1
|
Obalola AA, Abrahamse H, Dhilip Kumar SS. Enhanced therapeutic precision using dual drug-loaded nanomaterials for targeted cancer photodynamic therapy. Biomed Pharmacother 2025; 184:117909. [PMID: 39938348 DOI: 10.1016/j.biopha.2025.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Combination therapy has expanded significantly, including dual drug-loaded nanomaterials in drug delivery systems. Cancer therapy can be developed by targeting cancer cells and lessening the adverse consequences of anticancer drugs, which are just two of the numerous intriguing possibilities in this research field. Dual-drug delivery nanosystems that utilize nanotechnology to combine dual-drug administration may overcome the limitations of free drugs, the properties of nanomaterials, and the combined action of two drugs work together to overcome several drug-resistant systems within cancerous cells. It is essential to design dual-drug delivery nanosystems that use various multidrug-resistant techniques to overcome drug resistance mechanisms and enhance the effectiveness of clinical antitumor therapy. In this study, we discuss the use of photosensitizers in cancer photodynamic therapy, nanomaterials with dual-drug loading for targeted drug delivery, and the function and impact of nanomaterials in cancer photodynamic therapy. Furthermore, an overview of the drug-loaded nanomaterials in vitro and in vivo activity for cancer photodynamic treatment is discussed. The commercial and clinical applications of photosensitizer-loaded nanoparticles in cancer photodynamic therapy are also briefly discussed in the study. A key finding of the study is the importance of nanomaterials and dual drugs as effective drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
2
|
Kuznetsov KM, Cariou K, Gasser G. Two in one: merging photoactivated chemotherapy and photodynamic therapy to fight cancer. Chem Sci 2024:d4sc04608k. [PMID: 39464604 PMCID: PMC11499979 DOI: 10.1039/d4sc04608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The growing number of cancer cases requires the development of new approaches for treatment. A therapy that has attracted the special attention of scientists is photodynamic therapy (PDT) due to its spatial and temporal resolution. However, it is accepted that this treatment methodology has limited application in cases of low cellular oxygenation, which is typical of cancerous tissues. Therefore, a strategy to overcome this drawback has been to combine this therapy with photoactivated chemotherapy (PACT), which works independently of the presence of oxygen. In this perspective, we examine compounds that act as both PDT and PACT agents and summarize their photophysical and biological characteristics.
Collapse
Affiliation(s)
- Kirill M Kuznetsov
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| |
Collapse
|
3
|
Sekaran B, Guragain M, Misra R, D'Souza F. β-Pyrrole Functionalized Push or Pull Porphyrins: Excited Charge Transfer Promoted Singlet Oxygen Generation. J Phys Chem A 2023; 127:7964-7975. [PMID: 37707534 DOI: 10.1021/acs.jpca.3c05292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Singlet oxygen (1O2) producing photosensitizers are highly sought for developing new photodynamic therapy agents and facilitating 1O2-involved chemical reactions. Often singlet oxygen is produced by the reaction of triplet-excited photosensitizers with dioxygen via an energy transfer mechanism. In the present study, we demonstrate a charge transfer mechanism to produce singlet oxygen involving push or pull functionalized porphyrins. For this, 20 β-pyrrole functionalized porphyrins carrying either an electron-rich push or electron-deficient pull group have been newly synthesized. Photoexcitation of these push-pull porphyrins has been shown to produce high-energy MPδ+-Aδ- or MPδ--Dδ+ charge transfer states. Subsequent charge recombination results in populating the triplet excited states of extended lifetimes in the case of the push group containing porphyrins that eventually react with dioxygen to produce the reactive singlet oxygen of relatively higher quantum yields. The effect of the push and pull groups on the porphyrin periphery in governing initial charge transfer, the population of triplet excited states and their lifetimes, and resulting in improved singlet oxygen quantum yields are systematically probed. The improved performance of 1O2 generation by porphyrins carrying push groups is borne out from this study.
Collapse
Affiliation(s)
- Bijesh Sekaran
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Manan Guragain
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
4
|
Hirakawa K, Katayama A, Yamaoka S, Ikeue T, Okazaki S. Photosensitized protein damage by water-soluble phthalocyanine zinc(II) and gallium(III) complexes through electron transfer and singlet oxygen production. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Çol S, Emirik M, Alım Z, Baran A. Physical–chemical studies of new, versatile carbazole derivatives and zinc complexes: Their synthesis, investigation of
in–vitro
inhibitory effects on
α
–glucosidase and human erythrocyte carbonic anhydrase I and II isoenzymes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sümeyye Çol
- Sakarya University, Faculty of Arts and Sciences, Chemistry Department Sakarya Turkey
| | - Mustafa Emirik
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Chemistry Department Rize Turkey
| | - Zuhal Alım
- Ahi Evran University, Faculty of Arts and Sciences, Chemistry Department Kırşehir Turkey
| | - Arif Baran
- Sakarya University, Faculty of Arts and Sciences, Chemistry Department Sakarya Turkey
| |
Collapse
|
6
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
7
|
Skvortsov IA, Zimcik P, Stuzhin PA, Novakova V. pH-Sensitive subphthalocyanines and subazaphthalocyanines. Dalton Trans 2020; 49:11090-11098. [PMID: 32582891 DOI: 10.1039/d0dt01703e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although subphthalocyanines (SubPcs) possess advantageous fluorescence properties and serve as an amazing tool to attach a recognition sensor moiety to the axial position, a limited number of switchable SubPcs have been described so far. Isosteric aza-replacement is known to improve sensing properties in closely related phthalocyanine families; however, pyrazino[2,3-b,g,l]subporphyrazines (SubPyzPzs) have not yet been investigated for use in sensing applications. Therefore, this project focuses on the synthesis and sensing abilities of pH-sensitive SubPcs and SubPyzPzs on the principle of photoinduced electron transfer (PET). 4-Dimethylaminophenoxy (for acidic pH) or 4-hydroxyphenoxy (for basic pH) groups were employed as pH-sensitive axial ligands. Electrochemical studies revealed improvements in the electron-accepting properties of SubPyzPzs (Ered-0.56 V vs. SCE) in comparison to those of SubPcs (Ered-1.0 V vs. SCE). Hydroxy groups on the axial phenoxy ligands of SybPyzPzs and SubPcs have been found to act as donors for PET. The sensing properties under basic conditions could not be studied, since all the SubPcs and SubPyzPzs decomposed under basic conditions, SubPyzPzs were more susceptible to this process. On the other hand, compounds with 4-dimethylaminophenoxy groups as axial ligands showed great potential for sensing applications. These compounds were nonfluorescent (ΦF < 0.01) in acetone due to efficient PET, while their fluorescence steeply increased by two orders of magnitude upon the addition of trifluoroacetic acid, reaching a ΦF value of up to 0.17 (λem range of 563-590 nm). These compounds maintained their sensing properties in aqueous medium after incorporation into microemulsions. The most basic derivative showed pKA = 2.95 with ΦF = 0.10 in the ON state (fluorescence enhancement factor = 46, λem = 577 nm).
Collapse
Affiliation(s)
- Ivan A Skvortsov
- Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, Sheremetevsky Avenue 7, Ivanovo RF-153000, Russia.
| | | | | | | |
Collapse
|
8
|
Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, Raja SO, Ponnuvel K, Shanmugpriya J, Gulyani A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213233] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Nieves I, Hally C, Viappiani C, Agut M, Nonell S. A porphycene-gentamicin conjugate for enhanced photodynamic inactivation of bacteria. Bioorg Chem 2020; 97:103661. [PMID: 32086054 DOI: 10.1016/j.bioorg.2020.103661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
A novel photoantimicrobial agent, namely 2-aminothiazolo[4,5-c]-2,7,12,17-tetrakis(methoxyethyl)porphycene (ATAZTMPo-gentamicin) conjugate, has been prepared by a click reaction between the red-light absorbing 9-isothiocyanate-2,7,12,17-tetrakis(methoxyethyl)porphycene (9-ITMPo) and the antibiotic gentamicin. The conjugate exhibits submicromolar activity in vitro against both Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) upon exposure to red light and is devoid of any cytotoxicity in the dark. The conjugate outperforms the two components delivered separately, which may be used to enhance the therapeutic index of gentamicin, broaden the spectrum of pathogens against which it is effective and reduce its side effects. Additionally, we report a novel straightforward synthesis of 2,7,12,17-tetrakis(methoxyethyl) porphycene (TMPo) that decreases the number of steps from nine to six.
Collapse
Affiliation(s)
- Ingrid Nieves
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Dipartamento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartamento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
10
|
Youssef Z, Yesmurzayeva N, Larue L, Jouan-Hureaux V, Colombeau L, Arnoux P, Acherar S, Vanderesse R, Frochot C. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. J Clin Med 2019; 8:E2205. [PMID: 31847227 PMCID: PMC6947424 DOI: 10.3390/jcm8122205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
This study describes the employment of gold nanorods (AuNRs), known for their good reputation in hyperthermia-based cancer therapy, in a hybrid combination of photosensitizers (PS) and peptides (PP). We report here, the design and the synthesis of this nanosystem and its application as a vehicle for the selective drug delivery and the efficient photodynamic therapy (PDT). AuNRs were functionalized by polyethylene glycol, phototoxic pyropheophorbide-a (Pyro) PS, and a "KDKPPR" peptide moiety to target neuropilin-1 receptor (NRP-1). The physicochemical characteristics of AuNRs, the synthesized peptide and the intermediate PP-PS conjugates were investigated. The photophysical properties of the hybrid AuNRs revealed that upon conjugation, the AuNRs acquired the characteristic properties of Pyro concerning the extension of the absorption profile and the capability to fluoresce (Φf = 0.3) and emit singlet oxygen (ΦΔ = 0.4) when excited at 412 nm. Even after being conjugated onto the surface of the AuNRs, the molecular affinity of "KDKPPR" for NRP-1 was preserved. Under irradiation at 652 nm, in vitro assays were conducted on glioblastoma U87 cells incubated with different PS concentrations of free Pyro, intermediate PP-PS conjugate and hybrid AuNRs. The AuNRs showed no cytotoxicity in the absence of light even at high PS concentrations. However, they efficiently decreased the cell viability by 67% under light exposure. This nanosystem possesses good efficiency in PDT and an expected potential effect in a combined photodynamic/photothermal therapy guided by NIR fluorescence imaging of the tumors due to the presence of both the hyperthermic agent, AuNRs, and the fluorescent active phototoxic PS.
Collapse
Affiliation(s)
- Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Nurlykyz Yesmurzayeva
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
- Kazakh National Research Technical University after K.I Satpayev, 22 Satpayev str., Almaty 050013, Kazakhstan
| | - Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | | | - Ludovic Colombeau
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| |
Collapse
|
11
|
Affiliation(s)
- Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
12
|
Marydasan B, Nair RR, Babu PSS, Ramaiah D, Nair SA. Picolyl Porphyrin Nanostructures as a Functional Drug Entrant for Photodynamic Therapy in Human Breast Cancers. ACS OMEGA 2019; 4:12808-12816. [PMID: 31460405 PMCID: PMC6682089 DOI: 10.1021/acsomega.9b01380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 05/07/2023]
Abstract
The major challenge in photodynamic therapy (PDT) is to discover versatile photosensitizers (PSs) that possess good solubility in biological media, enhanced singlet oxygen generation efficacy, and photodynamic activity. Working in this direction, we synthesized a picolylamine-functionalized porphyrin conjugate, compound 1, and its zinc complex compound 2. Compound 1 forms spherical structures in methanol, whereas compound 2 exhibited vesicular structures. Compared to the existing PSs like foscan and photofrin, compound 2 exhibited a high singlet oxygen generation efficiency and triplet quantum yield. The complex also showed good water solubility, and its PDT activity was demonstrated through in vitro studies using MDA-MB 231 breast cancer cells. The mechanism of biological activity evaluated using various techniques proved that the active compound 2 induced predominantly singlet oxygen-triggered apoptosis-mediated cancerous cell death. Our results demonstrate that zinc insertion in the picolyl porphyrin induces an enhanced triplet excited state, and the singlet oxygen yields quantitatively and imparts excellent in vitro photodynamic activity, thereby demonstrating their pertinence as a nanodrug in future photobiological applications.
Collapse
Affiliation(s)
- Betsy Marydasan
- Cancer
Research Programme, Rajiv Gandhi Centre
for Biotechnology, Trivandrum 695014, Kerala, India
- E-mail: (B.M.)
| | - Rajshree R. Nair
- Cancer
Research Programme, Rajiv Gandhi Centre
for Biotechnology, Trivandrum 695014, Kerala, India
| | - P. S. Saneesh Babu
- Cancer
Research Programme, Rajiv Gandhi Centre
for Biotechnology, Trivandrum 695014, Kerala, India
| | - Danaboyina Ramaiah
- Chemistry
Department, CSIR-North East Institute of
Science and Technology (CSIR-NEIST), Jorhat 785 006, India
| | - S. Asha Nair
- Cancer
Research Programme, Rajiv Gandhi Centre
for Biotechnology, Trivandrum 695014, Kerala, India
- E-mail: . Phone: 91-04712529501 (S.A.N.)
| |
Collapse
|
13
|
Novel phthalocyanines activated by dim light for mosquito larva- and cell-inactivation with inference for their potential as broad-spectrum photodynamic insecticides. PLoS One 2019; 14:e0217355. [PMID: 31141567 PMCID: PMC6541276 DOI: 10.1371/journal.pone.0217355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Mosquitoes are significant vectors, responsible for transmitting serious infectious diseases, including the recent epidemics of global significance caused by, for example, Zika, Dengue and Chikungunya viruses. The chemical insecticides in use for mosquito control are toxic and ineffective due to the development of resistance to them. The new approach to reduce mosquito population by releasing genetically modified males to cause female infertility is still under environmental safety evaluation. Photodynamic insecticides (PDI) have long been known as a safe and effective alternative by using dyes as the photosensitizers (PS) for activation with light to generate insecticidal singlet oxygen and reactive oxygen species. This approach warrants re-examination with advances in the chemical synthesis of novel PS, e.g. phthalocyanines (PC). Nine PC were compared with five porphyrin derivatives and two classic PS of halogenated fluoresceins, i.e. cyanosine and rose bengal experimentally for photodynamic treatment (PDT) of the larvae of laboratory-reared Aedes mosquitoes and their cell lines. Groups of 2nd instar larvae were first exposed overnight to graded concentrations of each PS in the dark followed by their exposure to dim light for up to 7 hours. Larvae of both experimental and control groups were examined hourly for viability based on their motility. Monolayers of mosquito cells were similarly PS-sensitized and exposed briefly to light at the PS-specific excitation wavelengths. Cell viability was assessed by MTT reduction assays. Of the 16 PS examined for photodynamic inactivation of the mosquito larvae, effective are three novel PC, i.e. amino-Si-PC1 and -PC2, anilinium Zn-PC3.4, pyridyloxy Si-PC14 and two porphyrin derivatives, i.e. TPPS2 and TMAP. Their EC50 values were determined, all falling in the nanomolar range lower than those of rose bengal and cyanosine. All PS effective in vivo were also found to dose-dependently inactivate mosquito cells photodynamically in vitro, providing cellular basis for their larvicidal activities. The present findings of novel PC with effective photodynamic larvicidal activities provide fresh impetus to the development of PDI with their established advantages in safety and efficacy. Toward that end, the insect cell lines are of value for rapid screening of new PC. The optimal excitability of PC with insect-invisible red light is inferred to have the potential to broaden the range of targetable insect pests.
Collapse
|
14
|
Ghazal B, Kaya EN, Husain A, Ganesan A, Durmuş M, Makhseed S. Biotinylated-cationic zinc(II) phthalocyanine towards photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424618501158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Targeting biotin receptors in cancer cells can improve specifying of photosensitizers (PSs) for cancer treatment by photodynamic therapy (PDT) applications. Consequently, there has been extensive research focusing mainly on the design of PSs with optimized pharmaceutical properties and better targeting toward cancer cells. Herein a tailored mono-biotinylated zinc(II) phthalocyanine (Pc-1) substituted with six phenoxy-bis(triazolyl) substituents has been synthesized. This Pc-1 has been further modified to its cationic version (Pc-2) through quaternizing of the triazole moiety to gain water solubility. Both non-ionic zinc(II) phthalocyanine (Pc-1) and its cationic derivative (Pc-2) were characterized by standard spectroscopic techniques, namely; FT-IR, 1H and [Formula: see text]C NMR, UV-Vis and MALDI-TOF, and by elemental analysis. The photophysical and photochemical properties were evaluated in DMSO for the non-ionic Pc-1 and in both DMSO and water for the cationic Pc-2.
Collapse
Affiliation(s)
- Basma Ghazal
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Esra Nur Kaya
- Gebze Technical University, Department of Chemistry, 41400 Gebze-Kocaeli, Turkey
| | - Ali Husain
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Asaithampi Ganesan
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, 41400 Gebze-Kocaeli, Turkey
| | - Saad Makhseed
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
15
|
Wong RC, Lo PC, Ng DK. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Chang DD, Yang WH, Dai XH, Wang JX, Chen L, Pan JM, Yan YS, Dai YR. Click synthesis of glycosylated porphyrin-cored PAMAM dendrimers with specific recognition and thermosensitivity. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Liebold M, Sharikow E, Seikel E, Trombach L, Harms K, Zimcik P, Novakova V, Tonner R, Sundermeyer J. An experimental and computational study on isomerically pure, soluble azaphthalocyanines and their complexes and boron azasubphthalocyanines of a varying number of aza units. Org Biomol Chem 2018; 16:6586-6599. [PMID: 30168830 DOI: 10.1039/c8ob01705k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, we present a series of isomerically pure, peripherally alkyl substituted, soluble and low aggregating azaphthalocyanines as well as their new, smaller hybrid homologues, azasubphthalocyanines. The focus lies on the effect of the systematically increasing number of aza building blocks [-N[double bond, length as m-dash]] replacing the non-peripheral [-CH[double bond, length as m-dash]] units and their influence on the physical and photophysical properties of these chromophores. The absolute and relative HOMO-LUMO energies of azaphthalocyanines were analyzed using UV-Vis and CV and compared to the density functional theory calculations (B3LYP, TD-DFT). The lowering of the HOMO level is revealed as the determining factor for the trend in the adsorption energies by electronic structure analysis. Crystals of substituted subphthalocyanines, N2-Pc*H2 and N4-[Pc*Zn·H2O], were obtained out of DCM. For the synthesis of the valuable tetramethyltetralin phthalocyanine building block a new highly efficient synthesis involving a nearly quantitative CoII catalyzed aerobic autoxidation step is introduced replacing inefficient KMnO4/pyridine as the oxidant.
Collapse
Affiliation(s)
- Martin Liebold
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Soganci T, Baygu Y, Kabay N, Gök Y, Ak M. Comparative Investigation of Peripheral and Nonperipheral Zinc Phthalocyanine-Based Polycarbazoles in Terms of Optical, Electrical, and Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21654-21665. [PMID: 29870222 DOI: 10.1021/acsami.8b06206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, nonperipherally alkyl-linked carbazole conjugated novel zinc(II) phthalocyanine was synthesized by cyclotetramerization reaction of 6-(9 H-carbazol-9-yl)hexane-1-thiol and 3,6-bis(tosyloxy) phthalonitrile in a one-step reaction. Optical, electrical, and sensing properties of this super structured polycarbazole obtained by electropolymerization are compared with peripherally alkyl-linked polycarbazole-based zinc(II) phthalocyanine. It has been found that the attachment of alkyl-linked carbazoles to the phthalocyanine molecule in either peripheral or nonperipheral positions has a great effect on the optical and electrical properties and sensing ability of the resulting polycarbazole derivatives. P(n-ZnPc) has the highest electrochromic contrast (70.5%) among the derivatives of zinc(II) phthalocyanines in the literature. In addition to these, the sensor platform has been successfully established, and analytical optimizations have been carried out. When the sensors prepared with zinc(II) phthalocyanine are examined, it was specified that the n-ZnPc- co-TP/GOx was ranked first in the literature with high sensor response and stability. As a result, by changing of the peripheral and nonperipheral position of phthalocyanines, their physical properties can be tuned to meet the requirements of desired technological application.
Collapse
Affiliation(s)
- Tugba Soganci
- Department of Chemistry , Pamukkale University , Kınıklı/Denizli , Turkey
| | - Yasemin Baygu
- Department of Chemistry , Pamukkale University , Kınıklı/Denizli , Turkey
| | - Nilgün Kabay
- Department of Biomedical Engineering , Pamukkale University , Kınıklı/Denizli , Turkey
| | - Yaşar Gök
- Department of Chemical Engineering , Usak University , Usak , Turkey
| | - Metin Ak
- Department of Chemistry , Pamukkale University , Kınıklı/Denizli , Turkey
| |
Collapse
|
19
|
Novakova V, Donzello MP, Ercolani C, Zimcik P, Stuzhin PA. Tetrapyrazinoporphyrazines and their metal derivatives. Part II: Electronic structure, electrochemical, spectral, photophysical and other application related properties. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Obata M, Tanaka S, Mizukoshi H, Ishihara E, Takahashi M, Hirohara S. RAFT synthesis of polystyrene-block-poly(polyethylene glycol monomethyl ether acrylate) for zinc phthalocyanine-loaded polymeric micelles as photodynamic therapy photosensitizers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Shuto Tanaka
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Hiroshi Mizukoshi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Eika Ishihara
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi, 4-4-37 Takeda; Kofu 400-8510 Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering; National Institute of Technology, Ube College, 2-14-1 Tokiwadai; Ube 755-8555 Japan
| |
Collapse
|
21
|
Near-Infrared Fluorescence of Silicon Phthalocyanine Carboxylate Esters. Sci Rep 2017; 7:12282. [PMID: 28947759 PMCID: PMC5612943 DOI: 10.1038/s41598-017-12374-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Seven silicon(IV) phthalocyanine carboxylate esters (SiPcs, 1–7) with non-, partially- and per-fluorinated aliphatic (linear or branched at the alpha-carbon) and aromatic ester groups have been synthesized, their solid-state structures determined and their optoelectronic properties characterized. The SiPcs exhibit quasi-reversible oxidation waves (vs. Fc+/Fc) at 0.58–0.75 V and reduction waves at −0.97 to −1.16 V centered on the phthalocyanine ring with a narrow redox gap range of 1.70–1.75 V. Strong absorbance in the near-infrared (NIR) region is observed for 1–7 with the lowest-energy absorption maximum (Q band) varying little as a function of ester between 682 and 691 nm. SiPcs 1–7 fluorescence in the near-infrared with emission maxima at 691–700 nm. The photoluminescence quantum yields range from 40 to 52%. As a function of esterification, the SiPcs 1–7 exhibit moderate-to-good solubility in chlorinated solvents, such as 1,2-dichlorobenzene and chloroform.
Collapse
|
22
|
Zhang Q, Cai Y, Li QY, Hao LN, Ma Z, Wang XJ, Yin J. Targeted Delivery of a Mannose-Conjugated BODIPY Photosensitizer by Nanomicelles for Photodynamic Breast Cancer Therapy. Chemistry 2017; 23:14307-14315. [PMID: 28753238 DOI: 10.1002/chem.201702935] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/21/2022]
Abstract
The targeted delivery of a photosensitizer (PS) with appropriate carriers represents an attractive means of selectively delivering cargo to target tissues or subcellular compartments for photodynamic therapy (PDT). Herein, a three-arm distyryl BODIPY derivative conjugated with mannose units (denoted by BTM) that can co-assemble with Tween 80 to form nanomicelles (BTM-NMs) for targeted PDT is reported. MDA-MB-231 breast cancer cells recognized and specifically internalized BTM-NMs via mannose-receptor-mediated endocytosis with preferential accumulation in the lysosomes. These NMs could disassemble in cell lysosomes and subsequently induce highly efficient singlet oxygen (1 O2 ) generation upon light irradiation. 1 O2 disrupted the lysosomal membrane and promoted the escape of BTM from the lysosome into the cytoplasm, thereby resulting in the efficient and selective killing of cancer cells through PDT. This study may provide a new strategy for designing targeted PDT systems to fight cancer.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ying Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Qiu-Yan Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Lin-Na Hao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zheng Ma
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
23
|
Gülmez AD, Göksel M, Durmuş M. Silicon(IV) phthalocyanine-biotin conjugates: Synthesis, photophysicochemical properties and in vitro biological activity for photodynamic therapy. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Silicon (IV) phthalocyanines bearing one or two biotin groups on the axially positions were synthesized, and these novel phthalocyanines were characterized by elemental analysis and standard spectroscopic techniques such as FT-IR, [Formula: see text]H NMR, UV-vis and MALDI-TOF. The synthesized compounds are the first examples of axially biotin substituted silicon (IV) phthalocyanines. These phthalocyanines were designed as targeting photosensitizers for the treatment of cancer by photodynamic therapy (PDT) technique. The phthalocyanine ring was selected for its photosensitizer ability and the biotin group was selected as a targeting agent for increasing accumulation of these photosensitizers in tumor cells. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation) properties of the target silicon(IV) phthalocyanines were investigated in DMSO. The photosensitizing efficiency of the studied phthalocyanines was tested against human cervical cancer (HeLa) cells at different photosensitizer concentrations. Both axially mono- and bis-biotin substituted silicon(IV) phthalocyanines present high photocytotoxicity against HeLa cancer cells with the cell survival degree ranging from 13% to 50%. The photosensitivity and the intensity of damage were found to be directly related to the concentration of the used photosensitizers. According to the obtained results, both silicon(IV) phthalocyanine derivatives could be promising as photosensitizers for treatment of cancer by PDT technique.
Collapse
Affiliation(s)
| | - Meltem Göksel
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
- Kocaeli University, Kosekoy Vocational School, Kartepe, Kocaeli 41135, Turkey
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
| |
Collapse
|
24
|
Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N -methyl morpholiniumethoxy substituents in non-peripheral positions. J Inorg Biochem 2017; 172:67-79. [DOI: 10.1016/j.jinorgbio.2017.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/29/2022]
|
25
|
Ghazal B, Machacek M, Shalaby MA, Novakova V, Zimcik P, Makhseed S. Phthalocyanines and Tetrapyrazinoporphyrazines with Two Cationic Donuts: High Photodynamic Activity as a Result of Rigid Spatial Arrangement of Peripheral Substituents. J Med Chem 2017; 60:6060-6076. [PMID: 28558213 DOI: 10.1021/acs.jmedchem.7b00272] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High photodynamic activity was observed for hexadeca-cationic zinc, magnesium, and metal-free phthalocyanines (Pcs) and tetrapyrazinoporphyrazines with EC50 values as low as 5 nM (MCF-7 cells) for the best compound; this activity was several times better than that of clinically established photosensitizers verteporfin, temoporfin, S3AlOHPc, or protoporphyrin IX. This lead compound was characterized by low dark toxicity (TC50 = 369 μM), high efficiency against other cell lines (HCT 116 and HeLa), and possible activation by light above 680 nm. The excellent photodynamic activity resulted from the rigid spatial arrangement of the quaternized triazole moieties above and below the Pc core, as confirmed by X-ray crystallography. The triazole moieties thus formed two "cationic donuts" that protected the hydrophobic core against aggregation in water. The lysosomes were found to be the site of subcellular localization and were consequently the primary targets of photodynamic injury, resulting in predominantly necrotic cell death.
Collapse
Affiliation(s)
- Basma Ghazal
- Department of Chemistry, Kuwait University , P.O. Box 5969, Safat, 13060, Kuwait
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University , Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Mona Abbas Shalaby
- Department of Chemistry, Kuwait University , P.O. Box 5969, Safat, 13060, Kuwait
| | - Veronika Novakova
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University , Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petr Zimcik
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University , Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Saad Makhseed
- Department of Chemistry, Kuwait University , P.O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
26
|
Dai XH, Yang WH, Yan WL, Hu JM, Dai YR, Pan JM, Yan YS. Porphyrin-cored dendrimers consisting of novel siloxane-poly (amido amine) dendron-like arms: Synthesis, characterization, and photophysical properties. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Wang A, Zhou R, Zhou L, Sun K, Jiang J, Wei S. Positively charged phthalocyanine-arginine conjugates as efficient photosensitizer for photodynamic therapy. Bioorg Med Chem 2017; 25:1643-1651. [DOI: 10.1016/j.bmc.2017.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
|
28
|
Staegemann MH, Gitter B, Dernedde J, Kuehne C, Haag R, Wiehe A. Mannose-Functionalized Hyperbranched Polyglycerol Loaded with Zinc Porphyrin: Investigation of the Multivalency Effect in Antibacterial Photodynamic Therapy. Chemistry 2017; 23:3918-3930. [PMID: 28029199 DOI: 10.1002/chem.201605236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 02/03/2023]
Abstract
The antibacterial photodynamic activity of hyperbranched polyglycerol (hPG) loaded with zinc porphyrin photosensitizers and mannose units was investigated. hPG, with a MW of 19.5 kDa, was functionalized with about 15 molecules of the photosensitizer {5,10,15-tris(3-hydroxyphenyl)-20-[4-(prop-2-yn-1-ylamino)tetrafluorophenyl]porphyrinato}-zinc(II) by using copper(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC). These nanoparticle conjugates were functionalized systematically with increasing loadings of mannose in the range of approximately 20 to 110 groups. With higher mannose loadings (ca. 58-110 groups) the water-insoluble zinc porphyrin photosensitizer could thus be transferred into a water-soluble form. Targeting of the conjugates was proven in binding studies to the mannose-specific lectin concanavalin A (Con A) by using surface plasmon resonance (SPR). The antibacterial phototoxicity of the conjugates on Staphylococcus aureus (as a typical Gram-positive germ) was investigated in phosphate-buffered saline (PBS). It was shown that conjugates with approximately 70-110 mannose units exhibit significant antibacterial activity, whereas conjugates with approximately 20-60 units did not induce bacterial killing at all. These results give an insight into the multivalency effect in combination with photodynamic therapy (PDT). On addition of serum to the bacterial cultures, a quenching of this antibacterial phototoxicity was observed. In fluorescence studies with the conjugates in the presence of increasing bovine serum albumin (BSA) concentrations, protein-conjugate associations could be identified as a plausible cause for this quenching.
Collapse
Affiliation(s)
- Michael H Staegemann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Burkhard Gitter
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christian Kuehne
- Charité-Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| |
Collapse
|
29
|
Kim KS, Song CJ, Jaung JY, Na K. Two arms hydrophilic photosensitizer conjugates with vitamin B for cancer-selective photodynamic therapy. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kyoung Sub Kim
- Center for Photomedicine, Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi do 420-743 Republic of Korea
| | - Cheol Jun Song
- Department of Organic and Nano Engineering; Hanyang University; 17, Haengdang-dong, Seongdong-gu Seoul 133791 Republic of Korea
| | - Jae Yun Jaung
- Department of Organic and Nano Engineering; Hanyang University; 17, Haengdang-dong, Seongdong-gu Seoul 133791 Republic of Korea
| | - Kun Na
- Center for Photomedicine, Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi do 420-743 Republic of Korea
| |
Collapse
|
30
|
Chang KP, Kolli BK. New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives. Parasit Vectors 2016; 9:396. [PMID: 27412129 PMCID: PMC4942964 DOI: 10.1186/s13071-016-1674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 01/03/2023] Open
Abstract
Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides. Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in medicine and agriculture. Here we describe “photodynamic vaccination” (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g. Si-phthalocyanines; and (ii) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine candidates are being prepared accordingly for experimental trials. We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for this difference is under study. The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the necessary studies to move the project toward product development.
Collapse
Affiliation(s)
- Kwang Poo Chang
- Department of Microbiology/Immunology, Chicago Medical School/Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| | - Bala K Kolli
- Department of Microbiology/Immunology, Chicago Medical School/Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | | |
Collapse
|
31
|
Jin WW, Wang Y, Wang A, Zhou L, Lin Y, Wei SH. Influence of N atom number and form on the photodynamic activities of zinc phthalocyanines. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amino group modified phthalocyanines (Pcs) and their derivatives have attracted great attention in the field of photodynamic therapy (PDT) because of their satisfied anticancer activity. The existence of N atoms in these Pcs is very important because they not only provide water solubility of Pcs, but also greatly affect their PDT activity. To clear the influence of N atoms number on PDT activity of amino group modified Pcs and their derivatives, in this manuscript, two series of amine modified Pcs with different N atom number and their water soluble derivatives, hydrochloride and quaternizing derivatives were synthesized. Their photochemical and photobiology properties were studied and compared. The results indicated that with increasing the number on N atom, the reactive oxygen species (ROSs) generation ability, cancer cell uptaken ability and photoinduced anticancer activity were all increased in these ZnPcs.
Collapse
Affiliation(s)
- Wei W. Jin
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, China
| | - Yue Wang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, China
| | - Ao Wang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, China
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, China
| | - Yun Lin
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, China
| | - Shao H. Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, China
| |
Collapse
|
32
|
Wu J, Xiao Q, Zhang N, Xue C, Leung AW, Zhang H, Xu C, Tang QJ. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells. Photodiagnosis Photodyn Ther 2016; 15:53-8. [PMID: 27181460 DOI: 10.1016/j.pdpdt.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Palmatine hydrochloride (PaH) is a natural active compound from a traditional Chinese medicine (TCM). The present study aims to evaluate the effect of PaH as a new photosensitizer on colon adenocarcinoma HT-29 cells upon light irradiation. Firstly, the absorption and fluorescence spectra of PaH were measured using a UV-vis spectrophotometer and RF-1500PC spectrophotometer, respectively. Singlet oxygen ((1)O2) production of PaH was determined using 1, 3-diphenylisobenzofuran (DPBF). Dark toxicity of PaH was estimated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake of PaH in HT-29 cells was detected at different time intervals. Subellular localization of PaH in HT-29 cells was observed using confocal laser fluorescence microscopy. For photodynamic treatment, HT-29 cells were incubated with PaH and then irradiated by visible light (470nm) from a LED light source. Photocytotoxicity was investigated 24h after photodynamic treatment using MTT assay. Cell apoptosis was observed 18h after photodynamic treatment using a flow cytometry with Annexin V/PI staining. Results showed that PaH has an absorption peak in the visible region from 400nm to 500nm and a fluorescence emission peak at 406nm with an excitation wavelength of 365nm. PaH was activated by the 470nm visible light from a LED light source to produce (1)O2. Dark toxicity showed that PaH alone treatment had no cytotoxicity to HT-29 cancer cells and NIH-3T3 normal cells after incubation for 24h. After incubation for 40min, the cellular uptake of PaH reached to the maximum and PaH was located in mitochondria. Photodynamic treatment of PaH demonstrated a significant photocytotoxicity on HT-29 cells. The rate of cell death increased significantly in a PaH concentration-dependent and light dose-dependent manner. Further evaluation revealed that the early and late apoptotic rate of HT-29 cells increased remarkably up to 21.54% and 5.39% after photodynamic treatment of PaH at the concentration of 5μM and energy density of 10.8J/cm(2). Our findings demonstrated that PaH as a naturally occurring photosensitizer has potential in photodynamic therapy on colon adenocarcinoma.
Collapse
Affiliation(s)
- Juan Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Na Zhang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Qing-Juan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
33
|
Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships. Eur J Med Chem 2016; 114:380-9. [DOI: 10.1016/j.ejmech.2016.02.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 01/18/2023]
|
34
|
Zheng BY, Shen XM, Zhao DM, Cai YB, Ke MR, Huang JD. Silicon(IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:196-204. [PMID: 27085051 DOI: 10.1016/j.jphotobiol.2016.03.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
A series of new silicon(IV) phthalocyanines (SiPcs) di-substituted axially with different nucleoside moieties have been synthesized and evaluated for their singlet oxygen quantum yields (ΦΔ) and in vitro photodynamic activities. The adenosine-substituted SiPc shows a lower photosensitizing efficiency (ΦΔ=0.35) than the uridine- and cytidine-substituted analogs (ΦΔ=0.42-0.44), while the guanosine-substituted SiPc exhibits a weakest singlet oxygen generation efficiency with a ΦΔ value down to 0.03. On the other hand, replacing axial adenosines with chloro-modified adenosines and purines can result in the increase of photogenerating singlet oxygen efficiencies of SiPcs. The formed SiPcs 1 and 2, which contain monochloro-modified adenosines and dichloro-modified purines respectively, appear as efficient photosensitizers with ΦΔ of 0.42-0.44. Both compounds 1 and 2 present high photocytotoxicities against HepG2 and BGC823 cancer cells with IC50 values ranging from 9nM to 33nM. The photocytotoxicities of these two compounds are remarkably higher than the well-known anticancer photosensitizer, chlorin e6 (IC50=752nM against HepG2 cells) in the same condition. As revealed by confocal microscopy, for both cell lines, compound 1 can essentially bind to mitochondria, while compound 2 is just partially localized in mitochondria. In addition, the two compounds induce cell death of HepG2 cells likely through apoptosis.
Collapse
Affiliation(s)
- Bi-Yuan Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Min Shen
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China
| | - Dong-Mei Zhao
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China
| | - Yi-Bin Cai
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China
| | - Mei-Rong Ke
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China
| | - Jian-Dong Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
35
|
Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica. Antimicrob Agents Chemother 2016; 60:2003-11. [PMID: 26824938 DOI: 10.1128/aac.01879-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 01/29/2023] Open
Abstract
Photodynamic inactivation ofLeishmaniaspp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency againstLeishmania tropicapromastigotes and axenic amastigotesin vitro The uptake of these PCs by bothLeishmaniastages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation ofLeishmaniaspp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitizedLeishmania tropicastrains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm(-2) Quantitative fluorescence assays based on the loss of GFP/CFSE from liveLeishmania tropicashowed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.Leishmania tropicastrains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation ofLeishmaniaspp. for use as vaccines or vaccine carriers.
Collapse
|
36
|
Yu Q, Xu WX, Yao YH, Zhang ZQ, Sun S, Li J. Synthesis and photodynamic activities of a new metronidazole-appended porphyrin and its Zn(II) complex. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424615500868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One novel porphyrin 5,10,15-tris(phenyl)-20-[4-(2-(2-methyl-5-nitro-imidazolyl)ethoxyl)phenyl] porphyrin and its zinc(II) metalloporphyrin were synthesized and characterized by IR, UV-vis, 1H NMR, MS and elemental analysis. The single crystal structure of zinc(II) porphyrin shows that the Zn(II) ion is coordinated with four nitrogen atoms of porphyrin ring and one oxygen atom of ethanol from axial, forming a five-coordinated square pyramidal geometry. Their cytotoxicity and photodynamic activity against breast cancer cells were studied. The results indicate that both of the porphyrins display high phototoxicity to the breast cancer cells with the negligible dark toxicity. In addition, the photodynamic activity of zinc(II) porphyrin was obviously higher than that of the free porphyrin.
Collapse
Affiliation(s)
- Qiong Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Wei-Xia Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, P. R. China
| | - Ya-Hong Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- College of Science, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P. R. China
| | - Zeng-Qi Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Shu Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| |
Collapse
|
37
|
Lin D, Wang Y, Zhang Q, Zhou J, Zhou L, Wei S. The substituted amino group type dependent sensitivity enhancing of cationic phthalocyanine derivatives for photodynamic activity. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Luan L, Fang W, Liu W, Tian M, Ni Y, Chen X, Yu X. Phthalocyanine-cRGD conjugate: synthesis, photophysical properties and in vitro biological activity for targeting photodynamic therapy. Org Biomol Chem 2016; 14:2985-92. [DOI: 10.1039/c6ob00099a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phthalocyanine-RGD conjugate was synthesized and examined for its two-photon absorption cross section (TPACS), cellular uptake, and photocytotoxicity.
Collapse
Affiliation(s)
- Liqiang Luan
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Wenjuan Fang
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Minggang Tian
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Yuxing Ni
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Xi Chen
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| |
Collapse
|
39
|
Ran Q, Ma J, Wang T, Fan S, Yang Y, Qi S, Cheng Y, Song F. Synthesis and fluorescence study of conjugated polymers based on 2,4,6-triphenylpyridine moieties. NEW J CHEM 2016. [DOI: 10.1039/c5nj03722k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel 2,4,6-triphenylpyridine-based conjugated polymers showed strong fluorescence emission with large Stokes' shifts, tunable band gaps and high quantum yields.
Collapse
Affiliation(s)
- Qianping Ran
- State Key Laboratory of High Performance Civil Engineering Materials (HPCEM)
- Jiangsu Research Institute of Building Science
- Nanjing 210008
- China
| | - Jianfeng Ma
- State Key Laboratory of High Performance Civil Engineering Materials (HPCEM)
- Jiangsu Research Institute of Building Science
- Nanjing 210008
- China
| | - Tao Wang
- State Key Laboratory of High Performance Civil Engineering Materials (HPCEM)
- Jiangsu Research Institute of Building Science
- Nanjing 210008
- China
| | - Shimin Fan
- State Key Laboratory of High Performance Civil Engineering Materials (HPCEM)
- Jiangsu Research Institute of Building Science
- Nanjing 210008
- China
| | - Yong Yang
- State Key Laboratory of High Performance Civil Engineering Materials (HPCEM)
- Jiangsu Research Institute of Building Science
- Nanjing 210008
- China
| | - Shuai Qi
- State Key Laboratory of High Performance Civil Engineering Materials (HPCEM)
- Jiangsu Research Institute of Building Science
- Nanjing 210008
- China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Fengyan Song
- State Key Laboratory of High Performance Civil Engineering Materials (HPCEM)
- Jiangsu Research Institute of Building Science
- Nanjing 210008
- China
| |
Collapse
|
40
|
Novakova V, Lásková M, Vavřičková H, Zimcik P. Phenol-Substituted Tetrapyrazinoporphyrazines: pH-Dependent Fluorescence in Basic Media. Chemistry 2015; 21:14382-92. [DOI: 10.1002/chem.201502533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/17/2023]
|
41
|
Contreras LES, Zirzlmeier J, Kirner SV, Setaro F, Martínez F, Lozada S, Escobar P, Hahn U, Guldi DM, Torres T. Cholesteryl oleate-appended phthalocyanines as potential photosensitizers in the treatment of leishmaniasis. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two phthalocyanines (Pcs) with either a zinc or a ruthenium metal at the center of the macrocycle have been functionalized by a cholesteryl oleate moiety. The potential photosensitizers (PSs) for the treatment of cutaneous leishmaniasis have been studied on their photophysical properties and their ability to generate singlet oxygen. These experiments corroborate that solvent mixtures containing variable ratios of THF and water impact the excited state deactivation. The compounds were used preloaded into LDL particles and their phototoxic activity was evaluated in a preliminary way.
Collapse
Affiliation(s)
- Laura E. Sánchez Contreras
- Departamento de Química Orgánica (Modulo 01), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Centro de Investigación en Enfermedades Tropicales (CINTROP), Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Johannes Zirzlmeier
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Sabrina V. Kirner
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Francesca Setaro
- Departamento de Química Orgánica (Modulo 01), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Martínez
- Centro de Investigación en Catálisis, Escuela de Química, Universidad Industrial de Santander, Colombia
| | - Stefany Lozada
- Centro de Investigación en Enfermedades Tropicales (CINTROP), Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Patricia Escobar
- Centro de Investigación en Enfermedades Tropicales (CINTROP), Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Uwe Hahn
- Departamento de Química Orgánica (Modulo 01), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole, Européenne de Chimie, Polymèrs et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Tomás Torres
- Departamento de Química Orgánica (Modulo 01), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
42
|
Kucinska M, Skupin-Mrugalska P, Szczolko W, Sobotta L, Sciepura M, Tykarska E, Wierzchowski M, Teubert A, Fedoruk-Wyszomirska A, Wyszko E, Gdaniec M, Kaczmarek M, Goslinski T, Mielcarek J, Murias M. Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy. J Med Chem 2015; 58:2240-55. [PMID: 25700089 DOI: 10.1021/acs.jmedchem.5b00052] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three 2-(morpholin-4-yl)ethoxy substituted phthalocyanines were synthesized and characterized. Phthalocyanine derivatives revealed moderate to high quantum yields of singlet oxygen production depending on the solvent applied (e.g., in DMF ranging from 0.25 to 0.53). Their photosensitizing potential for photodynamic therapy was investigated in an in vitro model using cancer cell lines. Biological test results were found particularly encouraging for the zinc(II) phthalocyanine derivative possessing two 2-(morpholin-4-yl)ethoxy substituents in nonperipheral positions. Cells irradiated for 20 min at 2 mW/cm(2) revealed the lowest IC50 value at 0.25 μM for prostate cell line (PC3), whereas 1.47 μM was observed for human malignant melanoma (A375) cells. The cytotoxic activity in nonirradiated cells of novel phthalocyanine was found to be very low. Moreover, the cellular uptake, localization, cell cycle, apoptosis through an ELISA assay, and immunochemistry method were investigated in LNCaP cells. Our results showed that the tested photosensitizer possesses very interesting biological activity, depending on experimental conditions.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences , Dojazd 30, 60-631 Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang L, Wang A, Lu S, Zhou L, Zhou J, Lin Y, Wei S. The influences of the number of the ammonium groups and their arrangement manner on the photophysical properties of the quaternized zinc phthalocyanines. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Setaro F, Brasch M, Hahn U, Koay MST, Cornelissen JJLM, de la Escosura A, Torres T. Generation-dependent templated self-assembly of biohybrid protein nanoparticles around photosensitizer dendrimers. NANO LETTERS 2015; 15:1245-1251. [PMID: 25615286 DOI: 10.1021/nl5044055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this article, we show the great potential of dendrimers for driving the self-assembly of biohybrid protein nanoparticles. Dendrimers are periodically branched macromolecules with a perfectly defined and monodisperse structure. Moreover, they allow the possibility to incorporate functional units at predetermined sites, either at their core, branches, or surface. On these bases, we have designed and synthesized negatively charged phthalocyanine (Pc) dendrimers that behave as photosensitizers for the activation of molecular oxygen into singlet oxygen, one of the main reactive species in photodynamic therapy (PDT). The number of surface negative charges depends on dendrimer generation, whereas Pc aggregation can be tuned through the appropriate choice of the Pc metal center and its availability for axial substitution. Remarkably, both parameters determine the outcome and efficiency of the templated self-assembly process by which a virus protein forms 18 nm virus-like particles around these dendritic chromophores. Protein-dendrimer biohybrid nanoparticles of potential interest for therapeutic delivery purposes are obtained in this way. Biohybrid assemblies of this kind will have a central role in future nanomedical and nanotechnology applications.
Collapse
Affiliation(s)
- Francesca Setaro
- Departamento de Química Orgánica (C-I), Universidad Autónoma de Madrid/IMDEA Nanociencia (TT) , Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Machacek M, Cidlina A, Novakova V, Svec J, Rudolf E, Miletin M, Kučera R, Simunek T, Zimcik P. Far-Red-Absorbing Cationic Phthalocyanine Photosensitizers: Synthesis and Evaluation of the Photodynamic Anticancer Activity and the Mode of Cell Death Induction. J Med Chem 2015; 58:1736-49. [DOI: 10.1021/jm5014852] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | - Emil Rudolf
- Department
of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500
38 Hradec Kralove, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Makhseed S, Ghazal B, Abdelmoniem AM, Novakova V, Zimcik P. Photophysical and theoretical studies of peripherally halogenated octaphenoxyphthalocyanines. RSC Adv 2015. [DOI: 10.1039/c5ra09737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational studies validated the experimental results and revealing details about the electronic structures of novel halogenated phthalocyanines. Fluorescence and singlet oxygen quantum yields analysis revealed two-dimensional heavy atom effect.
Collapse
Affiliation(s)
| | | | | | - Veronika Novakova
- Department of Biophysics and Physical Chemistry
- Faculty of Pharmacy in Hradec Kralove
- Charles University in Prague
- Hradec Kralove 50005
- Czech Republic
| | - Petr Zimcik
- Department of Pharmaceutical Chemistry and Drug Control
- Faculty of Pharmacy in Hradec Kralove
- Charles University in Prague
- Hradec Kralove 50005
- Czech Republic
| |
Collapse
|
47
|
Zhao J, Huang L, Cui X, Li S, Wu H. Maximizing the thiol-activated photodynamic and fluorescence imaging functionalities of theranostic reagents by modularization of Bodipy-based dyad triplet photosensitizers. J Mater Chem B 2015; 3:9194-9211. [DOI: 10.1039/c5tb01857a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence imaging and singlet oxygen production ability of thiol-cleavable triplet photosensitizers was maximized by disintegration of the functionalities.
Collapse
Affiliation(s)
- Jianzhang Zhao
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Ling Huang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Xiaoneng Cui
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Shujing Li
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Huijian Wu
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
48
|
Bian Y, Jiang J. Recent Advances in Phthalocyanine-Based Functional Molecular Materials. STRUCTURE AND BONDING 2015. [DOI: 10.1007/430_2015_194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Phthalocyanine-based photosensitizers: more efficient photodynamic therapy? Future Med Chem 2014; 6:1991-3. [DOI: 10.4155/fmc.14.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
50
|
Nkepang G, Bio M, Rajaputra P, Awuah SG, You Y. Folate receptor-mediated enhanced and specific delivery of far-red light-activatable prodrugs of combretastatin A-4 to FR-positive tumor. Bioconjug Chem 2014; 25:2175-88. [PMID: 25351441 PMCID: PMC4275160 DOI: 10.1021/bc500376j] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
We examined the concept of a novel
prodrug strategy in which anticancer
drug can be locally released by visible/near IR light, taking advantage
of the photodynamic process and photo-unclick chemistry. Our most
recently formulated prodrug of combretastatin A-4, Pc-(L-CA4)2, showed multifunctionality for fluorescence imaging, light-activated
drug release, and the combined effects of PDT and local chemotherapy.
In this formulation, L is a singlet oxygen cleavable linker. Here,
we advanced this multifunctional prodrug by adding a tumor-targeting
group, folic acid (FA). We designed and prepared four FA-conjugated
prodrugs 1–4 (CA4-L-Pc-PEGn-FA: n = 0, 2, 18, ∼45) and one non-FA-conjugated
prodrug 5 (CA4-L-Pc-PEG18-boc). Prodrugs 3 and 4 had a longer PEG spacer and showed higher
hydrophilicity, enhanced uptake to colon 26 cells via FR-mediated
mechanisms, and more specific localization to SC colon 26 tumors in
Balb/c mice than prodrugs 1 and 2. Prodrug 4 also showed higher and more specific uptake to tumors, resulting
in selective tumor damage and more effective antitumor efficacy than
non-FA-conjugated prodrug 5. FR-mediated targeting seemed
to be an effective strategy to spare normal tissues surrounding tumors
in the illuminated area during treatment with this prodrug.
Collapse
Affiliation(s)
- Gregory Nkepang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73117, United States
| | | | | | | | | |
Collapse
|