1
|
Yang Z, Wang Y, Ablise M, Maimaiti A, Mutalipu Z, Yan T, Liu ZY, Aihaiti A. Design, synthesis, and ex vivo anti-drug resistant cervical cancer activity of novel molecularly targeted chalcone derivatives. Bioorg Chem 2024; 149:107498. [PMID: 38805911 DOI: 10.1016/j.bioorg.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Chemotherapy toxicity and tumor multidrug resistance remain the main reasons for clinical treatment failure in cervical cancer. In this study, 79 novel chalcone derivatives were designed and synthesized using the principle of active substructure splicing with the parent nucleus of licorice chalcone as the lead compound and VEGFR-2 and P-gp as the target of action and their potentials for anticervical cancer activity were preliminarily evaluated. The results showed that the IC50 values of candidate compound B20 against HeLa and HeLa/DDP cells were 3.66 ± 0.10 and 4.35 ± 0.21 μΜ, respectively, with a resistance index (RI) of 1.18, which was significantly higher than that of the positive drug cisplatin (IC50:13.60 ± 1.63, 100.03 ± 7.94 μΜ, RI:7.36). In addition, B20 showed significant inhibitory activity against VEGFR-2 kinase and P-gp-mediated rhodamine 123 efflux, as well as the ability to inhibit the phosphorylation of VEGFR-2 and downstream PI3K/AKT signaling pathway proteins, inducing apoptosis, blocking cells in the S-phase, and inhibiting invasive migration and tubule generation by HUVEC cells. Acceptable safety was demonstrated in acute toxicity tests when B20 was at 200 mg/kg. In the nude mouse HeLa/DDP cell xenograft tumor model, the inhibition rate of transplanted tumors was 39.2 % and 79.2 % when B20 was at 10 and 20 mg/kg, respectively. These results suggest that B20 is a potent VEGFR-2 and P-gp inhibitor with active potential for treating cisplatin-resistant cervical cancer.
Collapse
Affiliation(s)
- Zheng Yang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yu Wang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | - Aikebaier Maimaiti
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zuohelaguli Mutalipu
- Department of Gynecological Radiation Therapy Ⅱ Ward, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, Xinjiang 830011, China
| | - Tong Yan
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zheng-Ye Liu
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Aizitiaili Aihaiti
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
2
|
da Silva Zanzarini I, Henrique Kita D, Scheiffer G, Karoline Dos Santos K, de Paula Dutra J, Augusto Pastore M, Gomes de Moraes Rego F, Picheth G, Ambudkar SV, Pulvirenti L, Cardullo N, Rotuno Moure V, Muccilli V, Tringali C, Valdameri G. Magnolol derivatives as specific and noncytotoxic inhibitors of breast cancer resistance protein (BCRP/ABCG2). Bioorg Chem 2024; 146:107283. [PMID: 38513324 PMCID: PMC11069345 DOI: 10.1016/j.bioorg.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.
Collapse
Affiliation(s)
- Isadora da Silva Zanzarini
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Scheiffer
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Kelly Karoline Dos Santos
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Matteo Augusto Pastore
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luana Pulvirenti
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy.
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
3
|
Yi W, Tran-Nguyen VK, Boumendjel A. One-step synthesis of diaryloxadiazoles as potent inhibitors of BCRP. Future Med Chem 2024; 16:723-735. [PMID: 38573062 PMCID: PMC11157995 DOI: 10.4155/fmc-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Aim: BCRP plays a major role in the efflux of cytotoxic molecules, limiting their antiproliferative activity. We aimed to design and synthesize new BCRP inhibitors to render cancerous tumors more sensitive toward anticancer agents. Materials & methods: Based on our previous work, we conceived potential BCRP inhibitors derived from 1,3,4-oxadiazoles bearing two substituted phenyl rings. Results: Evaluating 19 derivatives, we found that 2,5-diaryl-1,3,4-oxadiazoles possessing methoxy groups were the most active. The highest activity was recorded with derivatives bearing three methoxy groups. The most active compound (3j) was selective in inhibiting BCRP and nontoxic as evidenced by cellular tests. Conclusion: 3j is a promising BCRP inhibitor thanks to its synthetic accessibility and biological profile.
Collapse
Affiliation(s)
- Wei Yi
- Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, Paris, 75013, France
| | | |
Collapse
|
4
|
Damiani D, Tiribelli M. ATP-Binding Cassette Subfamily G Member 2 in Acute Myeloid Leukemia: A New Molecular Target? Biomedicines 2024; 12:111. [PMID: 38255216 PMCID: PMC10813371 DOI: 10.3390/biomedicines12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Despite the progress in the knowledge of disease pathogenesis and the identification of many molecular markers as potential targets of new therapies, the cure of acute myeloid leukemia remains challenging. Disease recurrence after an initial response and the development of resistance to old and new therapies account for the poor survival rate and still make allogeneic stem cell transplantation the only curative option. Multidrug resistance (MDR) is a multifactorial phenomenon resulting from host-related characteristics and leukemia factors. Among these, the overexpression of membrane drug transporter proteins belonging to the ABC (ATP-Binding Cassette)-protein superfamily, which diverts drugs from their cellular targets, plays an important role. Moreover, a better understanding of leukemia biology has highlighted that, at least in cancer, ABC protein's role goes beyond simple drug transport and affects many other cell functions. In this paper, we summarized the current knowledge of ABCG2 (formerly Breast Cancer Resistance Protein, BCRP) in acute myeloid leukemia and discuss the potential ways to overcome its efflux function and to revert its ability to confer stemness to leukemia cells, favoring the persistence of leukemia progenitors in the bone marrow niche and justifying relapse also after therapy intensification with allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| |
Collapse
|
5
|
Yang Z, Liu Z, Ablise M, Maimaiti A, Aihaiti A, Alimujiang Y. Design and Synthesis of Novel α-Methylchalcone Derivatives, Anti-Cervical Cancer Activity, and Reversal of Drug Resistance in HeLa/DDP Cells. Molecules 2023; 28:7697. [PMID: 38067428 PMCID: PMC10707934 DOI: 10.3390/molecules28237697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a collection of newly developed α-methylchalcone derivatives were synthesized and assessed for their inhibitory potential against human cervical cancer cell lines (HeLa, SiHa, and C33A) as well as normal human cervical epithelial cells (H8). Notably, compound 3k exhibited substantial inhibitory effects on both HeLa and HeLa/DDP cells while demonstrating lower toxicity toward H8 cells. Furthermore, the compound 3k was found to induce apoptosis in both HeLa and HeLa/DDP cells while also inhibiting the G2/M phase, resulting in a decrease in the invasion and migration capabilities of these cells. When administered alongside cisplatin, 3k demonstrated a significant reduction in the resistance of HeLa/DDP cells to cisplatin, as evidenced by a decrease in the resistance index (RI) value from 7.90 to 2.10. Initial investigations into the underlying mechanism revealed that 3k did not impact the expression of P-gp but instead facilitated the accumulation of rhodamine 123 in HeLa/DDP cells. The results obtained from CADD docking analysis demonstrated that 3k exhibits stable binding to microtubule proteins and P-gp targets, forming hydrogen bonding interaction forces. Immunofluorescence analysis further revealed that 3k effectively decreased the fluorescence intensity of α and β microtubules in HeLa and HeLa/DDP cells, resulting in disruptions in cell morphology, reduction in cell numbers, nucleus coagulation, and cell rupture. Additionally, Western blot analysis indicated that 3k significantly reduced the levels of polymerized α and β microtubule proteins in both HeLa and HeLa/DDP cell lines while concurrently increasing the expression of dissociated α and β microtubule proteins. The aforementioned findings indicate a potential correlation between the inhibitory effects of 3k on HeLa and HeLa/DDP cells and its ability to inhibit tubulin and P-gp.
Collapse
Affiliation(s)
| | | | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (Z.Y.); (Z.L.); (A.M.); (A.A.); (Y.A.)
| | | | | | | |
Collapse
|
6
|
Dutra JDP, Scheiffer G, Kronenberger T, Gomes LJC, Zanzarini I, dos Santos KK, Tonduru AK, Poso A, Rego FGDM, Picheth G, Valdameri G, Moure VR. Structural and molecular characterization of lopinavir and ivermectin as breast cancer resistance protein (BCRP/ABCG2) inhibitors. EXCLI JOURNAL 2023; 22:1155-1172. [PMID: 38204967 PMCID: PMC10776880 DOI: 10.17179/excli2023-6427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
A current clinical challenge in cancer is multidrug resistance (MDR) mediated by ABC transporters. Breast cancer resistance protein (BCRP) or ABCG2 transporter is one of the most important ABC transporters implicated in MDR and the use of inhibitors is a promising approach to overcome the resistance in cancer. This study aimed to characterize the molecular mechanism of ABCG2 inhibitors identified by a repurposing drug strategy using antiviral, anti-inflammatory and antiparasitic agents. Lopinavir and ivermectin can be considered as pan-inhibitors of ABC transporters, since both compounds inhibited ABCG2, P-glycoprotein and MRP1. They inhibited ABCG2 activity showing IC50 values of 25.5 and 23.4 µM, respectively. These drugs were highly cytotoxic and not transported by ABCG2. Additionally, these drugs increased the 5D3 antibody binding and did not affect the mRNA and protein expression levels. Cell-based analysis of the type of inhibition suggested a non-competitive inhibition, which was further corroborated by in silico approaches of molecular docking and molecular dynamics simulations. These results showed an overlap of the lopinavir and ivermectin binding sites on ABCG2, mainly interacting with E446 residue. However, the substrate mitoxantrone occupies a different site, binding to the F436 region, closer to the L554/L555 plug. In conclusion, these results revealed the mechanistic basis of lopinavir and ivermectin interaction with ABCG2. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Gustavo Scheiffer
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- (a) Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Müller-Strasse 14, Tuebingen DE 72076, Germany, (b) Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany, (c) Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany, (d) Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Lucas Julian Cruz Gomes
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Isadora Zanzarini
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Kelly Karoline dos Santos
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Arun K. Tonduru
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- (a) Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Müller-Strasse 14, Tuebingen DE 72076, Germany, (b) Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany, (c) Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany, (d) Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | | | - Geraldo Picheth
- Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Valdameri G, Kita DH, Dutra JDP, Gomes DL, Tonduru AK, Kronenberger T, Gavinho B, Rossi IV, Carvalho MMD, Pérès B, Zattoni IF, Rego FGDM, Picheth G, Freitas RAD, Poso A, Ambudkar SV, Ramirez MI, Boumendjel A, Moure VR. Characterization of Potent ABCG2 Inhibitor Derived from Chromone: From the Mechanism of Inhibition to Human Extracellular Vesicles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15041259. [PMID: 37111745 PMCID: PMC10144134 DOI: 10.3390/pharmaceutics15041259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Inhibition of ABC transporters is a promising approach to overcome multidrug resistance in cancer. Herein, we report the characterization of a potent ABCG2 inhibitor, namely, chromone 4a (C4a). Molecular docking and in vitro assays using ABCG2 and P-glycoprotein (P-gp) expressing membrane vesicles of insect cells revealed that C4a interacts with both transporters, while showing selectivity toward ABCG2 using cell-based transport assays. C4a inhibited the ABCG2-mediated efflux of different substrates and molecular dynamic simulations demonstrated that C4a binds in the Ko143-binding pocket. Liposomes and extracellular vesicles (EVs) of Giardia intestinalis and human blood were used to successfully bypass the poor water solubility and delivery of C4a as assessed by inhibition of the ABCG2 function. Human blood EVs also promoted delivery of the well-known P-gp inhibitor, elacridar. Here, for the first time, we demonstrated the potential use of plasma circulating EVs for drug delivery of hydrophobic drugs targeting membrane proteins.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Diego Lima Gomes
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Arun Kumar Tonduru
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Bruno Gavinho
- Microbiology, Parasitology and Pathology Program, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Izadora Volpato Rossi
- Cell and Molecular Biology Program, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Mariana Mazetto de Carvalho
- Biopol, Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Basile Pérès
- Département de Pharmacochimie Moléculaire UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Ingrid Fatima Zattoni
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | | | - Geraldo Picheth
- Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Rilton Alves de Freitas
- Biopol, Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Marcel I Ramirez
- Laboratory of Cell Biology, Carlos Chagas Institute, Fiocruz, Curitiba 81310-020, PR, Brazil
| | | | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
8
|
Jiang W, Cao JP, He ZM, Zhu C, Feng XB, Zhao XY, Zhao YP, Bai HC. Highly selective hydrogenation of arenes over Rh nanoparticles immobilized on α-Al2O3 support at room temperature. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem Biol Interact 2023; 369:110297. [PMID: 36496109 DOI: 10.1016/j.cbi.2022.110297] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The need for innovative anticancer treatments with high effectiveness and low toxicity is urgent due to the development of malignancies that are resistant to chemotherapeutic agents and the poor specificity of existing anticancer treatments. Chalcones are 1,3-diaryl-2-propen-1-ones, which are the precursors for flavonoids and isoflavonoids. Chalcones are readily available from a wide range of natural resources and consist of very basic chemical scaffolds. Because the ease with which the synthesis it allows for the production of several chalcone derivatives. Various in-vitro and in-vivo studies indicate that naturally occurring and synthetic chalcone derivatives exhibit promising biological activities against cancer hallmarks such as proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics. According to their structure and functional groups, chalcones derivatives and their hybrid compounds exert a broad range of biological activities through targeting key elements and signaling molecules relevant to cancer progression. This review will provide valuable insights into the latest updates of chalcone groups as anticancer agents and extensively discuss their underlying molecular mechanisms of action.
Collapse
|
10
|
Fahmi MZ, Aung YY, Ahmad MA, Kristanti AN, Sakti SCW, Arjasa OP, Lee HV. In vivo Study of Chalcone Loaded Carbon Dots for Enhancement of Anticancer and Bioimaging Potencies. Nanotheranostics 2023; 7:281-298. [PMID: 37064612 PMCID: PMC10093417 DOI: 10.7150/ntno.80030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 04/18/2023] Open
Abstract
The fluorescent imaging and drug delivery utilizing carbon dots nanomaterials (CDs) have attracted tremendously due to their unique optical ability and outstanding biocompatibility. Herein, we reported a new design of chalcone-loaded carbon dots (Chalcone-APBA-CDs) to serve chalcone transport onto cancer cells and enhance the CDs bioimaging and antitumor activity. The boronic acid was directly introduced to carbon dots (CDs) via pyrolysis process to drive CDs specifically to the cancer cell, and chalcone was mediated on CDs by ultrasonication to perform facile release of the drug delivery model. The successfully synthesized Chalcone-APBA-CDs were proved by their chemical structure, fluorescent activities, in vitro and in vivo analyses, and drug release systems using different pH. In addition, flow cytometry and confocal fluorescent imaging proved CDs' cellular uptake and imaging performance. In vitro analyses further proved that the Chalcone-APBA-CDs exhibited a higher toxicity value than bare CDs and efficiently inhibited the proliferation of the HeLa cells depending on their dose-response. Finally, the performance of Chalcone-APBA-CDs on cancer healing capability was examined in vivo with fibrosarcoma cancer-bearing mice, which showed a remarkable ability to reduce the tumor volume compared with saline (control). This result strongly suggested that the Chalcone-APBA-CDs appear promising simultaneously as cancer cell imaging and drug delivery.
Collapse
Affiliation(s)
- Mochamad Zakki Fahmi
- Department of Chemistry, Airlangga University, Surabaya 60115, Indonesia
- Supramodification Nano-micro Engineering (SPANENG) Research Group, Airlangga University, Surabaya 60115, Indonesia
- ✉ Corresponding author: Dr. Yu Yu
| | - Yu-Yu Aung
- Department of Chemistry, Airlangga University, Surabaya 60115, Indonesia
| | - Musbahu Adam Ahmad
- Department of Chemistry, Airlangga University, Surabaya 60115, Indonesia
| | | | - Satya Candra Wibawa Sakti
- Department of Chemistry, Airlangga University, Surabaya 60115, Indonesia
- ✉ Corresponding author: Dr. Yu Yu
| | - Oka Pradipta Arjasa
- Advanced Materials Research Centre - National Research and Innovation Agency, Central Jakarta 10340, Indonesia
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Design, Synthesis, anticancer evaluation and in silico studies of 2,4,6-trimethoxychalcone derivatives. Saudi Pharm J 2023; 31:65-84. [PMID: 36685294 PMCID: PMC9845116 DOI: 10.1016/j.jsps.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chalcone, a common chemical scaffold of many naturally occurring compounds, has been widely used as an effective template for drug discovery due to its broad biological activities. In this study, a series of chalcone derivatives were designed and synthesized based on the hybridization of 1-(2,4,6-trimethoxyphenyl)butan-1-one with chalcone. Interestingly, most of the target compounds exhibited inhibitory effect of tumor cells in vitro. Especially, (E)-3-(5-bromopyridin-2-yl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (B3) revealed over 10-fold potency than 5-fluorocrail against the Hela and MCF-7 cells with IC50 values of 3.204 and 3.849 μM respectively. Moreover, B3 displayed low toxicity on normal cells. Further experiments indicated that B3 effectively inhibited the proliferation and migration of tumor cells, and promoted their apoptosis. The calculation and prediction of ADME showed that the target compounds may have good pharmacokinetic properties and oral bioavailability. Reverse molecular docking suggested that the possible target of B3 is CDK1. Taken together, these results suggested that B3 appears to be a promising candidate that merits further attention in the development of anticancer drugs.
Collapse
|
12
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Updated chemical scaffolds of ABCG2 inhibitors and their structure-inhibition relationships for future development. Eur J Med Chem 2022; 241:114628. [DOI: 10.1016/j.ejmech.2022.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
|
14
|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem 2022; 237:114346. [DOI: 10.1016/j.ejmech.2022.114346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
15
|
Peng T, Zhuang T, Yan Y, Qian J, Dick GR, Behaghel de Bueren J, Hung SF, Zhang Y, Wang Z, Wicks J, Garcia de Arquer FP, Abed J, Wang N, Sedighian Rasouli A, Lee G, Wang M, He D, Wang Z, Liang Z, Song L, Wang X, Chen B, Ozden A, Lum Y, Leow WR, Luo M, Meira DM, Ip AH, Luterbacher JS, Zhao W, Sargent EH. Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers. J Am Chem Soc 2021; 143:17226-17235. [PMID: 34617746 DOI: 10.1021/jacs.1c08348] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We explore the selective electrocatalytic hydrogenation of lignin monomers to methoxylated chemicals, of particular interest, when powered by renewable electricity. Prior studies, while advancing the field rapidly, have so far lacked the needed selectivity: when hydrogenating lignin-derived methoxylated monomers to methoxylated cyclohexanes, the desired methoxy group (-OCH3) has also been reduced. The ternary PtRhAu electrocatalysts developed herein selectively hydrogenate lignin monomers to methoxylated cyclohexanes-molecules with uses in pharmaceutics. Using X-ray absorption spectroscopy and in situ Raman spectroscopy, we find that Rh and Au modulate the electronic structure of Pt and that this modulating steers intermediate energetics on the electrocatalyst surface to facilitate the hydrogenation of lignin monomers and suppress C-OCH3 bond cleavage. As a result, PtRhAu electrocatalysts achieve a record 58% faradaic efficiency (FE) toward 2-methoxycyclohexanol from the lignin monomer guaiacol at 200 mA cm-2, representing a 1.9× advance in FE and a 4× increase in partial current density compared to the highest productivity prior reports. We demonstrate an integrated lignin biorefinery where wood-derived lignin monomers are selectively hydrogenated and funneled to methoxylated 2-methoxy-4-propylcyclohexanol using PtRhAu electrocatalysts. This work offers an opportunity for the sustainable electrocatalytic synthesis of methoxylated pharmaceuticals from renewable biomass.
Collapse
Affiliation(s)
- Tao Peng
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada.,Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Taotao Zhuang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Yan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jin Qian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Graham R Dick
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemicals Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, VD CH 1015, Switzerland
| | - Jean Behaghel de Bueren
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemicals Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, VD CH 1015, Switzerland
| | - Sung-Fu Hung
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Yun Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ziyun Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - F Pelayo Garcia de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Ning Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Armin Sedighian Rasouli
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Miao Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhe Wang
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhixiu Liang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Liang Song
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Yanwei Lum
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Wan Ru Leow
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Mingchuan Luo
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Debora Motta Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Alexander H Ip
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemicals Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, VD CH 1015, Switzerland
| | - Wei Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
16
|
Vesga LC, Kronenberger T, Tonduru AK, Kita DH, Zattoni IF, Bernal CC, Bohórquez ARR, Mendez‐Sánchez SC, Ambudkar SV, Valdameri G, Poso A. Tetrahydroquinoline/4,5-Dihydroisoxazole Molecular Hybrids as Inhibitors of Breast Cancer Resistance Protein (BCRP/ABCG2). ChemMedChem 2021; 16:2686-2694. [PMID: 33844464 PMCID: PMC8518119 DOI: 10.1002/cmdc.202100188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) is one of the major factors in the failure of many chemotherapy approaches. In cancer cells, MDR is mainly associated with the expression of ABC transporters such as P-glycoprotein, MRP1 and ABCG2. Despite major efforts to develop new selective and potent inhibitors of ABC drug transporters, no ABCG2-specific inhibitors for clinical use are yet available. Here, we report the evaluation of sixteen tetrahydroquinoline/4,5-dihydroisoxazole derivatives as a new class of ABCG2 inhibitors. The affinity of the five best inhibitors was further investigated by the vanadate-sensitive ATPase assay. Molecular modelling data, proposing a potential binding mode, suggest that they can inhibit the ABCG2 activity by binding on site S1, previously reported as inhibitors binding region, as well targeting site S2, a selective region for substrates, and by specifically interacting with residues Asn436, Gln398, and Leu555. Altogether, this study provided new insights into THQ/4,5-dihydroisoxazole molecular hybrids, generating great potential for the development of novel most potent ABCG2 inhibitors.
Collapse
Affiliation(s)
- Luis C. Vesga
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Escuela de QuímicaUniversidad Industrial de SantanderA. A. 678BucaramangaColombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Thales Kronenberger
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Department of Medical Oncology and PneumologyInternal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
| | - Arun Kumar Tonduru
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
| | - Diogo Henrique Kita
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ingrid Fatima Zattoni
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
| | - Cristian Camilo Bernal
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Arnold R. Romero Bohórquez
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Stelia Carolina Mendez‐Sánchez
- Escuela de QuímicaUniversidad Industrial de SantanderA. A. 678BucaramangaColombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Suresh V. Ambudkar
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Glaucio Valdameri
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
| | - Antti Poso
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Department of Medical Oncology and PneumologyInternal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
| |
Collapse
|
17
|
Kita DH, Guragossian N, Zattoni IF, Moure VR, Rego FGDM, Lusvarghi S, Moulenat T, Belhani B, Picheth G, Bouacida S, Bouaziz Z, Marminon C, Berredjem M, Jose J, Gonçalves MB, Ambudkar SV, Valdameri G, Le Borgne M. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Sci Rep 2021; 11:1788. [PMID: 33469044 PMCID: PMC7815716 DOI: 10.1038/s41598-020-79892-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2-b]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC50 values below 0.5 µM. The ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2-b]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2-b]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2-b]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2-b]indole derivatives share the same binding site as the substrate estrone-3-sulfate.
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathalie Guragossian
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moulenat
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Billel Belhani
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Sofiane Bouacida
- Département Sciences de la Matière, Faculté des Sciences exactes et Sciences de la nature et de la vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria.,Research Unit for Chemistry of the Environment and Molecular Structural, University of Constantine 1, Constantine, Algeria
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Christelle Marminon
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, Curitiba, PR, 80230-901, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil. .,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France. .,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.
| |
Collapse
|
18
|
Novel 1-methoxyindole- and 2-alkoxyindole-based chalcones: design, synthesis, characterization, antiproliferative activity and DNA, BSA binding interactions. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02690-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Wu CP, Lusvarghi S, Hsiao SH, Liu TC, Li YQ, Huang YH, Hung TH, Ambudkar SV. Licochalcone A Selectively Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs. JOURNAL OF NATURAL PRODUCTS 2020; 83:1461-1472. [PMID: 32347726 PMCID: PMC7402219 DOI: 10.1021/acs.jnatprod.9b01022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The overexpression of the ATP-binding cassette (ABC) transporter ABCG2 has been linked to clinical multidrug resistance in solid tumors and blood cancers, which remains a significant obstacle to successful cancer chemotherapy. For years, the potential modulatory effect of bioactive compounds derived from natural sources on ABCG2-mediated multidrug resistance has been investigated, as they are inherently well tolerated and offer a broad range of chemical scaffolds. Licochalcone A (LCA), a natural chalcone isolated from the root of Glycyrrhiza inflata, is known to possess a broad spectrum of biological and pharmacological activities, including pro-apoptotic and antiproliferative effects in various cancer cell lines. In this study, the chemosensitization effect of LCA was examined in ABCG2-overexpressing multidrug-resistant cancer cells. Experimental data demonstrated that LCA inhibits the drug transport function of ABCG2 and reverses ABCG2-mediated multidrug resistance in human multidrug-resistant cancer cell lines in a concentration-dependent manner. Results of LCA-stimulated ABCG2 ATPase activity and the in silico docking analysis of LCA to the inward-open conformation of human ABCG2 suggest that LCA binds ABCG2 in the transmembrane substrate-binding pocket. This study provides evidence that LCA should be further evaluated as a modulator of ABCG2 in drug combination therapy trials against ABCG2-expressing drug-resistant tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Sabrina Lusvarghi
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Te-Chun Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Suresh. V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, United States
| |
Collapse
|
20
|
Jiang D, Lei T, Wang Z, Shen C, Cao D, Hou T. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. J Cheminform 2020; 12:16. [PMID: 33430990 PMCID: PMC7059329 DOI: 10.1186/s13321-020-00421-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transporter, plays a critical role in multi-drug resistance (MDR) to anti-cancer drugs and drug–drug interactions. The prediction of BCRP inhibition can facilitate evaluating potential drug resistance and drug–drug interactions in early stage of drug discovery. Here we reported a structurally diverse dataset consisting of 1098 BCRP inhibitors and 1701 non-inhibitors. Analysis of various physicochemical properties illustrates that BCRP inhibitors are more hydrophobic and aromatic than non-inhibitors. We then developed a series of quantitative structure–activity relationship (QSAR) models to discriminate between BCRP inhibitors and non-inhibitors. The optimal feature subset was determined by a wrapper feature selection method named rfSA (simulated annealing algorithm coupled with random forest), and the classification models were established by using seven machine learning approaches based on the optimal feature subset, including a deep learning method, two ensemble learning methods, and four classical machine learning methods. The statistical results demonstrated that three methods, including support vector machine (SVM), deep neural networks (DNN) and extreme gradient boosting (XGBoost), outperformed the others, and the SVM classifier yielded the best predictions (MCC = 0.812 and AUC = 0.958 for the test set). Then, a perturbation-based model-agnostic method was used to interpret our models and analyze the representative features for different models. The application domain analysis demonstrated the prediction reliability of our models. Moreover, the important structural fragments related to BCRP inhibition were identified by the information gain (IG) method along with the frequency analysis. In conclusion, we believe that the classification models developed in this study can be regarded as simple and accurate tools to distinguish BCRP inhibitors from non-inhibitors in drug design and discovery pipelines.![]()
Collapse
Affiliation(s)
- Dejun Jiang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tailong Lei
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004, Hunan, People's Republic of China.
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Chambers CS, Viktorová J, Řehořová K, Biedermann D, Turková L, Macek T, Křen V, Valentová K. Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1763-1779. [PMID: 30907588 DOI: 10.1021/acs.jafc.9b00694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multidrug resistance (MDR) is a major challenge for the 21th century in both cancer chemotherapy and antibiotic treatment of bacterial infections. Efflux pumps and transport proteins play an important role in MDR. Compounds displaying inhibitory activity toward these proteins are prospective for adjuvant treatment of such conditions. Natural low-cost and nontoxic flavonoids, thanks to their vast structural diversity, offer a great pool of lead structures with broad possibility of chemical derivatizations. Various flavonoids were found to reverse both antineoplastic and bacterial multidrug resistance by inhibiting Adenosine triphosphate Binding Cassette (ABC)-transporters (human P-glycoprotein, multidrug resistance-associated protein MRP-1, breast cancer resistance protein, and bacterial ABC transporters), as well as other bacterial drug efflux pumps: major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE), small multidrug resistance (SMR) and resistance-nodulation-cell-division (RND) transporters, and glucose transporters. Flavonoids and particularly flavonolignans are therefore highly prospective compounds for defying multidrug resistance.
Collapse
Affiliation(s)
- Christopher S Chambers
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Lucie Turková
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Tomáš Macek
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| |
Collapse
|
22
|
Weng Y, Yang T, Chen H, Chen Z, Zhu M, Zhan X. Efficient Synthesis of 3‐Aroyl Coumarins in Water via Catalytic Carbopalladation of Nitriles. ChemistrySelect 2019. [DOI: 10.1002/slct.201904315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical SciencesZhejiang University of Technology, Hangzhou Zhejiang 310014 China
| | - Ting Yang
- College of Pharmaceutical SciencesZhejiang University of Technology, Hangzhou Zhejiang 310014 China
| | - Hantao Chen
- College of Pharmaceutical SciencesZhejiang University of Technology, Hangzhou Zhejiang 310014 China
| | - Zhuo Chen
- College of Pharmaceutical SciencesZhejiang University of Technology, Hangzhou Zhejiang 310014 China
| | - Meijie Zhu
- College of Pharmaceutical SciencesZhejiang University of Technology, Hangzhou Zhejiang 310014 China
| | - Xuecheng Zhan
- College of Pharmaceutical SciencesZhejiang University of Technology, Hangzhou Zhejiang 310014 China
| |
Collapse
|
23
|
Dei S, Braconi L, Romanelli MN, Teodori E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:710-743. [PMID: 35582565 PMCID: PMC8992508 DOI: 10.20517/cdr.2019.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of chemotherapy treatment of cancer. This phenomenon is often associated with the overexpression of the ATP-binding cassette (ABC) transporters P-gp (P-glycoprotein, ABCB1), multidrug resistance-associated protein 1, ABCC1 and breast cancer resistance protein, ABCG2 (BCRP). These transporters are constitutively expressed in many tissues playing relevant protective roles by the regulation of the permeability of biological membranes, but they are also overexpressed in malignant tissues. P-gp is the first efflux transporter discovered to be involved in cancer drug resistance, and over the years, inhibitors of this pump have been disclosed to administer them in combination with chemotherapeutic agents. Three generations of inhibitors of P-gp have been examined in preclinical and clinical studies; however, these trials have largely failed to demonstrate that coadministration of pump inhibitors elicits an improvement in therapeutic efficacy of antitumor agents, although some of the latest compounds show better results. Therefore, new and innovative strategies, such as the fallback to natural products and the discover of dual activity ligands emerged as new perspectives. BCRP is the most recently ABC protein identified to be involved in multidrug resistance. It is overexpressed in several haematological and solid tumours together with P-gp, threatening the therapeutic effectiveness of different chemotherapeutic drugs. The chemistry of recently described BCRP inhibitors and dual P-gp/BCRP inhibitors, as well as their preliminary pharmacological evaluation are discussed, and the most recent advances concerning these kinds of MDR modulators are reviewed.
Collapse
Affiliation(s)
- Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
24
|
Dong J, Huang G, Zhang Q, Wang Z, Cui J, Wu Y, Meng Q, Li S. Development of benzochalcone derivatives as selective CYP1B1 inhibitors and anticancer agents. MEDCHEMCOMM 2019; 10:1606-1614. [PMID: 31803401 PMCID: PMC6837174 DOI: 10.1039/c9md00258h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
Abstract
A series of benzochalcone derivatives have been synthesized and evaluated for CYP1 inhibitory activity and cytotoxic properties against wild type cell lines (MCF-7 and MDA-MB-231) and drug resistant cell lines (LCC6/P-gp and MCF-7/1B1). All of these compounds were found to have selective inhibition towards CYP1B1 and the most potent two possessed single-digit nanomolar CYP1B1 potency. In addition, some of them showed promising cytotoxic activities not only against wild type cells, but also against drug resistant cells at low micromolar concentrations. More importantly, these multi-functional compounds may surmount drug-drug interactions that frequently occur during the combination of CYP1B1/P-gp inhibitors and anticancer drugs to overcome drug resistance. This study may provide a good starting point for the further development of more potent multi-functional agents with CYP1B1 inhibitory activity and cytotoxic potency in cancer prevention and treatment.
Collapse
Affiliation(s)
- Jinyun Dong
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| | - Guang Huang
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| | - Qijing Zhang
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| | - Zengtao Wang
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| | - Jiahua Cui
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| | - Yan Wu
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| | - Qingqing Meng
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| | - Shaoshun Li
- School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China . ; ; Tel: +8621 34204775
| |
Collapse
|
25
|
Silbermann K, Shah CP, Sahu NU, Juvale K, Stefan SM, Kharkar PS, Wiese M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur J Med Chem 2019; 164:193-213. [PMID: 30594677 DOI: 10.1016/j.ejmech.2018.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Abstract
During cancer chemotherapy, certain cancers may become cross-resistant to structurally diverse antineoplastic agents. This so-called multidrug resistance (MDR) is highly associated with the overexpression of ATP-binding cassette (ABC) transport proteins. These membrane-bound efflux pumps export a broad range of structurally diverse endo- and xenobiotics, including chemically unrelated anticancer agents. This translocation of drugs from the inside to the outside of cancer cells is mediated at the expense of ATP. In the last 40 years, three ABC transporters - ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP) - have mainly been attributed to the occurrence of MDR in cancer cells. One of the strategies to overcome MDR is to inhibit the efflux transporter function by small-molecule inhibitors. In this work, we investigated new chalcone- and flavone-based compounds for selective as well as broad-spectrum inhibition of the stated transport proteins. These include substituted chalcones with variations at rings A and B, and flavones with acetamido linker at position 3. The synthesized molecules were evaluated for their inhibitory potential against ABCB1, ABCC1, and ABCG2 in calcein AM and pheophorbide A assays. In further investigations with the most promising candidates from each class, we proved that ABCB1- and ABCG2-mediated MDR could be reversed by the compounds. Moreover, their intrinsic toxicity was found to be negligible in most cases. Altogether, our findings contribute to the understanding of ABC transport proteins and reveal new compounds for ongoing evaluation in the field of ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Katja Silbermann
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Chetan P Shah
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Niteshkumar U Sahu
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Sven Marcel Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, Rheinische Friedrich-Wilhelms-University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
26
|
Dumontet C, Beck G, Gardebien F, Haudecoeur R, Mathé D, Matera EL, Tourette A, Mattei E, Esmenjaud J, Boyère C, Nurisso A, Peuchmaur M, Pérès B, Bouchaud G, Magnan A, Monneret G, Boumendjel A. Piperidinyl-embeded chalcones possessing anti PI3Kδ inhibitory properties exhibit anti-atopic properties in preclinical models. Eur J Med Chem 2018; 158:405-413. [PMID: 30237123 DOI: 10.1016/j.ejmech.2018.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositide 3-kinases (PI3Ks) are widely expressed enzymes involved in membrane signalization pathways. Attempts to administer inhibitors with broad activity against different isoforms have failed due to toxicity. Conversely the PI3Kδ isoform is much more selectively expressed, enabling therapeutic targeting of this isoform. Of particular interest PI3Kδ is expressed in human basophils and its inhibition has been shown to reduce anti-IgE induced basophil degranulation, suggesting that PI3Kδ inhibitors could be useful as anti-allergy drugs. Herein, we report for the first time the activity of compounds derived from chalcone scaffolds as inhibitors of normal human basophil degranulation and identified the most active compound with anti-PI3Kδ properties that was investigated in preclinical models. Compound 18, namely 1-[2-hydroxy-4,6-dimethoxy-3-(N-methylpiperidin-4-yl)phenyl]-3-(2,4,6-trimethoxyphenyl)-prop-2-en-1-one, was found to inhibit normal human basophil degranulation in a dose-dependent manner. In a murine model of ovalbumin-induced asthma, compound 18 was shown to reduce expiratory pressure while its impact on the inflammatory infiltrate in alveolar lavage and total lung was dependent on the route of administration. In a DNFB-induced model of atopic dermatitis compound 18 administered systemically proved to be as potent as topical betamethasone. These results support the anti-atopic and allergic properties of the title compound and warrant further clinical development.
Collapse
Affiliation(s)
- Charles Dumontet
- INSERM 1052/CNRS 5286/University of Lyon, Cancer Research Center of Lyon, France; Hospices Civils de Lyon, France
| | - Guillaume Beck
- Biologie Intégrée Du Globule Rouge UMR_S1134, Inserm, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de La Réunion, Univ. des Antilles; Laboratoire D'Excellence GR-Ex, Faculté des Sciences et Technologies, Saint Denis Messag, F-97715, La Réunion, Paris, France
| | - Fabrice Gardebien
- Biologie Intégrée Du Globule Rouge UMR_S1134, Inserm, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de La Réunion, Univ. des Antilles; Laboratoire D'Excellence GR-Ex, Faculté des Sciences et Technologies, Saint Denis Messag, F-97715, La Réunion, Paris, France
| | | | - Doriane Mathé
- INSERM 1052/CNRS 5286/University of Lyon, Cancer Research Center of Lyon, France
| | - Eva-Laure Matera
- INSERM 1052/CNRS 5286/University of Lyon, Cancer Research Center of Lyon, France
| | - Anne Tourette
- INSERM 1052/CNRS 5286/University of Lyon, Cancer Research Center of Lyon, France
| | - Eve Mattei
- INSERM 1052/CNRS 5286/University of Lyon, Cancer Research Center of Lyon, France
| | - Justine Esmenjaud
- INSERM 1052/CNRS 5286/University of Lyon, Cancer Research Center of Lyon, France
| | - Cédric Boyère
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041, Grenoble, France
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211, Geneva 4, Switzerland
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041, Grenoble, France
| | - Basile Pérès
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041, Grenoble, France
| | - Grégory Bouchaud
- INSERM, CNRS, UNIV Nantes, L'institut Du Thorax, CHU, Nantes, France; INRA, UR1268, BIA, Nantes, France
| | - Antoine Magnan
- INSERM, CNRS, UNIV Nantes, L'institut Du Thorax, CHU, Nantes, France; INRA, UR1268, BIA, Nantes, France
| | | | - Ahcène Boumendjel
- Univ. Grenoble Alpes, CNRS, DPM UMR 5063, F-38041, Grenoble, France.
| |
Collapse
|
27
|
Make azoles active again: chalcones as potent reversal agents of transporters-mediated resistance in Candida albicans. Future Med Chem 2018; 10:2177-2186. [PMID: 30043631 DOI: 10.4155/fmc-2018-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Resistance against antifungals used for Candida albicans (Ca) treatment is mediated by two multidrug transporters, Mdr1p and Cdr1p, which are of enormous interest to the development of modulators combined with antifungals. EXPERIMENTAL A set of chalcones was synthesized by condensation reactions in laboratory and was then subject to biological assays to evaluate the effects on different yeast strains. Results: The obtained chalcones were screened using the checkerboard liquid chemosensitization assays. Compounds 4, 10, 12 and 18, when combined with fluconazole, triggered strong sensitization on yeast strains overexpressing CaMdr1p and CaCdr1p, whereas displaying no cytotoxicity by themselves towards control strains and transporter-expressing yeast cells. In the Nile Red transport assay, the two most active compounds, 12 and 18 showed moderate-to-high accumulation of Nile Red with different behaviors towards the two transporters. CONCLUSION Chalcones are promising drug candidates for further development to make azole antifungals active again.
Collapse
|
28
|
Peña-Solórzano D, Scholler M, Bernhardt G, Buschauer A, König B, Ochoa-Puentes C. Tariquidar-Related Chalcones and Ketones as ABCG2 Modulators. ACS Med Chem Lett 2018; 9:854-859. [PMID: 30128080 DOI: 10.1021/acsmedchemlett.8b00289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023] Open
Abstract
ABC transporters, including ABCG2, play a vital role in defending the human body against the vast range of xenobiotics. Even though this is beneficial for human health, these protein transporters have been implicated in the emerging resistance of cancer cells to a variety of structurally and functionally diverse anticancer drugs. In order to investigate their role in resistance, potent and selective ABCG2 modulators have been described in the literature. A leading class of modulators are the tariquidar analogues; however, their susceptibility to hydrolysis limits their applicable use. To overcome this, we synthesized a novel series of chalcone- and ketone-based compounds inspired by reported tariquidar analogues. Compounds were characterized and evaluated for their ABCG2 modulatory activity and ABC transporter selectivity. When compared to transporters ABCB1 and ABCC1, the chalcone-based compounds exhibited selectivity for ABCG2, while the ketone-based compounds showed only a slight preference for ABCG2. From the former series, chalcone 16d (UR-DP48) displayed similar activity to the reference fumitremorgin C, both producing comparable maximal effects. The compound exhibited marked antiproliferative activity, while cytotoxicity was less pronounced for the most active compound 17f from the ketone series. Chalcone-containing tariquidar analogues are promising modulators to aid in functional investigations of ABCG2 transporters.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia−Sede Bogotá, 5997 Bogotá, Colombia
| | | | | | | | | | - Cristian Ochoa-Puentes
- Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia−Sede Bogotá, 5997 Bogotá, Colombia
| |
Collapse
|
29
|
Patel M, Sushmita, Verma AK. Copper-catalyzed stereo- and chemoselective synthesis of enaminones via Michael type addition. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1465-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Synthesis of carbazole derivatives containing chalcone analogs as non-intercalative topoisomerase II catalytic inhibitors and apoptosis inducers. Eur J Med Chem 2018; 145:498-510. [PMID: 29335211 DOI: 10.1016/j.ejmech.2018.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
Novel topoisomerase II (Topo II) inhibitors have gained considerable interest for the development of anticancer agents. In this study, a series of carbazole derivatives containing chalcone analogs (CDCAs) were synthesized and investigated for their Topo II inhibition and cytotoxic activities. The results from Topo II mediated DNA relaxation assay showed that CDCAs could significantly inhibit the activity of Topo II, and the structure-activity relationship indicated the halogen substituent in phenyl ring play an important role in the activity. Further mechanism studies revealed that CDCAs function as non-intercalative Topo II catalytic inhibitors. Moreover, some CDCAs showed micromolar cytotoxic activities. The most potent compound 3h exhibited notable growth inhibition against four human cancer cell lines. Flow cytometric analysis revealed that compounds 3d and 3h arrested the HL-60 cells in sub G1 phase by induction of apoptosis. It was further confirmed by Annexin-V-FITC binding assay. Western blot analysis revealed that compound 3h induces apoptosis likely through the activation of caspase proteins.
Collapse
|
31
|
Sjöstedt N, Deng F, Rauvala O, Tepponen T, Kidron H. Interaction of Food Additives with Intestinal Efflux Transporters. Mol Pharm 2017; 14:3824-3833. [DOI: 10.1021/acs.molpharmaceut.7b00563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Noora Sjöstedt
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Oskari Rauvala
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tuomas Tepponen
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
32
|
|
33
|
Maragatham G, Selvarani S, Rajakumar P, Lakshmi S. Crystal structures of three 1-[4-(4-bromo-but-oxy)-phen-yl] chalcone derivatives: ( E)-1-[4-(4-bromo-but-oxy)-phen-yl]-3-phenyl-prop-2-en-1-one, ( E)-1-[4-(4-bromo-but-oxy)-phen-yl]-3-(4-meth-oxy-phen-yl)prop-2-en-1-one and ( E)-1-[4-(4-bromo-but-oxy)-phen-yl]-3-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one. ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS 2017; 73:1232-1236. [PMID: 28932443 PMCID: PMC5598855 DOI: 10.1107/s2056989017010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/06/2017] [Indexed: 08/23/2023]
Abstract
Molecules (I) and (II) are nearly planar, while molecule (III) is not planar. In compounds (I) and (II), molecules are linked into chain by C—H⋯π interactions. In compound (III), molecules are linked by a pair of C—H⋯O hydrogen bonds, forming inversion dimers. Weak C—Br⋯π interactions are present in (III). The crystal structures of three chalcones with a bromo-substituted butoxy side chain, viz. (E)-1-[4-(4-bromobutoxy)phenyl]-3-phenylprop-2-en-1-one, C19H19BrO2, (I), (E)-1-[4-(4-bromobutoxy)phenyl]-3-(4-methoxyphenyl)prop-2-en-1-one, C20H21BrO3, (II), and (E)-1-[4-(4-bromobutoxy)phenyl]-3-(3,4-dimethoxyphenyl)prop-2-en-1-one, C21H23BrO4, (III), are reported. In all molecules, the conformation of the keto group with respect to the olefinic bond is s-cis. Molecules of (I) and (II) are nearly planar, while molecule (III) is not planar. In the crystal of compounds (I) and (II), molecules are linked into chains parallel to the c axis by C—H⋯π interactions. In the crystal of compound (III), molecules are linked by a pairs of C—H⋯O hydrogen bonds, forming inversion dimers. Weak C—Br⋯π interactions are also observed in (III).
Collapse
Affiliation(s)
- Gunasekaran Maragatham
- Department of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India
| | - Sivasamy Selvarani
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Srinivasakannan Lakshmi
- Department of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India
| |
Collapse
|
34
|
Chan CK, Tsai YL, Chang MY. Bi(OTf) 3 catalyzed disproportionation reaction of cinnamyl alcohols. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Thieury C, Lebouvier N, Le Guével R, Barguil Y, Herbette G, Antheaume C, Hnawia E, Asakawa Y, Nour M, Guillaudeux T. Mechanisms of action and structure-activity relationships of cytotoxic flavokawain derivatives. Bioorg Med Chem 2017; 25:1817-1829. [PMID: 28214231 DOI: 10.1016/j.bmc.2017.01.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/21/2023]
Abstract
22 Flavokawain derivatives (FKd) were obtained by one step syntheses in order to conduct a SAR study to understand the structural requirements for optimum and selective cytotoxicity. FKd and natural flavokawains A and B found into kava, a South Pacific traditional beverage, were evaluated against nine cancer and one healthy cell lines. The targeted cell cycle phases as well as the effects on the induction of apoptosis and cell cycle protein levels were investigated. Therapeutic improvements (more activity and selectivity) were achieved with FKd compared to natural flavokawains and notably with the 2',3,4',6'-tetramethoxychalcone (FKd 19). FKd induced a G1/S arrest on p53 wild-type cells and an M arrest on p53 mutant-type, via the up-regulation of p21 and cyclin B1 proteins, followed by apoptosis. Moreover, FKd exhibited a 24h-effect on Akt/mTor normal cells versus a 48h-effect on Akt/mTor up-regulated cells. The SAR study resulted in the conclusion that trimethoxy A-ring allowed the best compromise between cytotoxicity and selectivity, as well as the substitution of the meta position on the B-ring and the use of halogens substituents.
Collapse
Affiliation(s)
- Charlotte Thieury
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia.
| | - Nicolas Lebouvier
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Rémy Le Guével
- UMS 3480 CNRS/US INSERM 018 BIOSIT Plateforme ImPACcell, Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | - Yann Barguil
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia; Laboratoire de Biochimie et d'Hémostase, Hôpital Gaston Bourret, 7 avenue Paul Doumer, 98800 Nouméa, New Caledonia
| | - Gaëtan Herbette
- Spectropole, FR1739 - Faculté de Saint-Jérôme, Université d'Aix-Marseille, 52 Avenue Escadrille Normandie Niemen, 13013 Marseille, France
| | - Cyril Antheaume
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Edouard Hnawia
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihamahoji-180 Yamashirocho, Tokushima 770-8514, Japan
| | - Mohammed Nour
- LIVE EA 4243, Université de la Nouvelle-Calédonie, avenue James Cook, BPR4, 98851 Nouméa, New Caledonia
| | - Thierry Guillaudeux
- UMS 3480 CNRS/US INSERM 018 BIOSIT Plateforme ImPACcell, Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043 Rennes Cedex, France; UMR INSERM U917 "Microenvironnement et cancer", Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043 Rennes Cedex, France; INSERM 440 Université de Rennes 1 "Oncogenesis Stress Signaling", Centre Eugène Marquis, 35043 Rennes Cedex, France
| |
Collapse
|
36
|
Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 2016; 37:987-1050. [PMID: 28005280 DOI: 10.1002/med.21428] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy-dependent mechanism involving the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (ABCB1), the MDR-associated protein-1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | | | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cesar Augusto Sierra
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| |
Collapse
|
37
|
Chen M, Shi L, Tang J, Wang Q. Synthesis of aminoalkyl-substituted polymethoxychalcone derivatives and their antiproliferative activities against three human cancer cell lines. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-6190-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Trabbic CJ, George SM, Alexander EM, Du S, Offenbacher JM, Crissman EJ, Overmeyer JH, Maltese WA, Erhardt PW. Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity. Eur J Med Chem 2016; 122:79-91. [PMID: 27343855 DOI: 10.1016/j.ejmech.2016.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Certain indolyl-pyridinyl-propenone analogues kill glioblastoma cells that have become resistant to conventional therapeutic drugs. Some of these analogues induce a novel form of non-apoptotic cell death called methuosis, while others primarily cause microtubule disruption. Ready access to 5-indole substitution has allowed characterization of this position to be important for both types of mechanisms when a simple methoxy group is present. We now report the syntheses and biological effects of isomeric methoxy substitutions on the indole ring. Additionally, analogues containing a trimethoxyphenyl group in place of the pyridinyl moiety were evaluated for anticancer activity. The results demonstrate that the location of the methoxy group can alter both the potency and the mechanism of cell death. Remarkably, changing the methoxy from the 5-position to the 6-position switched the biological activity from induction of methuosis to disruption of microtubules. The latter may represent a prototype for a new class of mitotic inhibitors with potential therapeutic utility.
Collapse
Affiliation(s)
- Christopher J Trabbic
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Sage M George
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Evan M Alexander
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Shengnan Du
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Jennifer M Offenbacher
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Emily J Crissman
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - William A Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA.
| | - Paul W Erhardt
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA.
| |
Collapse
|
39
|
Schwarz T, Montanari F, Cseke A, Wlcek K, Visvader L, Palme S, Chiba P, Kuchler K, Urban E, Ecker GF. Subtle Structural Differences Trigger Inhibitory Activity of Propafenone Analogues at the Two Polyspecific ABC Transporters: P-Glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). ChemMedChem 2016; 11:1380-94. [PMID: 26970257 PMCID: PMC4949556 DOI: 10.1002/cmdc.201500592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/03/2016] [Indexed: 12/18/2022]
Abstract
The transmembrane ABC transporters P‐glycoprotein (P‐gp) and breast cancer resistance protein (BCRP) are widely recognized for their role in cancer multidrug resistance and absorption and distribution of compounds. Furthermore, they are linked to drug–drug interactions and toxicity. Nevertheless, due to their polyspecificity, a molecular understanding of the ligand‐transporter interaction, which allows designing of both selective and dual inhibitors, is still in its infancy. This study comprises a combined approach of synthesis, in silico prediction, and in vitro testing to identify molecular features triggering transporter selectivity. Synthesis and testing of a series of 15 propafenone analogues with varied rigidity and basicity of substituents provide first trends for selective and dual inhibitors. Results indicate that both the flexibility of the substituent at the nitrogen atom, as well as the basicity of the nitrogen atom, trigger transporter selectivity. Furthermore, inhibitory activity of compounds at P‐gp seems to be much more influenced by logP than those at BCRP. Exploiting these differences further should thus allow designing specific inhibitors for these two polyspecific ABC‐transporters.
Collapse
Affiliation(s)
- Theresa Schwarz
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Floriane Montanari
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Anna Cseke
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Katrin Wlcek
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Lene Visvader
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Sarah Palme
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Peter Chiba
- Department of Medicinal Chemistry, Medical University Vienna, Währingerstraße 10, 1090, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Dr. Bohr-Gasse 9/2, 1030, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
40
|
Pan L, Zeng K, Wang X, Bi H, Hu H, Huang M, Lou Y, Zeng S. Neochamaejasmin B increases the bioavailability of chamaechromone coexisting in Stellera chamaejasme L. via inhibition of MRP2 and BCRP. Int J Pharm 2015; 496:440-7. [DOI: 10.1016/j.ijpharm.2015.10.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/06/2015] [Accepted: 10/11/2015] [Indexed: 01/04/2023]
|
41
|
Egido E, Müller R, Li-Blatter X, Merino G, Seelig A. Predicting Activators and Inhibitors of the Breast Cancer Resistance Protein (ABCG2) and P-Glycoprotein (ABCB1) Based on Mechanistic Considerations. Mol Pharm 2015; 12:4026-37. [DOI: 10.1021/acs.molpharmaceut.5b00463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Estefanía Egido
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
- INDEGSAL,
Campus Vegazana s/n, University of Leon, 24071 Leon, Spain
- Department
of Biomedical Sciences—Physiology, Veterinary Faculty, Campus
Vegazana s/n, University of Leon, 24071 Leon, Spain
| | - Rita Müller
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Xiaochun Li-Blatter
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Gracia Merino
- INDEGSAL,
Campus Vegazana s/n, University of Leon, 24071 Leon, Spain
- Department
of Biomedical Sciences—Physiology, Veterinary Faculty, Campus
Vegazana s/n, University of Leon, 24071 Leon, Spain
| | - Anna Seelig
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
42
|
Abstract
BCRP/ABCG2, a second member of ABC transporter subclass G, has been shown to be overexpressed in several solid tumors, acute myelogenous leukemia and chronic myeloid leukemia. A variety of chemically unrelated anticancer drugs have been found to be transported by ABCG2 leading to their lower intracellular accumulation and hence causing chemoresistance. Until now several efforts have been taken to identify potent and selective inhibitors of ABCG2. Recent studies carried out to deign BCRP inhibitors have been able to point out the effect of the substitution pattern in compound scaffolds on the potency, selectivity and cytotoxicity of ABCG2 inhibitors.
Collapse
|
43
|
Dual properties of hispidulin: antiproliferative effects on HepG2 cancer cells and selective inhibition of ABCG2 transport activity. Mol Cell Biochem 2015. [DOI: 10.1007/s11010-015-2518-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions. Molecules 2015; 20:11617-31. [PMID: 26111185 PMCID: PMC6272727 DOI: 10.3390/molecules200611617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.
Collapse
|
45
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
46
|
Trabbic CJ, Overmeyer JH, Alexander EM, Crissman EJ, Kvale HM, Smith MA, Erhardt PW, Maltese WA. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. J Med Chem 2015; 58:2489-512. [PMID: 25654321 PMCID: PMC4360382 DOI: 10.1021/jm501997q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methuosis is a form of nonapoptotic cell death characterized by an accumulation of macropinosome-derived vacuoles with eventual loss of membrane integrity. Small molecules inducing methuosis could offer significant advantages compared to more traditional anticancer drug therapies that typically rely on apoptosis. Herein we further define the effects of chemical substitutions at the 2- and 5-indolyl positions on our lead compound 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (MOMIPP). We have identified a number of compounds that induce methuosis at similar potencies, including an interesting analogue having a hydroxypropyl substituent at the 2-position. In addition, we have discovered that certain substitutions on the 2-indolyl position redirect the mode of cytotoxicity from methuosis to microtubule disruption. This switch in activity is associated with an increase in potency as large as 2 orders of magnitude. These compounds appear to represent a new class of potent microtubule-active anticancer agents.
Collapse
Affiliation(s)
- Christopher J Trabbic
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences , 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Martínez-Cifuentes M, Salazar R, Escobar CA, Weiss-López BE, Santos LS, Araya-Maturana R. Correlating experimental electrochemistry and theoretical calculations in 2′-hydroxy chalcones: the role of the intramolecular hydrogen bond. RSC Adv 2015. [DOI: 10.1039/c5ra10140a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The molecular structure and electrochemical behaviour of a series of 2′-hydroxychalcones were studied. Results show the importance of the intramolecular hydrogen bond and the methoxy substituent pattern on the redox properties of these compounds.
Collapse
Affiliation(s)
| | - Ricardo Salazar
- Laboratorio de Electroquímica MedioAmbiental
- LEQMA
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile, USACh
| | - Carlos A. Escobar
- Departamento de Ciencias Químicas
- Universidad Andres Bello
- Santiago
- Chile
| | | | - Leonardo S. Santos
- Laboratorio de Síntesis Asimétrica
- Instituto de Química de los Recursos Naturales
- Universidad de Talca
- Talca
- Chile
| | - Ramiro Araya-Maturana
- Departamento de Química Orgánica y Fisicoquímica
- Facultad de Ciencias Químicas Y Farmacéuticas
- Universidad de Chile
- Santiago 1
- Chile
| |
Collapse
|
48
|
Bai XG, Xu CL, Zhao SS, He HW, Wang YC, Wang JX. Synthesis and cytotoxic evaluation of alkoxylated chalcones. Molecules 2014; 19:17256-78. [PMID: 25353380 PMCID: PMC6271338 DOI: 10.3390/molecules191117256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 10/17/2014] [Indexed: 01/03/2023] Open
Abstract
A series of chalcones a1–20 bearing a 4-OMe groups on the A-ring were initially synthesized and their anticancer activities towards HepG2 cells evaluated. Subsequently, a series of chalcones b1–42 bearing methoxy groups at the 2' and 6'-positions of the B-ring were synthesized and their anticancer activities towards five human cancer cell lines (HepG2, HeLa, MCF-7, A549 and SW1990) and two non-tumoral human cell lines evaluated. The results showed that six compounds (b6, b8, b11, b16, b18, b22, b23 and b29) displayed promising activities, with compounds b22 and b29 in particular showing higher levels of activity than etoposide against all five cancer cell lines. Compound b29 showed a promising SI value compared with both HMLE and L02 (2.1–6.5 fold in HMLE and > 33 > 103.1 fold in L02, respectively).
Collapse
Affiliation(s)
- Xiao-Guang Bai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Chang-Liang Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuang-Shuang Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hong-Wei He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-Cheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ju-Xian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
49
|
Gao W, Lan S, Li Y, Zhang H, Chang M. A Facile synthesis of Novel Indole-Based Chalcones ( E)-1-(2-Chloro-1-Methyl-1 H-Indol-3-Yl)-3-Arylprop-2-En-1-Ones. JOURNAL OF CHEMICAL RESEARCH 2014. [DOI: 10.3184/174751914x14108592918139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A facile and general synthesis of 23 novel indole-based chalcones, ( E)-1-(2-chloro-1-methyl-1 H-indol-3-yl)-3-arylprop-2-en-1-ones, has been achieved in good yields of 71–89% by the Claisen–Schmidt condensation reaction of 3-acetyl-2-chloro- N-methylindole with variously substituted araldehydes using 1,4-dioxane as solvent in the presence of 5% aq. KOH. A similar reaction using furan-2- or thiophene-2-carbaldehyde gave analogous products in good yield, but an unexpected aldol reaction occurred with 2-nitrobenzaldehyde and the stable aldol product was isolated as the major product in a good yield of 73%.
Collapse
Affiliation(s)
- Wentao Gao
- Institute of Superfine Chemicals, Bohai University, Jinzhou 121000, P.R. China
| | - Shuai Lan
- Institute of Superfine Chemicals, Bohai University, Jinzhou 121000, P.R. China
| | - Yang Li
- Institute of Superfine Chemicals, Bohai University, Jinzhou 121000, P.R. China
| | - Hong Zhang
- College of Chemistry & Chemical Engineering, Bohai University, Jinzhou 121000, P.R. China
| | - Mingqin Chang
- College of Chemistry & Chemical Engineering, Bohai University, Jinzhou 121000, P.R. China
| |
Collapse
|
50
|
Sashidhara KV, Dodda RP, Sonkar R, Palnati GR, Bhatia G. Design and synthesis of novel indole-chalcone fibrates as lipid lowering agents. Eur J Med Chem 2014; 81:499-509. [DOI: 10.1016/j.ejmech.2014.04.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/11/2022]
|