivo. Herein we further optimized the triazole moiety by amidation of the carboxylic acid to improve in vivo activities. Two series of compounds 3a-f and 4a-g were designed and synthesized. By screening in DPP-4, compound 4c was identified as a potent DPP-4 inhibitor with the IC50 value of 28.62 nM. Docking study revealed compound 4c has a favorable binding mode and interpreted the SAR of these analogs. DPP-8 and DPP-9 tests indicated compound 4c had excellent selectivity over DPP-8 and DPP-9. Further in vivo evaluations revealed that compound 4c showed more potent hypoglycemic activity than its corresponding carboxylic acid in ICR mice and dose-dependently reduced glucose levels in type 2 diabetic C57BL/6 mice. The overall results have shown that compound 4c could be a promising lead for further development of novel DPP-4 agents treating T2DM.
Collapse
Affiliation(s)
- Xiaoyan Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Li Han
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, PR China
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, PR China; Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Ferreira de Freitas R, Schapira M. A systematic analysis of atomic protein-ligand interactions in the PDB. MEDCHEMCOMM 2017; 8:1970-1981. [PMID: 29308120 PMCID: PMC5708362 DOI: 10.1039/c7md00381a] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
As the protein databank (PDB) recently passed the cap of 123 456 structures, it stands more than ever as an important resource not only to analyze structural features of specific biological systems, but also to study the prevalence of structural patterns observed in a large body of unrelated structures, that may reflect rules governing protein folding or molecular recognition. Here, we compiled a list of 11 016 unique structures of small-molecule ligands bound to proteins - 6444 of which have experimental binding affinity - representing 750 873 protein-ligand atomic interactions, and analyzed the frequency, geometry and impact of each interaction type. We find that hydrophobic interactions are generally enriched in high-efficiency ligands, but polar interactions are over-represented in fragment inhibitors. While most observations extracted from the PDB will be familiar to seasoned medicinal chemists, less expected findings, such as the high number of C-H···O hydrogen bonds or the relatively frequent amide-π stacking between the backbone amide of proteins and aromatic rings of ligands, uncover underused ligand design strategies.
Collapse
Affiliation(s)
| | - Matthieu Schapira
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada .
- Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| |
Collapse
|
18
|
Chandra S, Pandey J, Tamrakar AK, Siddiqi MI. SVMDLF: A novel R-based Web application for prediction of dipeptidyl peptidase 4 inhibitors. Chem Biol Drug Des 2017; 90:1173-1183. [PMID: 28585374 DOI: 10.1111/cbdd.13037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a well-known target for the antidiabetic drugs. However, currently available DPP4 inhibitor screening assays are costly and labor-intensive. It is important to create a robust in silico method to predict the activity of DPP4 inhibitor for the new lead finding. Here, we introduce an R-based Web application SVMDLF (SVM-based DPP4 Lead Finder) to predict the inhibitor of DPP4, based on support vector machine (SVM) model, predictions of which are confirmed by in vitro biological evaluation. The best model generated by MACCS structure fingerprint gave the Matthews correlation coefficient of 0.87 for the test set and 0.883 for the external test set. We screened Maybridge database consisting approximately 53,000 compounds. For further bioactivity assay, six compounds were shortlisted, and of six hits, three compounds showed significant DPP4 inhibitory activities with IC50 values ranging from 8.01 to 10.73 μm. This application is an OpenCPU server app which is a novel single-page R-based Web application for the DPP4 inhibitor prediction. The SVMDLF is freely available and open to all users at http://svmdlf.net/ocpu/library/dlfsvm/www/ and http://www.cdri.res.in/svmdlf/.
Collapse
Affiliation(s)
- Sharat Chandra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Lucknow, India.,Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jyotsana Pandey
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Lucknow, India.,Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
19
|
Design of potent dipeptidyl peptidase IV (DPP-4) inhibitors by employing a strategy to form a salt bridge with Lys554. Bioorg Med Chem Lett 2017; 27:3565-3571. [PMID: 28579121 DOI: 10.1016/j.bmcl.2017.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022]
Abstract
We report a design strategy to obtain potent DPP-4 inhibitors by incorporating salt bridge formation with Lys554 in the S1' pocket. By applying the strategy to the previously identified templates, quinoline 4 and pyridines 16a, 16b, and 17 have been identified as subnanomolar or nanomolar inhibitors of human DPP-4. Docking studies suggested that a hydrophobic interaction with Tyr547 as well as the salt bridge interaction is important for the extremely high potency. The design strategy would be useful to explore a novel design for DPP-4 inhibitors having a distinct structure with a unique binding mode.
Collapse
|
20
|
Zhu Y, Meng X, Cai Z, Hao Q, Zhou W. Synthesis of phenylpyridine derivatives and their biological evaluation toward dipeptidyl peptidase-4. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2062-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Taneja G, Gupta CP, Mishra S, Srivastava R, Rahuja N, Rawat AK, Pandey J, Gupta AP, Jaiswal N, Gayen JR, Tamrakar AK, Srivastava AK, Goel A. Synthesis of substituted 2 H-benzo[ e]indazole-9-carboxylate as a potent antihyperglycemic agent that may act through IRS-1, Akt and GSK-3β pathways. MEDCHEMCOMM 2017; 8:329-337. [PMID: 30108748 PMCID: PMC6072481 DOI: 10.1039/c6md00467a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/11/2016] [Indexed: 11/21/2022]
Abstract
Based on high throughput screening of our chemical library, we identified two 4,5-dihydro-2H-benzo[e]indazole derivatives (5d and 5g), which displayed a significant effect on glucose uptake in L6 skeletal muscle cells. Based on these lead molecules, a series of benzo[e]indazole derivatives were prepared. Among all the synthesized dihydro-2H-benzo[e]indazoles, 8-(methylthio)-2-phenyl-6-p-tolyl-4,5-dihydro-2H-benzo[e]indazole-9-carboxylate (5e) showed significant glucose uptake stimulation in L6 skeletal muscle cells, even better than lead compounds. Additionally, 5e decreased glucagon-induced glucose release in HepG2 hepatoma cells. The 2H-benzo[e]indazole 5e exerted an antihyperglycemic effect in normal, sucrose challenged streptozotocin-induced diabetic rats and type 2 diabetic db/db mice. Treatment with 5e at a dose of 30 mg kg-1 in db/db mice caused a significant decrease in triglyceride and total cholesterol levels and increased the HDL-C level in a significant manner. The mechanistic studies revealed that the 2H-benzo[e]indazole 5e significantly stimulated insulin-induced signaling at the level of IRS-1, Akt and GSK-3β in L6 skeletal muscle cells, possibly by inhibiting protein tyrosine phosphatase-1B. This new 2H-benzo[e]indazole derivative has potential for the treatment of diabetes with improved lipid profile.
Collapse
Affiliation(s)
- Gaurav Taneja
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India .
| | - Chandra Prakash Gupta
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India .
| | - Shachi Mishra
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India .
| | - Rohit Srivastava
- Biochemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Neha Rahuja
- Biochemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Arun Kumar Rawat
- Biochemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Jyotsana Pandey
- Biochemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Anand P Gupta
- Pharmacokinetics and Metabolism Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Natasha Jaiswal
- Biochemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Jiaur R Gayen
- Pharmacokinetics and Metabolism Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | - Akhilesh K Tamrakar
- Biochemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India
| | | | - Atul Goel
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow 226031 , India .
| |
Collapse
|
22
|
Hirai S, Horikawa Y, Asahara H, Nishiwaki N. Tailor-made synthesis of fully alkylated/arylated nicotinates by FeCl3-mediated condensation of enamino esters with enones. Chem Commun (Camb) 2017; 53:2390-2393. [DOI: 10.1039/c7cc00051k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A synthetic method for fully alkylated/arylated nicotinates was achieved by FeCl3-mediated condensation of enamino esters and enones.
Collapse
Affiliation(s)
- Sho Hirai
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
| | - Yurie Horikawa
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
| | - Haruyasu Asahara
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
- Research Center for Material Science and Engineering
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
- Research Center for Material Science and Engineering
| |
Collapse
|
23
|
Li M, Kong D, Zi G, Hou G. Rh-Catalyzed Asymmetric Hydrogenation of 1,2-Dicyanoalkenes. J Org Chem 2016; 82:680-687. [DOI: 10.1021/acs.joc.6b02678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meina Li
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Duanyang Kong
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Zhu Y, Cai Z, Hao Q, Zhou W. Alkylation of 2-(2,4-dichlorophenyl)-3-cyano-6-methyl-4-(1H-1,2,4-triazol-1-yl)methylpyridine at the methylene group. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1932-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Nojima H, Kanou K, Terashi G, Takeda-Shitaka M, Inoue G, Atsuda K, Itoh C, Iguchi C, Matsubara H. Comprehensive analysis of the Co-structures of dipeptidyl peptidase IV and its inhibitor. BMC STRUCTURAL BIOLOGY 2016; 16:11. [PMID: 27491540 PMCID: PMC4974693 DOI: 10.1186/s12900-016-0062-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Background We comprehensively analyzed X-ray cocrystal structures of dipeptidyl peptidase IV (DPP-4) and its inhibitor to clarify whether DPP-4 alters its general or partial structure according to the inhibitor used and whether DPP-4 has a common rule for inhibitor binding. Results All the main and side chains in the inhibitor binding area were minimally altered, except for a few side chains, despite binding to inhibitors of various shapes. Some residues (Arg125, Glu205, Glu206, Tyr662 and Asn710) in the area had binding modes to fix a specific atom of inhibitor to a particular spatial position in DPP-4. We found two specific water molecules that were common to 92 DPP-4 structures. The two water molecules were close to many inhibitors, and seemed to play two roles: maintaining the orientation of the Glu205 and Glu206 side chains through a network via the water molecules, and arranging the inhibitor appropriately at the S2 subsite. Conclusions Our study based on high-quality resources may provide a necessary minimum consensus to help in the discovery of a novel DPP-4 inhibitor that is commercially useful. Electronic supplementary material The online version of this article (doi:10.1186/s12900-016-0062-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Kazuhiko Kanou
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Present address: Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Genki Terashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mayuko Takeda-Shitaka
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Gaku Inoue
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Koichiro Atsuda
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Chihiro Itoh
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Chie Iguchi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hajime Matsubara
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
26
|
Pantaleão SQ, Maltarollo VG, Araujo SC, Gertrudes JC, Honorio KM. Molecular docking studies and 2D analyses of DPP-4 inhibitors as candidates in the treatment of diabetes. MOLECULAR BIOSYSTEMS 2016; 11:3188-93. [PMID: 26399297 DOI: 10.1039/c5mb00493d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is an important biological target related to the treatment of diabetes as DPP-4 inhibitors can lead to an increase in the insulin levels and a prolonged activity of glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), being effective in glycemic control. Thus, this study analyses the main molecular interactions between DPP-4 and a series of bioactive ligands. The methodology used here employed molecular modeling methods, such as HQSAR (Hologram Quantitative Structure-Activity) analyses and molecular docking, with the aim of understanding the main structural features of the compound series that are essential for the biological activity. Analyses of the main interactions in the active site of DPP-4, in particular, the contribution of the hydroxyl coordination between Tyr547 and Ser630 by the water molecule, which is described in the literature as important for the coordinated interactions in the active site, were performed. Significant correlation coefficients of the best 2D model (r(2) = 0.942 and q(2) = 0.836) were obtained, indicating the predictive power of this model for untested compounds. Therefore, the final model constructed in this study, along with the information from the contribution maps, could be useful in the design of novel DPP-4 ligands with improved activity.
Collapse
Affiliation(s)
- Simone Queiroz Pantaleão
- Center for Natural and Human Sciences, Federal University of ABC, 09210-170, Santo André, SP, Brazil
| | | | | | | | | |
Collapse
|
27
|
Li Q, Han L, Zhang B, Zhou J, Zhang H. Synthesis and biological evaluation of triazole based uracil derivatives as novel DPP-4 inhibitors. Org Biomol Chem 2016; 14:9598-9611. [DOI: 10.1039/c6ob01818a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel 1,2,3-triazole based uracil derivatives were identified as potent, selective, in vivo effective DPP-4 inhibitors.
Collapse
Affiliation(s)
- Qing Li
- Center of Drug Discovery
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease
- China Pharmaceutical University
- Nanjing
- China
| | - Li Han
- Center of Drug Discovery
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease
- China Pharmaceutical University
- Nanjing
- China
| | - Bin Zhang
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Huibin Zhang
- Center of Drug Discovery
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
28
|
Bogdanov AV, Sadykov TI, Musin LI, Khamatgalimov AR, Krivolapov DB, Dobrynin AB, Mironov VF. Chemoselective oxidation of 1-alkenylisatins with m-chloroperbenzoic acid. Synthesis of new derivatives of isatoic anhydride. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215090030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abu Khalaf R, Jarekji Z, Al-Qirim T, Sabbah D, Shattat G. Pharmacophore modeling and molecular docking studies of acridines as potential DPP-IV inhibitors. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inhibition of dipeptidyl peptidase-IV (DPP-IV) prevents the inactivation of gastric inhibitory polypeptide (GIP) and glucagon-like peptide–1 (GLP-1). This increases circulating levels of active GLP-1 and GIP and stimulates insulin secretion, which results in lowering of glucose levels and improvement of the glycemic control in patients with type 2 diabetes. In this study, pharmacophore modeling and docking experiments were carried out and a series of eight novel 2-ethoxy-6,9-disubstituted acridines (13, 15, and 17a–17f) have been designed and synthesized. Then, these compounds were evaluated for their ability to inhibit DPP-IV. Most of the synthesized compounds were proven to have anti-DPP-IV activity where compound 17b displayed the best activity of 43.8% inhibition at 30 μmol/L concentration. Results of this work might be helpful for further optimization to develop more potent DPP-IV inhibitors.
Collapse
Affiliation(s)
- R. Abu Khalaf
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Z. Jarekji
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - T. Al-Qirim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - D. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - G. Shattat
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Shen H, Li J, Liu Q, Pan J, Huang R, Xiong Y. Umpolung Strategy for Synthesis of β-Ketonitriles through Hypervalent Iodine-Promoted Cyanation of Silyl Enol Ethers. J Org Chem 2015; 80:7212-8. [DOI: 10.1021/acs.joc.5b01102] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hang Shen
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Li
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qing Liu
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jing Pan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ruofeng Huang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yan Xiong
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Carneiro VM, Trivella DB, Scorsato V, Beraldo VL, Dias MP, Sobreira TJ, Aparicio R, Pilli RA. Is RK-682 a promiscuous enzyme inhibitor? Synthesis and in vitro evaluation of protein tyrosine phosphatase inhibition of racemic RK-682 and analogues. Eur J Med Chem 2015; 97:42-54. [DOI: 10.1016/j.ejmech.2015.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/05/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
32
|
Mo DW, Dong S, Sun H, Chen JS, Pang JX, Xi BM, Chen WH. Synthesis and potent inhibitory activities of carboxybenzyl-substituted 8-(3-(R)-aminopiperidin-1-yl)-7-(2-chloro/cyanobenzyl)-3-methyl-3,7-dihydro-purine-2,6-diones as dipeptidyl peptidase IV (DPP-IV) inhibitors. Bioorg Med Chem Lett 2015; 25:1872-5. [DOI: 10.1016/j.bmcl.2015.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
33
|
He Y, Guo S, Zhang X, Fan X. Zinc-Mediated One-Pot Tandem Reaction of Nitriles with Propargyl Bromides: An Access to 3-Alkynylpyridines. J Org Chem 2014; 79:10611-8. [DOI: 10.1021/jo501869d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yan He
- School of Environment, School
of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Henan Province for Green Manufacturing of Fine Chemicals, Henan
Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shenghai Guo
- School of Environment, School
of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Henan Province for Green Manufacturing of Fine Chemicals, Henan
Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xinying Zhang
- School of Environment, School
of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Henan Province for Green Manufacturing of Fine Chemicals, Henan
Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xuesen Fan
- School of Environment, School
of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Henan Province for Green Manufacturing of Fine Chemicals, Henan
Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
34
|
Goel A, Nag P, Rahuja N, Srivastava R, Chaurasia S, Gautam S, Chandra S, Siddiqi MI, Srivastava AK. Discovery of biaryl-4-carbonitriles as antihyperglycemic agents that may act through AMPK-p38 MAPK pathway. Mol Cell Endocrinol 2014; 394:1-12. [PMID: 24993155 DOI: 10.1016/j.mce.2014.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023]
Abstract
A series of functionalized biaryl-4-carbonitriles was synthesized in three steps and evaluated for PTP-1B inhibitory activity. Among the synthesized compounds, four biaryls 6a-d showed inhibition (IC50 58-75 μM) against in vitro PTP-1B assay possibly due to interaction with amino acid residues Lys120, Tyr46 through hydrogen bonding and aromatic-aromatic interactions, respectively. Two biaryl-4-carbonitriles 6b and 6c showed improved glucose tolerance, fasting as well as postprandial blood glucose, serum total triglycerides, and increased high-density lipoprotein-cholesterol in SLM, STZ, STZ-S and C57BL/KsJ-db/db animal models. The bioanalysis of 4'-bromo-2,3-dimethyl-5-(piperidin-1-yl)biphenyl-4-carbonitrile (6b) revealed that like insulin, it increased 2-deoxyglucose uptake in skeletal muscle cells (L6 and C2C12 myotubes). The compound 6b significantly up-regulated the genes related to the insulin signaling pathways like AMPK, MAPK including glucose transporter-4 (GLUT-4) gene in muscle tissue of C57BL/KsJ-db/db mice. Furthermore, it was observed that the compound 6b up-regulated PPARα, UCP2 and HNF4α, which are key regulator of glucose, lipid, and fatty acid metabolism. Western blot analysis of the compound 6b showed that it significantly increased the phosphorylation of AMPK and p38 MAPK and ameliorated glucose uptake in C57BL/KsJ-db/db mice through the AMPK-p38 MAPK pathway.
Collapse
Affiliation(s)
- Atul Goel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Pankaj Nag
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neha Rahuja
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rohit Srivastava
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sumit Chaurasia
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sudeep Gautam
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sharat Chandra
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Arvind K Srivastava
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
35
|
Ji X, Xia C, Wang J, Su M, Zhang L, Dong T, Li Z, Wan X, Li J, Li J, Zhao L, Gao Z, Jiang H, Liu H. Design, synthesis and biological evaluation of 4-fluoropyrrolidine-2-carbonitrile and octahydrocyclopenta[b]pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors. Eur J Med Chem 2014; 86:242-56. [PMID: 25164763 DOI: 10.1016/j.ejmech.2014.08.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 01/25/2023]
Abstract
Based on the previous work in our group and the principle of computer-aided drug design, a series of novel β-amino pyrrole-2-carbonitrile derivatives was designed and synthesized. Compounds 8l and 9l were efficacious and selective DPP4 inhibitors resulting in decreased blood glucose in vivo. Compound 8l had moderate DPP4 inhibitory activity (IC50 = 0.05 μM) and good oral bioavailability (F = 53.2%). Compound 9l showed excellent DPP4 inhibitory activity (IC50 = 0.01 μM), good selectivity (selective ratio: DPP8/DPP4 = 898.00; DPP9/DPP4 = 566.00) against related peptidases, and good efficacy in an oral glucose tolerance tests in ICR mice and moderate PK profiles (F = 22.8%, t1/2 = 2.74 h). Moreover, compound 9l did not block hERG channel and exhibited no inhibition of liver metabolic enzymes such as CYP2C9.
Collapse
Affiliation(s)
- Xun Ji
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Chunmei Xia
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jiang Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Mingbo Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; East China of Normal University, 3663 Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Tiancheng Dong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Zeng Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Xia Wan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jingya Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jia Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, People's Republic of China.
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
36
|
Xing J, Li Q, Zhang S, Liu H, Zhao L, Cheng H, Zhang Y, Zhou J, Zhang H. Identification of dipeptidyl peptidase IV inhibitors: virtual screening, synthesis and biological evaluation. Chem Biol Drug Des 2014; 84:364-77. [PMID: 24674599 DOI: 10.1111/cbdd.12327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Inhibition of dipeptidyl peptidase IV is an important approach for the treatment of type-2 diabetes. In this study, we reported a multistage virtual screening workflow that integrated 3D pharmacophore models, structural consensus docking, and molecular mechanics/generalized Born surface area binding energy calculation to identify novel dipeptidyl peptidase IV inhibitors. After screening our in-house database, two hit compounds, HWL-405 and HWL-892, having persistent high performance in all stages of virtual screening were identified. These two hit compounds together with several analogs were synthesized and evaluated for in vitro inhibition of dipeptidyl peptidase IV. The experimental data indicated that most designed compounds exhibited significant dipeptidyl peptidase IV inhibitory activity. Among them, compounds 35f displayed the greatest potency against dipeptidyl peptidase IV in vitro with the IC50 value of 78 nm. In an oral glucose tolerance test in normal male Kunming mice, compound 35f reduced blood glucose excursion in a dose-dependent manner.
Collapse
Affiliation(s)
- Junhao Xing
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ji X, Su M, Wang J, Deng G, Deng S, Li Z, Tang C, Li J, Li J, Zhao L, Jiang H, Liu H. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors. Eur J Med Chem 2014; 75:111-22. [PMID: 24531224 DOI: 10.1016/j.ejmech.2014.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 01/30/2023]
Abstract
A series of novel hetero-aromatic moieties substituted α-amino pyrrole-2-carbonitrile derivatives was designed and synthesized based on structure-activity relationships (SARs) of pyrrole-2-carbonitrile inhibitors. All compounds demonstrated good dipeptidyl peptidase IV (DPP4) inhibitory activities (IC50 = 0.004-113.6 μM). Moreover, compounds 6h (IC50 = 0.004 μM) and 6n (IC50 = 0.01 μM) showed excellent inhibitory activities against DPP4, good selectivity (compound 6h, selective ratio: DPP8/DPP4 = 450.0; DPP9/DPP4 = 375.0; compound 6n, selective ratio: DPP8/DPP4 = 470.0; DPP9/DPP4 = 750.0) and good efficacy in an oral glucose tolerance test in ICR mice. Furthermore, compounds 6h and 6n demonstrated moderate PK properties (compound 6h, F% = 37.8%, t1/2 = 1.45 h; compound 6n, F% = 16.8%, t1/2 = 3.64 h).
Collapse
Affiliation(s)
- Xun Ji
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wen Hua Road, Shenyang, Liaoning 110016, PR China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Mingbo Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; East China of Normal University, 3663 Zhongshan Road, Shanghai 200062, PR China
| | - Jiang Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Guanghui Deng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Sisi Deng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Zeng Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Chunlan Tang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jingya Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jia Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wen Hua Road, Shenyang, Liaoning 110016, PR China
| | - Hualiang Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wen Hua Road, Shenyang, Liaoning 110016, PR China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| |
Collapse
|
38
|
Patel BD, Ghate MD. Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur J Med Chem 2014; 74:574-605. [PMID: 24531198 DOI: 10.1016/j.ejmech.2013.12.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/28/2013] [Accepted: 12/27/2013] [Indexed: 02/08/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is one of the widely explored novel targets for Type 2 diabetes mellitus (T2DM) currently. Research has been focused on the strategy to preserve the endogenous glucagon like peptide (GLP)-1 activity by inhibiting the DPP-4 action. The DPP-4 inhibitors are weight neutral, well tolerated and give better glycaemic control over a longer duration of time compared to existing conventional therapies. The journey of DPP-4 inhibitors in the market started from the launch of sitagliptin in 2006 to latest drug teneligliptin in 2012. This review is mainly focusing on the recent medicinal aspects and advancements in the designing of DPP-4 inhibitors with the therapeutic potential of DPP-4 as a target to convey more clarity in the diffused data.
Collapse
Affiliation(s)
- Bhumika D Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India.
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
39
|
Wang J, Feng Y, Ji X, Deng G, Leng Y, Liu H. Synthesis and biological evaluation of pyrrolidine-2-carbonitrile and 4-fluoropyrrolidine-2-carbonitrile derivatives as dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes. Bioorg Med Chem 2013; 21:7418-29. [DOI: 10.1016/j.bmc.2013.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
|
40
|
Juillerat-Jeanneret L. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else? J Med Chem 2013; 57:2197-212. [PMID: 24099035 DOI: 10.1021/jm400658e] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest.
Collapse
|
41
|
Chen J, Ni H, Chen W, Zhang G, Yu Y. A new strategy for facile synthesis of tetrasubstituted pyridine derivatives. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.06.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Lam B, Zhang Z, Stafford JA, Skene RJ, Shi L, Gwaltney SL. Structure-based design of pyridopyrimidinediones as dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2012; 22:6628-31. [DOI: 10.1016/j.bmcl.2012.08.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/21/2012] [Accepted: 08/28/2012] [Indexed: 11/24/2022]
|
43
|
Ikuma Y, Hochigai H, Kimura H, Nunami N, Kobayashi T, Uchiyama K, Furuta Y, Sakai M, Horiguchi M, Masui Y, Okazaki K, Sato Y, Nakahira H. Discovery of 3H-imidazo[4,5-c]quinolin-4(5H)-ones as potent and selective dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorg Med Chem 2012; 20:5864-83. [DOI: 10.1016/j.bmc.2012.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022]
|
44
|
Murai N, Miyano M, Yonaga M, Tanaka K. One-Pot Primary Aminomethylation of Aryl and Heteroaryl Halides with Sodium Phthalimidomethyltrifluoroborate. Org Lett 2012; 14:2818-21. [DOI: 10.1021/ol301037s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Norio Murai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Masayuki Miyano
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Masahiro Yonaga
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Keigo Tanaka
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
45
|
Shao J, Yu W, Shao Z, Yu Y. A "one-pot" multicomponent approach to polysubstituted 4-aminopyridines. Chem Commun (Camb) 2012; 48:2785-7. [PMID: 22314887 DOI: 10.1039/c2cc17850h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and facile domino reaction has been developed to synthesize a variety of polysubstituted 4-aminopyridines from α-azidovinylketones, aldehydes and methylamine derivatives in reasonably good yields under mild conditions. Additionally, a possible mechanism is proposed.
Collapse
Affiliation(s)
- Jiaan Shao
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | |
Collapse
|
46
|
Kato N, Oka M, Murase T, Yoshida M, Sakairi M, Yamashita S, Yasuda Y, Yoshikawa A, Hayashi Y, Makino M, Takeda M, Mirensha Y, Kakigami T. Discovery and pharmacological characterization of N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methylpyrazolo[1,5-a]pyrimidine-6-carboxamide hydrochloride (anagliptin hydrochloride salt) as a potent and selective DPP-IV inhibitor. Bioorg Med Chem 2011; 19:7221-7. [DOI: 10.1016/j.bmc.2011.09.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 12/25/2022]
|