1
|
Yang Z, Sun F, Li Y, Yang K, Zhang J, Xu L, Zhao H, Du Y. Synthesis of 2-Fluoroalkylated Oxazoles from β-Monosubstituted Enamines via Fluoroacyloxylation and Cyclization Mediated by Fluoroalkyl-Containing Hypervalent Iodine(III) Species Generated In Situ. J Org Chem 2023. [PMID: 37450647 DOI: 10.1021/acs.joc.3c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A metal-free synthesis of a series of fluoroalkyl-containing oxazoles from β-monosubstituted enamines was developed. This fluoroacyloxylation/cyclization cascade process was mediated by fluoroalkyl-containing hypervalent iodine(III) species formed in situ from the reaction of phenyliodine(III) diacetate (PIDA) and RCF2CO2H (R = H, Cl, Br, F, CF3, CH3, Ph, SAr, OAr).
Collapse
Affiliation(s)
- Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology & College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyue Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jianing Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lingzhi Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Miller D, Reuillon T, Molyneux L, Blackburn T, Cook SJ, Edwards N, Endicott JA, Golding BT, Griffin RJ, Hardcastle I, Harnor SJ, Heptinstall A, Lochhead P, Martin MP, Martin NC, Myers S, Newell DR, Noble RA, Phillips N, Rigoreau L, Thomas H, Tucker JA, Wang LZ, Waring MJ, Wong AC, Wedge SR, Noble MEM, Cano C. Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor. J Med Chem 2022; 65:6513-6540. [PMID: 35468293 PMCID: PMC9109144 DOI: 10.1021/acs.jmedchem.1c01756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 11/29/2022]
Abstract
The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.
Collapse
Affiliation(s)
- Duncan
C. Miller
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Tristan Reuillon
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Lauren Molyneux
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Timothy Blackburn
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Simon J. Cook
- Signalling
Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K.
| | - Noel Edwards
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Jane A. Endicott
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Bernard T. Golding
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Roger J. Griffin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Ian Hardcastle
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Suzannah J. Harnor
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Amy Heptinstall
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Pamela Lochhead
- Signalling
Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K.
| | - Mathew P. Martin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Nick C. Martin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Stephanie Myers
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - David R. Newell
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Richard A. Noble
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Nicole Phillips
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Laurent Rigoreau
- Cancer
Research UK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Campus, Babraham, Cambridgeshire CB22 3AT, U.K.
| | - Huw Thomas
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Julie A. Tucker
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Lan-Zhen Wang
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Michael J. Waring
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Ai-Ching Wong
- Cancer
Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, U.K.
| | - Stephen R. Wedge
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Martin E. M. Noble
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Celine Cano
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| |
Collapse
|
3
|
Huang JS, Guo BB, Lin FF, Zeng LM, Wang T, Dang XY, Yang Y, Hu YH, Liu J, Wang HY. A novel low systemic diacylglycerol acyltransferase 1 inhibitor, Yhhu2407, improves lipid metabolism. Eur J Pharm Sci 2020; 158:105683. [PMID: 33347980 DOI: 10.1016/j.ejps.2020.105683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/27/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) plays a pivotal role in lipid metabolism by catalyzing the committed step in triglyceride (TG) synthesis and has been considered as a potential therapeutic target of multiple metabolic diseases, including dyslipidemia, obesity and type 2 diabetes. Here we report a novel DGAT1 inhibitor, Yhhu2407, which showed a stronger DGAT1 inhibitory activity (IC50 = 18.24 ± 4.72 nM) than LCQ908 (IC50 = 78.24 ± 8.16 nM) in an enzymatic assay and led to a significant reduction in plasma TG after an acute lipid challenge in mice. Pharmacokinetic studies illustrated that Yhhu2407 displayed a low systemic, liver- and intestine-targeted distribution pattern, which is consistent with the preferential tissue expression pattern of DGAT1 and therefore might help to maximize the beneficial pharmacological effects and prevent the occurrence of side effects. Cell-based investigations demonstrated that Yhhu2407 inhibited free fatty acid (FFA)-induced TG accumulation and apolipoprotein B (ApoB)-100 secretion in HepG2 cells. In vivo study also disclosed that Yhhu2407 exerted a beneficial effect on regulating plasma TG and lipoprotein levels in rats, and effectively ameliorated high-fat diet (HFD)-induced dyslipidemia in hamsters. In conclusion, we identified Yhhu2407 as a novel DGAT1 inhibitor with potent efficacy on improving lipid metabolism in rats and HFD-fed hamsters without causing obvious adverse effects.
Collapse
Affiliation(s)
- Jun-Shang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Bin Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei-Fei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-Min Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang-Yu Dang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Hong Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - He-Yao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Qiu Y, Yu H, Zeng R, Guo S, Daniyal M, Deng Z, Wang A, Wang W. Recent Development on Anti-Obesity Compounds and their Mechanisms of Action: A Review. Curr Med Chem 2020; 27:3577-3597. [DOI: 10.2174/0929867326666190215114359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Abstract
Obesity, associated with a series of complications such as diabetes, hypertension, and
heart disease, is a great threat to human health and leads to increased morbidity and mortality. Despite
the presence of anti-obesity agents on the market, the application of these drugs is limited because
of their typical side effects. More effective and safe weight-loss drugs are being pursued by
many researchers, correspondingly, growing small molecules and natural products with anti-obesity
effects have been identified and the molecular mechanisms underlying the action of the novel and
known compounds have at least partially been revealed. Therefore, the field does witness great progress
year by year. In this review, we intend to provide a comprehensive and updated view on the
known and novel compounds which possess anti-obesity effects and further classify them according
to the molecular mechanisms of their actions in regulating the major anti-obesity pathways.
Collapse
Affiliation(s)
- Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Rong Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zeyu Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Aibing Wang
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Drug Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Hong DJ, Jung SH, Kim J, Jung D, Ahn YG, Suh KH, Min KH. Synthesis and biological evaluation of novel thienopyrimidine derivatives as diacylglycerol acyltransferase 1 (DGAT-1) inhibitors. J Enzyme Inhib Med Chem 2020; 35:227-234. [PMID: 31752563 PMCID: PMC6882492 DOI: 10.1080/14756366.2019.1693555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel series of thieno[3,2-d]pyrimidine derivatives were synthesised and their inhibitory effects against diacylglycerol acyltransferase 1 (DGAT-1) were assessed. cis-Isomer 17a showed potent and selective inhibitory activity against DGAT-1 in SF9 cells. In addition, 17a had an acceptable pharmacokinetic profile and accumulated mainly in the small intestine and liver. Oral administration of 17a led to a significant reduction in plasma triacylglycerol level during an oral lipid tolerance test (OLTT) in murine and canine models. Taken together, 17a is a high-quality candidate that deserves further investigation.
Collapse
Affiliation(s)
- Dong Jin Hong
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.,Hanmi Research Center, Hanmi Pharm. Co., Ltd., Gyeonggi-Do, Republic of Korea
| | - Seung Hyun Jung
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Gyeonggi-Do, Republic of Korea
| | - Jisook Kim
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Gyeonggi-Do, Republic of Korea
| | - Danbee Jung
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Gil Ahn
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Gyeonggi-Do, Republic of Korea
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co., Ltd., Gyeonggi-Do, Republic of Korea
| | - Kyung Hoon Min
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Belete TM. A Recent Achievement In the Discovery and Development of Novel Targets for the Treatment of Type-2 Diabetes Mellitus. J Exp Pharmacol 2020; 12:1-15. [PMID: 32021494 PMCID: PMC6959499 DOI: 10.2147/jep.s226113] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2DM) is a chronic metabolic disorder. Impaired insulin secretion, enhanced hepatic glucose production, and suppressed peripheral glucose use are the main defects responsible for developing the disease. Besides, the pathophysiology of T2DM also includes enhanced glucagon secretion, decreased incretin secretion, increased renal glucose reabsorption, and adipocyte, and brain insulin resistance. The increasing prevalence of T2DM in the world beseeches an urgent need for better treatment options. The antidiabetic drugs focus on control of blood glucose concentration, but the future treatment goal is to delay disease progression and treatment failure, which causes poorer glycemic regulation. Recent treatment approaches target on several novel pathophysiological defects present in T2DM. Some of the promising novel targets being under clinical development include those that increase insulin sensitization (antagonists of glucocorticoids receptor), decreasing hepatic glucose production (glucagon receptor antagonist, inhibitors of glycogen phosphorylase and fructose-1,6-biphosphatase). This review summarizes studies that are available on novel targets being studied to treat T2DM with an emphasis on the small molecule drug design. The experience gathered from earlier studies and knowledge of T2DM pathways can guide the anti-diabetic drug development toward the discovery of drugs essential to treat T2DM.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Solomin VV, Radchenko DS, Slobodyanyuk EY, Geraschenko OV, Vashchenko BV, Grygorenko OO. Widely Exploited, Yet Unreported: Regiocontrolled Synthesis and the Suzuki-Miyaura Reactions of Bromooxazole Building Blocks. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vitalii V. Solomin
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Taras Shevchenko National University of Kyiv; Ukraine
| | - Evgeniy Y. Slobodyanyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660; Ukraine
| | - Oleksandr V. Geraschenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Taras Shevchenko National University of Kyiv; Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Taras Shevchenko National University of Kyiv; Ukraine
| |
Collapse
|
8
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
9
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
10
|
Yan J, Wang G, Dang X, Guo B, Chen W, Wang T, Zeng L, Wang H, Hu Y. Discovery of a low-systemic-exposure DGAT-1 inhibitor with a picolinoylpyrrolidine-2-carboxylic acid moiety. Bioorg Med Chem 2017; 25:4701-4714. [DOI: 10.1016/j.bmc.2017.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
11
|
Shishlyk OS, Shcherbatiuk AV, Iminov RT, Tverdokhlebov AV, Tolmachev AA, Mykhailiuk PK, Biitseva AV. Synthesis of fluorinated oxazoles by oxidative cyclization of fluorinated enamides. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Abstract
INTRODUCTION Available drugs partially attenuate the hyperglycemia characteristic of diabetes. However, successful approaches to treat the root cause or to cure or prevent diabetes remain elusive. Drug discovery and development programs continue to focus on mechanisms that impact specific symptoms of diabetes. In 2014, programs were discontinued for a variety of reasons and these discontinued programs are discussed herein. AREAS COVERED A search of discontinued products in the metabolic area for 2014 identified mostly compounds that were being developed to treat diabetes (mostly type 2 diabetes). Candidates were identified through the use of PharmaProjects. The author also sought information using Google, PubMed, HighWire and ClinicalTrials.gov. The discontinued development programs that were identified were not numerous as in previous years and so they are presented here without segregation into categories. EXPERT OPINION In general, the specific reasons for the discontinuation of these programs have not been clearly disclosed. In some cases, business considerations are given, whereas in others, there are specific safety issues that emerged which were not expected from nonclinical experience. In the final analysis, it is clear that all of these programs have been discontinued because the evidence does not favor the type of efficacy and risk:benefit ratio that justifies additional expenditures. There remains a clear need for precise addressable mechanisms to affect the root causes of diabetes.
Collapse
Affiliation(s)
- Jerry R Colca
- Metabolic Solutions Development Company, LLC , 161 E. Michigan Ave, Kalamazoo, MI , USA
| |
Collapse
|
13
|
Abstract
After many years of research, obesity is still a disease with an unmet medical need. Very few compounds have been approved, acting mainly on neuromediators; researches, in recent years, pointed toward compounds potentially safer than first-generation antiobesity drugs, able to interact with one or more (multitarget therapy) receptors for substances produced by the gut, adipose tissue and other targets outside CNS. Other holistic approaches, such as those involving gut microbiota and plant extracts, appeared recently in the literature, and undoubtedly will contribute to the discovery of a valuable therapy for this disease. This review deals with the positive results and the pitfalls obtained following these approaches, with a view on their clinical trial studies.
Collapse
|
14
|
Naik R, Obiang-Obounou BW, Kim M, Choi Y, Lee HS, Lee K. Therapeutic Strategies for Metabolic Diseases: Small-Molecule Diacylglycerol Acyltransferase (DGAT) Inhibitors. ChemMedChem 2014; 9:2410-24. [DOI: 10.1002/cmdc.201402069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 11/07/2022]
|
15
|
Synthesis and evaluation of cyclohexane carboxylic acid head group containing isoxazole and thiazole analogs as DGAT1 inhibitors. Eur J Med Chem 2014; 79:203-15. [DOI: 10.1016/j.ejmech.2014.03.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
|
16
|
Fox BM, Sugimoto K, Iio K, Yoshida A, Zhang J(K, Li K, Hao X, Labelle M, Smith ML, Rubenstein SM, Ye G, McMinn D, Jackson S, Choi R, Shan B, Ma J, Miao S, Matsui T, Ogawa N, Suzuki M, Kobayashi A, Ozeki H, Okuma C, Ishii Y, Tomimoto D, Furakawa N, Tanaka M, Matsushita M, Takahashi M, Inaba T, Sagawa S, Kayser F. Discovery of 6-Phenylpyrimido[4,5-b][1,4]oxazines as Potent and Selective Acyl CoA:Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitors with in Vivo Efficacy in Rodents. J Med Chem 2014; 57:3464-83. [DOI: 10.1021/jm500135c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Brian M. Fox
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Kazuyuki Sugimoto
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kiyosei Iio
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Atsuhito Yoshida
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Jian (Ken) Zhang
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Kexue Li
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Xiaolin Hao
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Marc Labelle
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Marie-Louise Smith
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Steven M. Rubenstein
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Guosen Ye
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Dustin McMinn
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Simon Jackson
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Rebekah Choi
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Bei Shan
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Ji Ma
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Shichang Miao
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Takuya Matsui
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Nobuya Ogawa
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masahiro Suzuki
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akio Kobayashi
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hidekazu Ozeki
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Chihiro Okuma
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yukihito Ishii
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Daisuke Tomimoto
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Noboru Furakawa
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masahiro Tanaka
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mutsuyoshi Matsushita
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mitsuru Takahashi
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takashi Inaba
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shoichi Sagawa
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Frank Kayser
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
17
|
Discovery of novel quinoline carboxylic acid series as DGAT1 inhibitors. Bioorg Med Chem Lett 2014; 24:1790-4. [PMID: 24618302 DOI: 10.1016/j.bmcl.2014.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/23/2022]
Abstract
Herein we report the design and synthesis of a series of novel bicyclic DGAT1 inhibitors with a carboxylic acid moiety. The optimization of the initial lead compound 7 based on in vitro and in vivo activity led to the discovery of potent indoline and quinoline classes of DGAT1 inhibitors. The structure-activity relationship studies of these novel series of bicyclic carboxylic acid derivatives as DGAT1 inhibitors are described.
Collapse
|
18
|
Scott SA, Mathews TP, Ivanova PT, Lindsley CW, Brown HA. Chemical modulation of glycerolipid signaling and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1060-84. [PMID: 24440821 DOI: 10.1016/j.bbalip.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields-ranging from neuroscience and cancer to diabetes and obesity-have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas P Mathews
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
19
|
Liu J, He XF, Wang GH, Merino EF, Yang SP, Zhu RX, Gan LS, Zhang H, Cassera MB, Wang HY, Kingston DGI, Yue JM. Aphadilactones A-D, four diterpenoid dimers with DGAT inhibitory and antimalarial activities from a Meliaceae plant. J Org Chem 2013; 79:599-607. [PMID: 24344740 DOI: 10.1021/jo402340h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aphadilactones A-D (1-4), four diastereoisomers possessing an unprecedented carbon skeleton, were isolated from the Meliaceae plant Aphanamixis grandifolia. Their challenging structures and absolute configurations were determined by a combination of spectroscopic data, chemical degradation, fragment synthesis, experimental CD spectra, and ECD calculations. Aphadilactone C (3) with the 5S,11S,5'S,11'S configuration showed potent and selective inhibition against the diacylglycerol O-acyltransferase-1 (DGAT-1) enzyme (IC50 = 0.46 ± 0.09 μM, selectivity index > 217) and is the strongest natural DGAT-1 inhibitor discovered to date. In addition, compounds 1-4 showed significant antimalarial activities with IC50 values of 190 ± 60, 1350 ± 150, 170 ± 10, and 120 ± 50 nM, respectively.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim HM, Smith MD, Kim JH, Caplen MA, Chan TY, McKittrick BA, Cook JA, van Heek M, Lachowicz J. Identification of 2-aminooxazole amides as acyl-CoA: Diacylglycerol acyltransferase 1 (DGAT1) inhibitors through scaffold hopping strategy. Bioorg Med Chem Lett 2013; 23:6410-4. [DOI: 10.1016/j.bmcl.2013.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/17/2013] [Indexed: 12/30/2022]
|
21
|
Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J Virol 2013; 87:8017-28. [PMID: 23678171 DOI: 10.1128/jvi.00998-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is an infectious and highly contagious disease that is caused by SARS coronavirus (SARS-CoV) and for which there are currently no approved treatments. We report the discovery and characterization of small-molecule inhibitors of SARS-CoV replication that block viral entry by three different mechanisms. The compounds were discovered by screening a chemical library of compounds for blocking of entry of HIV-1 pseudotyped with SARS-CoV surface glycoprotein S (SARS-S) but not that of HIV-1 pseudotyped with vesicular stomatitis virus surface glycoprotein G (VSV-G). Studies on their mechanisms of action revealed that the compounds act by three distinct mechanisms: (i) SSAA09E2 {N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide} acts through a novel mechanism of action, by blocking early interactions of SARS-S with the receptor for SARS-CoV, angiotensin converting enzyme 2 (ACE2); (ii) SSAA09E1 {[(Z)-1-thiophen-2-ylethylideneamino]thiourea} acts later, by blocking cathepsin L, a host protease required for processing of SARS-S during viral entry; and (iii) SSAA09E3 [N-(9,10-dioxo-9,10-dihydroanthracen-2-yl)benzamide] also acts later and does not affect interactions of SARS-S with ACE2 or the enzymatic functions of cathepsin L but prevents fusion of the viral membrane with the host cellular membrane. Our work demonstrates that there are at least three independent strategies for blocking SARS-CoV entry, validates these mechanisms of inhibition, and introduces promising leads for the development of SARS therapeutics.
Collapse
|
22
|
Schober G, Arnold M, Birtles S, Buckett LK, Pacheco-López G, Turnbull AV, Langhans W, Mansouri A. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats. J Lipid Res 2013; 54:1369-84. [PMID: 23449193 DOI: 10.1194/jlr.m035154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.
Collapse
Affiliation(s)
- Gudrun Schober
- Physiology and Behavior Laboratory, Institute of Food, Nutrition, and Health, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ting PC, Lee JF, Zorn N, Kim HM, Aslanian RG, Lin M, Smith M, Walker SS, Cook J, Van Heek M, Lachowicz J. Lead optimization of a pyridine-carboxamide series as DGAT-1 inhibitors. Bioorg Med Chem Lett 2013; 23:985-8. [DOI: 10.1016/j.bmcl.2012.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 11/16/2022]
|
24
|
Lee K, Kim M, Lee B, Goo J, Kim J, Naik R, Seo JH, Kim MO, Byun Y, Song GY, Lee HS, Choi Y. Discovery of indolyl acrylamide derivatives as human diacylglycerol acyltransferase-2 selective inhibitors. Org Biomol Chem 2012; 11:849-58. [PMID: 23242135 DOI: 10.1039/c2ob27114a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of indolyl acrylamide derivatives was synthesized as potential diacylglycerol acyltransferase (DGAT) inhibitors. Furfurylamine containing indolyl acrylamide derivative 5h exhibited the most potent DGAT inhibitory activity using microsomes prepared from rat liver. Further evaluation against human DGAT-1 and DGAT-2 identified indolyl acrylamide analogues as selective inhibitors against human DGAT-2. In addition, the most potent compound 5h inhibited triglyceride synthesis dose-dependently in HepG2 cell lines.
Collapse
Affiliation(s)
- Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Seoul 100-715, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Barlind JG, Bauer UA, Birch AM, Birtles S, Buckett LK, Butlin RJ, Davies RDM, Eriksson JW, Hammond CD, Hovland R, Johannesson P, Johansson MJ, Kemmitt PD, Lindmark BT, Morentin Gutierrez P, Noeske TA, Nordin A, O’Donnell CJ, Petersson AU, Redzic A, Turnbull AV, Vinblad J. Design and Optimization of Pyrazinecarboxamide-Based Inhibitors of Diacylglycerol Acyltransferase 1 (DGAT1) Leading to a Clinical Candidate Dimethylpyrazinecarboxamide Phenylcyclohexylacetic Acid (AZD7687). J Med Chem 2012; 55:10610-29. [DOI: 10.1021/jm301296t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas G. Barlind
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | - Udo A. Bauer
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | - Alan M. Birch
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Susan Birtles
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Linda K. Buckett
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Roger J. Butlin
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | | | - Jan W. Eriksson
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
- Department of Molecular and Clinical
Medicine, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Clare D. Hammond
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Ragnar Hovland
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | - Petra Johannesson
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | - Magnus J. Johansson
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | - Paul D. Kemmitt
- AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Bo T. Lindmark
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | | | - Tobias A. Noeske
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | - Andreas Nordin
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | | | - Annika U. Petersson
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | - Alma Redzic
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| | | | - Johanna Vinblad
- Cardiovascular and Gastrointestinal Innovative Medicines Unit Mölndal, AstraZeneca R&D, S-431 83 Mölndal, Sweden
| |
Collapse
|
26
|
Liu Q, Siloto RMP, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 2012; 51:350-77. [PMID: 22705711 DOI: 10.1016/j.plipres.2012.06.001] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Triacylglycerol (TG) is a storage lipid which serves as an energy reservoir and a source of signalling molecules and substrates for membrane biogenesis. TG is essential for many physiological processes and its metabolism is widely conserved in nature. Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the final step in the sn-glycerol-3-phosphate pathway leading to TG. DGAT activity resides mainly in two distinct membrane bound polypeptides, known as DGAT1 and DGAT2 which have been identified in numerous organisms. In addition, a few other enzymes also hold DGAT activity, including the DGAT-related acyl-CoA:monoacylglycerol acyltransferases (MGAT). Progress on understanding structure/function in DGATs has been limited by the lack of detailed three-dimensional structural information due to the hydrophobic properties of theses enzymes and difficulties associated with purification. This review examines several aspects of DGAT and MGAT genes and enzymes, including current knowledge on their gene structure, expression pattern, biochemical properties, membrane topology, functional motifs and subcellular localization. Recent progress in probing structural and functional aspects of DGAT1 and DGAT2, using a combination of molecular and biochemical techniques, is emphasized. Biotechnological applications involving DGAT enzymes ranging from obesity therapeutics to oilseed engineering are also discussed.
Collapse
Affiliation(s)
- Qin Liu
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6H 2P5.
| | | | | | | | | |
Collapse
|
27
|
McCoull W, Addie MS, Birch AM, Birtles S, Buckett LK, Butlin RJ, Bowker SS, Boyd S, Chapman S, Davies RD, Donald CS, Green CP, Jenner C, Kemmitt PD, Leach AG, Moody GC, Morentin Gutierrez P, Newcombe NJ, Nowak T, Packer MJ, Plowright AT, Revill J, Schofield P, Sheldon C, Stokes S, Turnbull AV, Wang SJ, Whalley DP, Matthew Wood J. Identification, optimisation and in vivo evaluation of oxadiazole DGAT-1 inhibitors for the treatment of obesity and diabetes. Bioorg Med Chem Lett 2012; 22:3873-8. [DOI: 10.1016/j.bmcl.2012.04.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 11/16/2022]
|
28
|
Serrano-Wu MH, Coppola GM, Gong Y, Neubert AD, Chatelain R, Clairmont KB, Commerford R, Cosker T, Daniels T, Hou Y, Jain M, Juedes M, Li L, Mullarkey T, Rocheford E, Sung MJ, Tyler A, Yang Q, Yoon T, Hubbard BK. Intestinally Targeted Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitors Robustly Suppress Postprandial Triglycerides. ACS Med Chem Lett 2012; 3:411-5. [PMID: 24900485 DOI: 10.1021/ml3000512] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/04/2012] [Indexed: 01/15/2023] Open
Abstract
High DGAT1 expression levels in the small intestine highlight the critical role this enzyme plays in nutrient absorption. Identification of inhibitors which predominantly inhibit DGAT1 in the gut is an attractive drug discovery strategy with anticipated benefits of reduced systemic toxicity. In this report we describe our discovery and optimization of DGAT1 inhibitors whose plasma exposure is minimized by the action of transporters, including the P-glycoprotein transporter. The impact of this unique absorption profile on efficacy in rat and dog efficacy models is presented.
Collapse
Affiliation(s)
- Michael H. Serrano-Wu
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Gary M. Coppola
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Yongjin Gong
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Alan D. Neubert
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Ricardo Chatelain
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Kevin B. Clairmont
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Renee Commerford
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Theresa Cosker
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Thomas Daniels
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Ying Hou
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Monish Jain
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Marlene Juedes
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Lisha Li
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Tara Mullarkey
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Erik Rocheford
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Moo Je Sung
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Andrew Tyler
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Qing Yang
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Taeyoung Yoon
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| | - Brian K. Hubbard
- Departments
of Global Discovery Chemistry, ‡Cardiovascular and Metabolism, §Metabolism and Pharmacokinetics, and ∥Translational
Sciences, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge Massachusetts
02139, United States
| |
Collapse
|
29
|
Mougenot P, Namane C, Fett E, Camy F, Dadji-Faïhun R, Langot G, Monseau C, Onofri B, Pacquet F, Pascal C, Crespin O, Ben-Hassine M, Ragot JL, Van-Pham T, Philippo C, Chatelain-Egger F, Péron P, Le Bail JC, Guillot E, Chamiot-Clerc P, Chabanaud MA, Pruniaux MP, Schmidt F, Venier O, Nicolaï E, Viviani F. Thiadiazoles as new inhibitors of diacylglycerol acyltransferase type 1. Bioorg Med Chem Lett 2012; 22:2497-502. [DOI: 10.1016/j.bmcl.2012.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
|
30
|
Yeh VSC, Beno DWA, Brodjian S, Brune ME, Cullen SC, Dayton BD, Dhaon MK, Falls HD, Gao J, Grihalde N, Hajduk P, Hansen TM, Judd AS, King AJ, Klix RC, Larson KJ, Lau YY, Marsh KC, Mittelstadt SW, Plata D, Rozema MJ, Segreti JA, Stoner EJ, Voorbach MJ, Wang X, Xin X, Zhao G, Collins CA, Cox BF, Reilly RM, Kym PR, Souers AJ. Identification and preliminary characterization of a potent, safe, and orally efficacious inhibitor of acyl-CoA:diacylglycerol acyltransferase 1. J Med Chem 2012; 55:1751-7. [PMID: 22263872 DOI: 10.1021/jm201524g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A high-throughput screen against human DGAT-1 led to the identification of a core structure that was subsequently optimized to afford the potent, selective, and orally bioavailable compound 14. Oral administration at doses ≥0.03 mg/kg significantly reduced postprandial triglycerides in mice following an oral lipid challenge. Further assessment in both acute and chronic safety pharmacology and toxicology studies demonstrated a clean profile up to high plasma levels, thus culminating in the nomination of 14 as clinical candidate ABT-046.
Collapse
Affiliation(s)
- Vince S C Yeh
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6100, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Honey MA, Pasceri R, Lewis W, Moody CJ. Diverse Trifluoromethyl Heterocycles from a Single Precursor. J Org Chem 2012; 77:1396-405. [DOI: 10.1021/jo202201w] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mark A. Honey
- School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U. K
| | - Raffaele Pasceri
- School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U. K
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U. K
| | - Christopher J. Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham
NG7 2RD, U. K
| |
Collapse
|
32
|
Yun W, Ahmad M, Chen Y, Gillespie P, Conde-Knape K, Kazmer S, Li S, Qian Y, Taub R, Wertheimer SJ, Whittard T, Bolin D. Discovery and optimization of 2-phenyloxazole derivatives as diacylglycerol acyltransferase-1 inhibitors. Bioorg Med Chem Lett 2011; 21:7205-9. [DOI: 10.1016/j.bmcl.2011.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
|
33
|
Spencer J, Patel H, Callear SK, Coles SJ, Deadman JJ. Synthesis and solid state study of pyridine- and pyrimidine-based fragment libraries. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|