1
|
Ghazanfari N, van Waarde A, Doorduin J, Sijbesma JWA, Kominia M, Koelewijn M, Attia K, Willemsen ATM, Visser TJ, Heeres A, Dierckx RAJO, de Vries EFJ, Elsinga PH. Pharmacokinetic Modeling of [ 11C]GSK-189254, PET Tracer Targeting H 3 Receptors, in Rat Brain. Mol Pharm 2022; 19:918-928. [PMID: 35170965 PMCID: PMC8905578 DOI: 10.1021/acs.molpharmaceut.1c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
The histamine H3 receptor has been considered as a target for the treatment of various central nervous system diseases. Positron emission tomography (PET) studies with the radiolabeled potent and selective histamine H3 receptor antagonist [11C]GSK-189254 in rodents could be used to examine the mechanisms of action of novel therapeutic drugs or to assess changes of regional H3 receptor density in animal models of neurodegenerative disease. [11C]GSK-189254 was intravenously administered to healthy Wistar rats (n = 10), and a 60 min dynamic PET scan was carried out. Arterial blood samples were obtained during the scan to generate a metabolite-corrected plasma input function. PET data were analyzed using a one-tissue compartment model (1T2k), irreversible (2T3k) or reversible two-tissue compartment models (2T4k), graphical analysis (Logan and Patlak), reference tissue models (SRTM and SRTM2), and standard uptake values (SUVs). The Akaike information criterion and the standard error of the estimated parameters were used to select the most optimal quantification method. This study demonstrated that the 2T4k model with a fixed blood volume fraction and Logan graphical analysis can best describe the kinetics of [11C]GSK-189254 in the rat brain. SUV40-60 and the reference tissue-based measurements DVR(2T4k), BPND(SRTM), and SUV ratio could also be used as a simplified method to estimate H3 receptor availability in case blood sampling is not feasible.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Aren van Waarde
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Janine Doorduin
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Jürgen W. A. Sijbesma
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Maria Kominia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | - Khaled Attia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Antoon T. M. Willemsen
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | | | - Rudi A. J. O. Dierckx
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Erik F. J. de Vries
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Philip H. Elsinga
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
2
|
Abstract
:
The benzofuranyl motif present in compounds exhibits various medicinal properties and
non-drug applications. These derivatives are naturally occurring compounds or synthetic materials,
which cover a broad spectrum of pharmacological activities like anti-inflammatory, anti-diabetic, anti-
depressant, anti-HIV, anti-microbial, anti-proliferative, anti-convulsant, cytotoxic, analgesic, etc.
Few of the commercially interesting compounds from this class are, ailanthoidol (anti-inflammatory),
amiodarone, dronedarone, celivarone (anti-arrhythmic), bufuralol (muscular airways relaxant), morphine,
5-(2-aminopropyl)benzofuran; 5-APB, 6-(2-aminopropyl)benzofuran; 6-APB (CNS), rifampicin
(antibiotic), etc., whereas, some of the non-drug applications are in perfumery industry (bergapten)
and as tannin activators in sunscreen preparations (psoralen, 8-methoxypsoralen, and angelicin).
Considering these interesting biological activities and commercial utilities, a review on the synthetic
aspects of this privileged scaffold was attempted. For the benefit of natural product-based drug discovery,
available sources of these derivatives, extraction process and reported biological activities
have also been outlined in this review.
Collapse
Affiliation(s)
- Andiappan Lavanya
- Department of Training and Development, Orchid Pharma Ltd., 138-149, SIDCO Industrial Estate, Alathur, Chennai- 603 110, Tamil Nadu, India
| | - Kilambi Narasimhan
- Department of Training and Development, Orchid Pharma Ltd., 138-149, SIDCO Industrial Estate, Alathur, Chennai- 603 110, Tamil Nadu, India
| | - Vediappen Padmini
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
3
|
Sandiego CM, Barret O, Lee H, Alagille D, Amenta A, Fowles K, Holden D, Seibyl JP, Tamagnan G. Imaging histamine H3 receptors with [ 18 F]FMH3: Test-retest and occupancy studies in the non-human primate. Synapse 2019; 73:e22096. [PMID: 30835877 DOI: 10.1002/syn.22096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023]
Abstract
A positron emission tomography (PET) radioligand, [18 F]FMH3, has been developed to interrogate histamine receptor subtype 3 (H3R), where dysfunction at this site is linked with obesity, sleep abnormality, and cognitive disorders. [18 F]FMH3 was evaluated for imaging central H3R sites in non-human primates through test-retest (TRT) and dose-receptor occupancy studies with two selective H3R antagonists in order to support clinical investigations. Two adult female baboons underwent [18 F]FMH3 PET brain scans in the HR+, at repeated baseline (n = 7) and following administration of escalating doses of ABT-239 (0.003-0.1m/kg, n = 4) and ciproxifan (0.5-2.1 mg/kg, n = 7). Volume of distribution (VT ) in brain regions was estimated using the 2-tissue compartment model. TRT variability of VT across repeated baseline scans was reported as % coefficient of variation (COV). ABT-239 and ciproxifan occupancy at H3R was estimated using the occupancy plot, and the relationship of occupancy with dose and plasma levels was determined. In baboons, distribution of [18 F]FMH3 was high in the striatum, intermediate in cortical regions, and low in the brain stem. COV of baseline VT was 7.0 ± 3.5%, averaged across regions and animals. Dose-dependent effects of ABT-239 and ciproxifan measured the brain. ED50 and EC50, respectively, were 0.011 mg/kg and 0.942 ng/ml for ABT-239 and 0.73 mg/kg and 208.3 ng/ml for ciproxifan. [18 F]FMH3 demonstrated high TRT reliability and can be used to measure occupancy of H3R-targeted drugs. Validation in non-human primates support [18 F]FMH3 PET studies toward clinical investigations of H3R.
Collapse
Affiliation(s)
| | - Olivier Barret
- Invicro, a Konica Minolta Company, New Haven, Connecticut
| | - Hsiaoju Lee
- Invicro, a Konica Minolta Company, New Haven, Connecticut
| | - David Alagille
- Invicro, a Konica Minolta Company, New Haven, Connecticut
| | - Amy Amenta
- Invicro, a Konica Minolta Company, New Haven, Connecticut
| | - Krista Fowles
- Department of Diagnostic Radiology, Yale University, New Haven, Connecticut
| | - Daniel Holden
- Department of Diagnostic Radiology, Yale University, New Haven, Connecticut
| | - John P Seibyl
- Invicro, a Konica Minolta Company, New Haven, Connecticut
| | | |
Collapse
|
4
|
Dahl K, Nakao R, Amini N, Moein MM, Finnema S, Malmquist J, Varnäs K, Schou M. Development of [ Carbonyl- 11C]AZ13198083, a Novel Histamine Type-3 Receptor Radioligand with Favorable Kinetics. ACS Chem Neurosci 2018; 9:906-911. [PMID: 29359917 DOI: 10.1021/acschemneuro.7b00493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The histamine subtype-3 receptor (H3R) is implicated in a range of central nervous system disorders, and several radioligands have been developed for H3R positron emission tomography imaging. However, a limitation of currently used PET radioligands for H3R is the slow binding kinetics in high density brain regions. To address this, we herein report the development of three novel candidate H3R radioligands, namely, [ carbonyl-11C]AZ13153556 ([ carbonyl-11C]4), [ carbonyl-11C]AZD5213([ carbonyl-11C]5), and [ carbonyl-11C]AZ13198083 ([ carbonyl-11C]6), and their subsequent preclinical evaluation in nonhuman primates (NHP). Radioligands [ carbonyl-11C]4-6 were produced and isolated in high radioactivity (>1000 MBq), radiochemical purity (>99%), and moderate molar activity (19-28 GBq/μmol at time of injection) using a palladium-mediated 11C-aminocarbonylation protocol. All three radioligands showed high brain permeability as well as a regional brain radioactivity distribution in accordance with H3R expression (striatum > cortex > cerebellum). [ Carbonyl-11C]6 displayed the most favorable in vivo kinetics and brain uptake, with an early peak in the striatal time-activity curve followed by a progressive washout from the brain. The specificity and on-target kinetics of [ carbonyl-11C]6 were next investigated in pretreatment and displacement studies. After pretreatment or displacement with 5 (0.1 mg/kg), a uniformly low distribution of radioactivity across the NHP brain was observed. Collectively, this work demonstrates that [ carbonyl-11C]6 is a promising candidate for H3R imaging in human subjects.
Collapse
Affiliation(s)
- Kenneth Dahl
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Ryuji Nakao
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Sjoerd Finnema
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Jonas Malmquist
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, S-171 76 Stockholm, Sweden
| |
Collapse
|
5
|
11C-Labeling of Aryl Ketones as Candidate Histamine Subtype-3 Receptor PET Radioligands through Pd(0)-Mediated 11C-Carbonylative Coupling. Molecules 2017; 22:molecules22050792. [PMID: 28498336 PMCID: PMC5530730 DOI: 10.3390/molecules22050792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/06/2017] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Pd(0)-mediated coupling between iodoarenes, [11C]carbon monoxide and aryltributylstannanes has been used to prepare simple model [11C]aryl ketones. Here, we aimed to label four 2-aminoethylbenzofuran chemotype based molecules ([11C]1–4) in the carbonyl position, as prospective positron emission tomography (PET) radioligands for the histamine subtype 3 receptor (H3R) by adapting this methodology with use of aryltrimethylstannanes. Radiosynthesis was successfully performed on a platform equipped with a mini-autoclave and a liquid handling robotic arm, within a lead-shielded hot-cell. Candidate radioligands were readily formulated in saline containing ethanol (10%, v/v) and ascorbic acid (0.5 mg/10 mL). Yields for preclinical use were in the range of 5–9%, decay-corrected from cyclotron-produced [11C]CO2 and molar activities were >115 GBq/µmol at end of synthesis. Radiochemical purities exceeded >97%.
Collapse
|
6
|
Hanyu M, Kawamura K, Takei M, Furutsuka K, Shiomi S, Fujishiro T, Ogawa M, Nengaki N, Hashimoto H, Fukumura T, Zhang MR. Radiosynthesis and quality control of [ 11 C]TASP457 as a clinically useful PET ligand for imaging of histamine H 3 receptors in human brain. Nucl Med Biol 2016; 43:679-684. [DOI: 10.1016/j.nucmedbio.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/12/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
|
7
|
Schou M, Varnäs K, Jureus A, Ahlgren C, Malmquist J, Häggkvist J, Tari L, Wesolowski SS, Throner SR, Brown DG, Nilsson M, Johnström P, Finnema SJ, Nakao R, Amini N, Takano A, Farde L. Discovery and Preclinical Validation of [(11)C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor. ACS Chem Neurosci 2016; 7:177-84. [PMID: 26529287 DOI: 10.1021/acschemneuro.5b00268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The histamine type 3 receptor (H3) is a G protein-coupled receptor implicated in several disorders of the central nervous system. Herein, we describe the radiolabeling and preclinical evaluation of a candidate radioligand for the H3 receptor, 4-(1S,2S)-2-(4-cyclobutylpiperazine-1-carbonyl)cyclopropyl]-N-methyl-benzamide (5), and its comparison with one of the frontrunner radioligands for H3 imaging, namely, GSK189254 (1). Compounds 1 and 5 were radiolabeled with tritium and carbon-11 for in vitro and in vivo imaging experiments. The in vitro binding of [(3)H]1 and [(3)H]5 was examined by (i) saturation binding to rat and nonhuman primate brain tissue homogenate and (ii) in vitro autoradiography on tissue sections from rat, guinea pig, and human brain. The in vivo binding of [(11)C]1 and [(11)C]5 was examined by PET imaging in mice and nonhuman primates. Bmax values obtained from Scatchard analysis of [(3)H]1 and [(3)H]5 binding were in good agreement. Autoradiography with [(3)H]5 on rat, guinea pig, and human brain slices showed specific binding in regions known to be enhanced in H3 receptors, a high degree of colocalization with [(3)H]1, and virtually negligible nonspecific binding in tissue. PET measurements in mice and nonhuman primates demonstrated that [(11)C]5 binds specifically and reversibly to H3 receptors in vivo with low nonspecific binding in brain tissue. Whereas [(11)C]1 showed similar binding characteristics in vivo, the binding kinetics appeared faster for [(11)C]5 than for [(11)C]1. CONCLUSIONS [(11)C]5 has suitable properties for quantification of H3 receptors in nonhuman primate brain and has the potential to offer improved binding kinetics in man compared to [(11)C]1.
Collapse
Affiliation(s)
- Magnus Schou
- AstraZeneca Translational
Science Centre at Karolinska Institutet, PET Centre of Excellence,
Department of Clinical Neuroscience, S-17176 Stockholm, Sweden
| | - Katarina Varnäs
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Anders Jureus
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Charlotte Ahlgren
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Jonas Malmquist
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Jenny Häggkvist
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Lenke Tari
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Steven S. Wesolowski
- AstraZeneca, Research & Development, Innovative Medicines, Cambridge, Massachusetts 02451, United States
| | - Scott R. Throner
- AstraZeneca, Research & Development, Innovative Medicines, Waltham, Massachusetts 02139, United States
| | - Dean G. Brown
- AstraZeneca, Research & Development, Innovative Medicines, Waltham, Massachusetts 02139, United States
| | - Maria Nilsson
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Peter Johnström
- AstraZeneca Translational
Science Centre at Karolinska Institutet, PET Centre of Excellence,
Department of Clinical Neuroscience, S-17176 Stockholm, Sweden
| | - Sjoerd J. Finnema
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Ryuji Nakao
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Nahid Amini
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Akihiro Takano
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Lars Farde
- AstraZeneca Translational
Science Centre at Karolinska Institutet, PET Centre of Excellence,
Department of Clinical Neuroscience, S-17176 Stockholm, Sweden
| |
Collapse
|
8
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Lv W, Liu J, Skaar TC, Flockhart DA, Cushman M. Design and synthesis of norendoxifen analogues with dual aromatase inhibitory and estrogen receptor modulatory activities. J Med Chem 2015; 58:2623-48. [PMID: 25751283 DOI: 10.1021/jm501218e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer.
Collapse
Affiliation(s)
- Wei Lv
- †Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue University Center for Cancer Research, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jinzhong Liu
- ‡Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana Institute for Personalized Medicine, Indianapolis, Indiana 46202, United States
| | - Todd C Skaar
- ‡Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana Institute for Personalized Medicine, Indianapolis, Indiana 46202, United States
| | - David A Flockhart
- ‡Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana Institute for Personalized Medicine, Indianapolis, Indiana 46202, United States
| | - Mark Cushman
- †Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue University Center for Cancer Research, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Bioactive benzofuran derivatives: An insight on lead developments, radioligands and advances of the last decade. Eur J Med Chem 2015; 97:356-76. [PMID: 25703339 DOI: 10.1016/j.ejmech.2015.01.021] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/19/2014] [Accepted: 01/10/2015] [Indexed: 02/08/2023]
Abstract
Benzofuran core is a highly versatile, presents in many important natural products and natural drugs. Many benzofuran containing synthetic drugs and clinical candidates have been derived from natural products. The present review will provide an insight on lead design-developments of the decade, clinical candidates and PET tracer radio-ligands containing benzofuran core along with brief target biology. Brief of the all approved drugs containing benzofuran core also have been enclosed. Main therapeutic areas covered are Cancer, Neurological disorders including anti-psychotic agent and diabetes.
Collapse
|
11
|
Lewis DY, Champion S, Wyper D, Dewar D, Pimlott S. Assessment of [125I]WYE-230949 as a novel histamine H3 receptor radiopharmaceutical. PLoS One 2014; 9:e115876. [PMID: 25542008 PMCID: PMC4277420 DOI: 10.1371/journal.pone.0115876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022] Open
Abstract
Histamine H3 receptor therapeutics have been proposed for several diseases such as schizophrenia, attention deficit hyperactivity disorder, Alzheimer's disease and obesity. We set out to evaluate the novel compound, [125I]WYE-230949, as a potential radionuclide imaging agent for the histamine H3 receptor in brain. [125I]WYE-230949 had a high in vitro affinity for the rat histamine H3 receptor (Kd of 6.9 nM). The regional distribution of [125I]WYE-230949 binding sites in rat brain, demonstrated by in vitro autoradiography, was consistent with the known distribution of the histamine H3 receptor. Rat brain uptake of intravenously injected [125I]WYE-230949 was low (0.11 %ID/g) and the ratio of specific: non-specific binding was less than 1.4, as determined by ex vivo autoradiography. In plasma, metabolism of [125I]WYE-230949 into a less lipophilic species occurred, such that less than 38% of the parent compound remained 30 minutes after injection. Brain uptake and metabolism of [125I]WYE-230949 were increased and specific binding was reduced in anaesthetised compared to conscious rats. [125I]WYE230949 is not a potential radiotracer for imaging rat histamine H3 receptors in vivo due to low brain uptake, in vivo metabolism of the parent compound and low specific binding.
Collapse
Affiliation(s)
- David Y. Lewis
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Sue Champion
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Wyper
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Deborah Dewar
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sally Pimlott
- Department of Clinical Physics, Greater Glasgow NHS Trust and University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Bao X, Jin Y, Liu X, Liao H, Zhang L, Pang T. Synthesis and biological evaluation of XB-1 analogues as novel histamine H3 receptor antagonists and neuroprotective agents. RSC Adv 2014. [DOI: 10.1039/c3ra46392c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
13
|
Łażewska D, Kieć-Kononowicz K. New developments around histamine H3receptor antagonists/inverse agonists: a patent review (2010 – present). Expert Opin Ther Pat 2013; 24:89-111. [DOI: 10.1517/13543776.2014.848197] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Funke U, Vugts DJ, Janssen B, Spaans A, Kruijer PS, Lammertsma AA, Perk LR, Windhorst AD. 11C-labeled and18F-labeled PET ligands for subtype-specific imaging of histamine receptors in the brain. J Labelled Comp Radiopharm 2013; 56:120-9. [DOI: 10.1002/jlcr.3038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Affiliation(s)
| | - Danielle J. Vugts
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Bieneke Janssen
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | | | - Perry S. Kruijer
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Adriaan A. Lammertsma
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Lars R. Perk
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Albert D. Windhorst
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| |
Collapse
|
15
|
Bao X, Liu D. RETRACTED: Radiosynthesis of 18F-labeled N-desmethyl-loperamide analogues for prospective molecular imaging radiotracers. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.12.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|