1
|
Chakraborty N, Momirov J, Radakovic A, Chatterjee S, Kirchhoff AM, Kolb AL, West TJ, Sanchez BB, Martinez-Bartolome S, Saviola A, McClatchy D, Yates JR, Chen JS, Lairson LL, Felding BH, Boger DL. Insights into Free Drug Release from Efficacious N-Acyl O-Aminophenol Duocarmycin Prodrugs. ACS Chem Biol 2025. [PMID: 39924956 DOI: 10.1021/acschembio.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Acyclic and cyclic N-acyl O-aminophenol prodrugs of duocarmycin analogues were reported as members of a unique class of reductively cleaved prodrugs that map seamlessly onto the duocarmycin family of natural products. Although these prodrugs were explored with the expectations that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles, the remarkable stability of some such prodrugs suggests another mechanism of free drug release is operative. The prototype of such chemically unreactive N-acyl O-aminophenol prodrugs is 1, which proved remarkably efficacious in vivo in vertebrate tumor models; was found to lack the toxicity that is characteristic of traditional chemotherapeutic drugs as well as the free drugs in the class (e.g., myelosuppression); and displayed a preferential site (intracellular), a slow and sustained rate, and a potentially unique mechanism of free drug release. Herein, we detail studies that provide insights into this stereoselective mechanism of free drug release. Combined, the results of the studies are consistent with an exclusive protein-mediated (enantio)selective activation and free drug release from prodrug 1 by N-O bond cleavage preferentially in cancer cell lines versus cultured normal human cell lines effected by a cytosolic cysteine-based enzyme and suggest that the activating protein is one that is selectively expressed, upregulated, or preferentially activated in cancer cell lines, potentially constituting a new oncology targeted precision therapy.
Collapse
Affiliation(s)
- Nilanjana Chakraborty
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jelena Momirov
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Aleksandar Radakovic
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Shreyosree Chatterjee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Aaron M Kirchhoff
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Anna-Lena Kolb
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas J West
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Brittany B Sanchez
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Salvador Martinez-Bartolome
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Anthony Saviola
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S Chen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke L Lairson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Brunie H Felding
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Cominetti MMD, Goddard ZR, Hood BR, Beekman AM, O'Connell MA, Searcey M. Borylation via iridium catalysed C-H activation: a new concise route to duocarmycin derivatives. Org Biomol Chem 2024; 22:5603-5607. [PMID: 38904084 PMCID: PMC11234497 DOI: 10.1039/d4ob00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The synthesis of the ethyl ester analogue of the ultrapotent antitumour antibiotic seco-duocarmycin SA has been achieved in eleven linear steps from commercially available starting materials. The DSA alkylation subunit can be made in ten linear steps from the same precursor. The route involves C-H activation at the equivalent of the C7 position on indole leading to a borylated intermediate 9 that is stable enough for peptide coupling reactions but can be easily converted to the free hydroxyl analogue.
Collapse
Affiliation(s)
- Marco M D Cominetti
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Zoë R Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Bethany R Hood
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Maria A O'Connell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
3
|
Bengtsson C, Gravenfors Y. Rapid Construction of a Chloromethyl-Substituted Duocarmycin-like Prodrug. Molecules 2023; 28:4818. [PMID: 37375372 DOI: 10.3390/molecules28124818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of duocarmycin-like compounds is often associated with lengthy synthetic routes. Presented herein is the development of a short and convenient synthesis of a type of duocarmycin prodrug. The 1,2,3,6-tetrahydropyrrolo[3,2-e]indole-containing core is here constructed from commercially available Boc-5-bromoindole in four steps and 23% overall yield, utilizing a Buchwald-Hartwig amination followed by a sodium hydride-induced regioselective bromination. In addition, protocols for selective mono- and di-halogenations of positions 3 and 4 were also developed, which could be useful for further exploration of this scaffold.
Collapse
Affiliation(s)
- Christoffer Bengtsson
- Drug Discovery & Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Tomtebodavägen 23a, 17165 Solna, Sweden
| | - Ylva Gravenfors
- Drug Discovery & Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Tomtebodavägen 23a, 17165 Solna, Sweden
| |
Collapse
|
4
|
Emadi R, Bahrami Nekoo A, Molaverdi F, Khorsandi Z, Sheibani R, Sadeghi-Aliabadi H. Applications of palladium-catalyzed C-N cross-coupling reactions in pharmaceutical compounds. RSC Adv 2023; 13:18715-18733. [PMID: 37346956 PMCID: PMC10280806 DOI: 10.1039/d2ra07412e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
C-N cross-coupling bond formation reactions have become valuable approaches to synthesizing anilines and their derivatives, known as important chemical compounds. Recent developments in this field have focused on versatile catalysts, simple operation methods, and green reaction conditions. This review article presents an overview of C-N cross-coupling reactions in pharmaceutical compound synthesis reports. Selected examples of N-arylation reactions of various nitrogen-based compounds and aryl halides are defined for preparing pharmaceutical molecules.
Collapse
Affiliation(s)
- Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophysics (IBB), University of Tehran Tehran Iran
| | - Abbas Bahrami Nekoo
- Nanoalvand Pharmaceutical Company, Department of Quality Control, Unit of Raw Materials Simindasht Alborz Iran
| | - Fatemeh Molaverdi
- Department of Organic Chemistry, School of Chemistry, College of Science, Tehran University Tehran Islamic Republic of Iran
| | - Zahra Khorsandi
- Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus University St., Nahiyeh san'ati Mahshahr Khouzestan Iran
| | - Hojjat Sadeghi-Aliabadi
- Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| |
Collapse
|
5
|
Ferhati X, Jiménez-Moreno E, Hoyt EA, Salluce G, Cabeza-Cabrerizo M, Navo CD, Compañón I, Akkapeddi P, Matos MJ, Salaverri N, Garrido P, Martínez A, Laserna V, Murray TV, Jiménez-Osés G, Ravn P, Bernardes GJL, Corzana F. Single Mutation on Trastuzumab Modulates the Stability of Antibody-Drug Conjugates Built Using Acetal-Based Linkers and Thiol-Maleimide Chemistry. J Am Chem Soc 2022; 144:5284-5294. [PMID: 35293206 PMCID: PMC8972253 DOI: 10.1021/jacs.1c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are a class of targeted therapeutics used to selectively kill cancer cells. It is important that they remain intact in the bloodstream and release their payload in the target cancer cell for maximum efficacy and minimum toxicity. The development of effective ADCs requires the study of factors that can alter the stability of these therapeutics at the atomic level. Here, we present a general strategy that combines synthesis, bioconjugation, linker technology, site-directed mutagenesis, and modeling to investigate the influence of the site and microenvironment of the trastuzumab antibody on the stability of the conjugation and linkers. Trastuzumab is widely used to produce targeted ADCs because it can target with high specificity a receptor that is overexpressed in certain breast cancer cells (HER2). We show that the chemical environment of the conjugation site of trastuzumab plays a key role in the stability of linkers featuring acid-sensitive groups such as acetals. More specifically, Lys-207, located near the reactive Cys-205 of a thiomab variant of the antibody, may act as an acid catalyst and promote the hydrolysis of acetals. Mutation of Lys-207 into an alanine or using a longer linker that separates this residue from the acetal group stabilizes the conjugates. Analogously, Lys-207 promotes the beneficial hydrolysis of the succinimide ring when maleimide reagents are used for conjugation, thus stabilizing the subsequent ADCs by impairing the undesired retro-Michael reactions. This work provides new insights for the design of novel ADCs with improved stability properties.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Ester Jiménez-Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Emily A Hoyt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Giulia Salluce
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Mar Cabeza-Cabrerizo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria J Matos
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Noelia Salaverri
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Víctor Laserna
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Thomas V Murray
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Peter Ravn
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
6
|
Larin EM, Torelli A, Loup J, Lautens M. One-Pot, Three-Step Synthesis of Benzoxazinones via Use of the Bpin Group as a Masked Nucleophile. Org Lett 2021; 23:2720-2725. [PMID: 33689389 DOI: 10.1021/acs.orglett.1c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utilization of the Bpin group as a pronucleophile to facilitate the assembly of cyclic carbamates has been achieved. This one-pot process involves an initial copper-catalyzed borylation, a subsequent C-B bond oxidation to generate the reactive alcohol intermediate, and a cyclization. We report the use of this efficient, scalable, and simple method toward the synthesis of a wide range of benzoxazinone scaffolds, including enantioselective results. Subsequent transformations into useful scaffolds showcase the utility of this strategy.
Collapse
Affiliation(s)
- Egor M Larin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Joachim Loup
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Zha T, Tong X, Deng Y, Peng F, Shao Z. Catalytic Asymmetric and Divergent Synthesis of Tricyclic and Tetracyclic Spirooxindoles: Controllable Site-Selective Electrophilic Halocyclization of 1,6-Enynes. Org Lett 2019; 21:6068-6073. [PMID: 31318558 DOI: 10.1021/acs.orglett.9b02202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Catalytic asymmetric and divergent assembly of tricyclic and tetracyclic 3,3'-pyrrolidonyl spirooxindoles was developed, involving a one-pot chiral Brønsted base catalyzed asymmetric propargylation for the synthesis of oxindole 1,6-enynes and a subsequent switchable site-selective and highly diastereoselective electrophilic iodocyclization of 1,6-enynes. In addition, antitumor properties of the newly synthesized compounds were evaluated.
Collapse
Affiliation(s)
- Taochun Zha
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Xinyu Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
9
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
10
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
11
|
Li QL, Li ZY, Wang GW. Palladium-Catalyzed Decarboxylative ortho-Acylation of Anilines with Carbamate as a Removable Directing Group. ACS OMEGA 2018; 3:4187-4198. [PMID: 31458653 PMCID: PMC6641432 DOI: 10.1021/acsomega.8b00441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 05/12/2023]
Abstract
An efficient palladium-catalyzed decarboxylative ortho-acylation of anilines with α-oxocarboxylic acids has been realized by using carbamate as a directing group (DG). The reaction proceeds smoothly with high regioselectivity to afford diverse acylation products of aniline derivatives in moderate to good yields under mild conditions. This transformation exhibits broad substrate scope and highly functional group tolerance. In addition, the employed DG can be easily removed to give the corresponding 2-amino aromatic ketones. Importantly, several transformations of the synthesized ortho-acylated anilines into several synthetically valuable products have been demonstrated for their utilities.
Collapse
Affiliation(s)
- Qi-Li Li
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Yuan Li
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory
for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- E-mail:
| |
Collapse
|
12
|
Lui EKJ, Brandt JW, Schafer LL. Regio- and Stereoselective Hydroamination of Alkynes Using an Ammonia Surrogate: Synthesis of N-Silylenamines as Reactive Synthons. J Am Chem Soc 2018. [PMID: 29528631 DOI: 10.1021/jacs.7b13783] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An anti-Markovnikov selective hydroamination of alkynes with N-silylamines to afford N-silylenamines is reported. The reaction is catalyzed by a bis(amidate)bis(amido)Ti(IV) catalyst and is compatible with a variety of terminal and internal alkynes. Stoichiometric mechanistic studies were also performed. This method easily affords interesting N-silylenamine synthons in good to excellent yields and the easily removable silyl protecting group enables the catalytic synthesis of primary amines.
Collapse
Affiliation(s)
- Erica K J Lui
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia , Canada V6T 1Z1
| | - Jason W Brandt
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia , Canada V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia , Canada V6T 1Z1
| |
Collapse
|
13
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Subba Rao AV, Rao BB, Sunkari S, Shaik SP, Shaik B, Kamal A. 2-Arylaminobenzothiazole-arylpropenone conjugates as tubulin polymerization inhibitors. MEDCHEMCOMM 2017; 8:924-941. [PMID: 30108808 DOI: 10.1039/c6md00562d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/05/2017] [Indexed: 01/11/2023]
Abstract
A new series of 2-arylaminobenzothiazole-arylpropenone conjugates 5-6(a-r) was designed, synthesized and investigated for their cytotoxic potency against the various human cancer cell lines. Most of these conjugates exhibited cytotoxic activity and inhibited in vitro tubulin polymerization effectively. Conjugates 5d and 6d cause cell cycle blocks in the G2/M phase in HeLa cells and treatments with 5d and 6d manifested increased mRNA and protein levels of the G2/M marker, cyclin B1. Immunocytochemistry revealed loss of intact microtubule structure in cells treated with 5d and 6d. Western blot analysis revealed that these conjugates accumulate more tubulin in the soluble fraction. Moreover, the triggering of apoptotic cell death after mitotic arrest was investigated by studying their effect on Hoechst staining, mitochondrial membrane potential, ROS generation.
Collapse
Affiliation(s)
- A V Subba Rao
- Medicinal Chemistry and Pharmacology , India.,Academy of Scientific and Innovative Research (AcSIR) , India
| | - Bala Bhaskara Rao
- Academy of Scientific and Innovative Research (AcSIR) , India.,Centre for Chemical Biology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007 , India .
| | - Satish Sunkari
- Medicinal Chemistry and Pharmacology , India.,Academy of Scientific and Innovative Research (AcSIR) , India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Pharmacology , India.,Academy of Scientific and Innovative Research (AcSIR) , India
| | - Bajee Shaik
- Medicinal Chemistry and Pharmacology , India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology , India.,Academy of Scientific and Innovative Research (AcSIR) , India
| |
Collapse
|
15
|
Subba Rao A, Swapna K, Shaik SP, Lakshma Nayak V, Srinivasa Reddy T, Sunkari S, Shaik TB, Bagul C, Kamal A. Synthesis and biological evaluation of cis -restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg Med Chem 2017; 25:977-999. [DOI: 10.1016/j.bmc.2016.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/22/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023]
|
16
|
Abstract
![]()
Pd-catalyzed
cross-coupling reactions that form C–N bonds
have become useful methods to synthesize anilines and aniline derivatives,
an important class of compounds throughout chemical research. A key
factor in the widespread adoption of these methods has been the continued
development of reliable and versatile catalysts that function under
operationally simple, user-friendly conditions. This review provides
an overview of Pd-catalyzed N-arylation reactions found in both basic
and applied chemical research from 2008 to the present. Selected examples
of C–N cross-coupling reactions between nine classes of nitrogen-based
coupling partners and (pseudo)aryl halides are described for the synthesis
of heterocycles, medicinally relevant compounds, natural products,
organic materials, and catalysts.
Collapse
Affiliation(s)
- Paula Ruiz-Castillo
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Liu Y, Ren WM, He KK, Zhang WZ, Li WB, Wang M, Lu XB. CO2-Mediated Formation of Chiral Carbamates from meso-Epoxides via Polycarbonate Intermediates. J Org Chem 2016; 81:8959-8966. [DOI: 10.1021/acs.joc.6b01616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ye Liu
- State Key
Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key
Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ke-Ke He
- State Key
Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wen-Zhen Zhang
- State Key
Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wen-Bing Li
- State Key
Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Meng Wang
- State Key
Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key
Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
18
|
Huang H, Tang L, Liu Q, Xi Y, He G, Zhu H. Formation of α-chalcogenyl acrylamides through unprecedented chalcogen-mediated metal-free oxyfunctionalization of ynamides with DMSO as an oxidant. Chem Commun (Camb) 2016; 52:5605-8. [DOI: 10.1039/c5cc10517j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel chalcogen-mediated metal-free oxyfunctionalization mode of ynamides for the synthesis of α-chalcogenyl acrylamides has been developed.
Collapse
Affiliation(s)
- Hai Huang
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Luning Tang
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Qi Liu
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Yang Xi
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Guangke He
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Hongjun Zhu
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| |
Collapse
|
19
|
Uematsu M, Brody DM, Boger DL. A five-membered lactone prodrug of CBI-based analogs of the duocarmycins. Tetrahedron Lett 2015; 56:3101-3104. [PMID: 26069351 PMCID: PMC4459655 DOI: 10.1016/j.tetlet.2014.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation, characterization and examination of the CBI-based 5-membered lactone 5 capable of serving as a prodrug or protein (antibody) conjugation reagent are disclosed along with its incorporation into the corresponding CC-1065 and duocarmycin analog 6, and the establishment of their properties.
Collapse
Affiliation(s)
- Mika Uematsu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel M. Brody
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Huang H, Zhu X, He G, Liu Q, Fan J, Zhu H. Controlled Synthesis of 1,3,5-Oxadiazin-2-ones and Oxazolones through Regioselective Iodocyclization of Ynamides. Org Lett 2015; 17:2510-3. [DOI: 10.1021/acs.orglett.5b01045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hai Huang
- Department of Applied Chemistry,
College of Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiaolin Zhu
- Department of Applied Chemistry,
College of Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Guangke He
- Department of Applied Chemistry,
College of Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qi Liu
- Department of Applied Chemistry,
College of Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Junzhen Fan
- Department of Applied Chemistry,
College of Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hongjun Zhu
- Department of Applied Chemistry,
College of Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
21
|
Chikkade PK, Kuninobu Y, Kanai M. Copper-catalyzed intermolecular C(sp 3)-H bond functionalization towards the synthesis of tertiary carbamates. Chem Sci 2015; 6:3195-3200. [PMID: 29142689 PMCID: PMC5657409 DOI: 10.1039/c5sc00238a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/20/2015] [Indexed: 11/23/2022] Open
Abstract
We describe the development of an intermolecular unactivated C(sp3)-H bond functionalization towards the direct synthesis of tertiary carbamates. The transformation proceeded using a readily available, abundant first-row transition metal catalyst (copper), and isocyanates as the source of the amide moiety. This is a novel strategy for direct transformation of a variety of unactivated hydrocarbon feedstocks to N-alkyl-N-aryl and N,N-dialkyl carbamates without pre-functionalization or installation of a directing group. The reaction had a broad substrate scope with 3° > 2° > 1° site selectivity. The reaction proceeded even on a gram scale, and a corresponding free amine was directly obtained when the reaction was performed at high temperature. Kinetic studies suggested that radical-mediated C(sp3)-H bond cleavage was the rate-determining step.
Collapse
Affiliation(s)
- Prasanna Kumara Chikkade
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan . ;
| | - Yoichiro Kuninobu
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan . ;
- ERATO (Japan) Science and Technology Agency (JST) , Kanai Life Science Catalysis Project , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan . ;
- ERATO (Japan) Science and Technology Agency (JST) , Kanai Life Science Catalysis Project , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
22
|
Kamal A, Shaik AB, Rao BB, Khan I, Bharath Kumar G, Jain N. Design and synthesis of pyrazole/isoxazole linked arylcinnamides as tubulin polymerization inhibitors and potential antiproliferative agents. Org Biomol Chem 2015; 13:10162-78. [DOI: 10.1039/c5ob01257k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of pyrazole/isoxazole linked arylcinnamide conjugates were synthesized and investigated for their cytotoxic activity against a panel of four human cancer cell lines. Most of them have shown significant cytotoxicity apart from potential tubulin depolymerization activity.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Catalytic Chemistry Research Chair
| | - Anver Basha Shaik
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Bala Bhaskara Rao
- Centre for Chemical Biology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Irfan Khan
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - G. Bharath Kumar
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Nishant Jain
- Centre for Chemical Biology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| |
Collapse
|
23
|
Monleón A, Blay G, Domingo LR, Muñoz MC, Pedro JR. Efficient Synthesis of 5-Chalcogenyl-1,3-oxazin-2-ones by Chalcogen-Mediated Yne-Carbamate Cyclisation: An Experimental and Theoretical Study. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Ren L, Jiao N. PdCl2 catalyzed efficient assembly of organic azides, CO, and alcohols under mild conditions: a direct approach to synthesize carbamates. Chem Commun (Camb) 2014; 50:3706-9. [PMID: 24577557 DOI: 10.1039/c4cc00538d] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and readily available PdCl2 catalyzed carbamate synthesis method via isocyanate generation and application in situ has been developed. This chemistry provides an efficient and practical approach to synthesize carbamates from simple organic azides, CO atmosphere and alcohols. The broad scope, mild and neutral conditions, and only N2 as the byproduct make this transformation very useful. Moreover, simple examples of modification of bioactive molecules and construction of macrocycles were achieved through this protocol.
Collapse
Affiliation(s)
- Long Ren
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, People's Republic of China.
| | | |
Collapse
|
25
|
Uematsu M, Boger DL. Asymmetric synthesis of a CBI-based cyclic N-acyl O-amino phenol duocarmycin prodrug. J Org Chem 2014; 79:9699-703. [PMID: 25247380 PMCID: PMC4201355 DOI: 10.1021/jo501839x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A short, asymmetric synthesis of a cyclic N-acyl O-amino phenol duocarmycin prodrug subject to reductive activation based on the simplified 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CBI) DNA alkylation subunit is described. A key element of the approach entailed treatment of iodo-epoxide 7, prepared by N-alkylation of 6 with (S)-glycidal 3-nosylate, with EtMgBr at room temperature to directly provide the optically pure alcohol 8 in 78% yield (99% ee) derived from an effective metal-halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. Following O-debenzylation, introduction of a protected N-methylhydroxamic acid, direct trannannular spirocyclization, and subsequent stereoelectronically controlled acid-catalyzed cleavage of the resulting cyclopropane (HCl), further improvements in a unique intramolecular cyclization with N-O bond formation originally introduced for formation of the reductively labile prodrug functionality are detailed.
Collapse
Affiliation(s)
- Mika Uematsu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
26
|
Peura L, Huttunen KM. Sustained release of metformin via red blood cell accumulated sulfenamide prodrug. J Pharm Sci 2014; 103:2207-2210. [PMID: 24891115 DOI: 10.1002/jps.24040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/11/2022]
Abstract
Metformin is a first-line antidiabetic drug to treat type 2 diabetes. It is rapidly eliminated from plasma but also accumulated into red blood cells (RBCs) from which it is slowly released back into plasma. The aim of the study was to evaluate whether the amount of metformin in the RBCs could be increased by a sulfenamide prodrug approach, which could provide longer duration of metformin in systemic circulation. Pharmacokinetic properties of metformin and its cyclohexyl sulfenamide prodrug were evaluated in plasma and in whole blood after intravenous and oral administration in rats. Once the sulfenamide prodrug reached the bloodstream, it was rapidly and efficiently accumulated into the RBCs, where it was converted to metformin by free thiols. The RBC-whole blood ratio of metformin was increased approximately from 42% to 96% when metformin was administered intravenously as its sulfenamide prodrug, and the proportion of metformin in the RBCs was found to be concentration and time independent. Because metformin was slowly liberated into plasma, the prodrug showed a sustained-release pharmacokinetic profile and longer plasma half-life for metformin after oral administration. Therefore, this sulfenamide prodrug has great potential to improve metformin therapy as the daily doses could be reduced.
Collapse
Affiliation(s)
- Lauri Peura
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, KuopioFI-70211, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, KuopioFI-70211, Finland.
| |
Collapse
|
27
|
Mazzone JR, Conyers RC, Tripathi AK, Sullivan DJ, Posner GH. Antimalarial chemotherapy: artemisinin-derived dimer carbonates and thiocarbonates. Bioorg Med Chem Lett 2014; 24:2440-3. [PMID: 24775306 PMCID: PMC4074917 DOI: 10.1016/j.bmcl.2014.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022]
Abstract
Several 2-carbon-linked trioxane dimer secondary alcohol carbonates 14 and thiocarbonates 15, combined with mefloquine and administered in a low single oral dose, prolonged the survival times of malaria-infected mice much more effectively than the popular monomeric antimalarial drug artemether plus mefloquine. Three dimer carbonates 14 and one dimer thiocarbonate 15 partially cured malaria-infected mice.
Collapse
Affiliation(s)
- Jennifer R Mazzone
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Ryan C Conyers
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - Gary H Posner
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
28
|
Conyers RC, Mazzone JR, Siegler MA, Tripathi AK, Sullivan DJ, Mott BT, Posner GH. The survival times of malaria-infected mice are prolonged more by several new two-carbon-linked artemisinin-derived dimer carbamates than by the trioxane antimalarial drug artemether. Bioorg Med Chem Lett 2014; 24:1285-9. [PMID: 24508128 PMCID: PMC3943161 DOI: 10.1016/j.bmcl.2014.01.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Sixteen new artemisinin-derived 2-carbon-linked trioxane dimers were prepared to study chemical structure/antimalarial activity relationships (SAR). Administering a very low single oral dose of only 5mg/kg of dimer secondary alcohol 6a or 6b plus 15 mg/kg of mefloquine hydrochloride prolonged the lives of Plasmodium berghei-infected mice to an average of 25 days after infection. This ACT chemotherapy result is of high medicinal significance because the antimalarial efficacy of the popular trioxane drug artemether (2) plus mefloquine under the same conditions was significantly lower (only 20 day average survival). NH-aryl carbamate derivatives 7e, 7i, and 7j of 2-carbon-linked dimer alcohol 6b also significantly outperformed artemether (2) in prolonging the survival times (25-27 days) of malaria-infected mice.
Collapse
Affiliation(s)
- Ryan C Conyers
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Jennifer R Mazzone
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - Bryan T Mott
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Gary H Posner
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
29
|
Puyo S, Montaudon D, Pourquier P. From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol 2014; 89:43-61. [DOI: 10.1016/j.critrevonc.2013.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/06/2013] [Accepted: 07/18/2013] [Indexed: 12/20/2022] Open
|
30
|
Monleón A, Blay G, Domingo LR, Muñoz MC, Pedro JR. Synthesis of Densely Functionalised 5-Halogen-1,3-oxazin-2-ones by Halogen-Mediated Regioselective Cyclisation ofN-Cbz-Protected Propargylic Amines: A Combined Experimental and Theoretical Study. Chemistry 2013; 19:14852-60. [DOI: 10.1002/chem.201302089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Indexed: 11/07/2022]
|
31
|
Wolfe AL, Duncan KK, Lajiness JP, Zhu K, Duerfeldt AS, Boger DL. A fundamental relationship between hydrophobic properties and biological activity for the duocarmycin class of DNA-alkylating antitumor drugs: hydrophobic-binding-driven bonding. J Med Chem 2013; 56:6845-57. [PMID: 23944748 DOI: 10.1021/jm400665c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two systematic series of increasingly hydrophilic derivatives of duocarmycin SA that feature the incorporation of ethylene glycol units (n = 1-5) into the methoxy substituents of the trimethoxyindole subunit are described. These derivatives exhibit progressively increasing water solubility along with progressive decreases in cell growth inhibitory activity and DNA alkylation efficiency with the incremental ethylene glycol unit incorporations. Linear relationships of cLogP with -log IC50 for cell growth inhibition and -log AE (AE = cell-free DNA alkylation efficiency) were observed, with the cLogP values spanning the productive range of 2.5-0.49 and the -log IC50 values spanning the range of 11.2-6.4, representing IC50 values that vary by a factor of 10(5) (0.008 to 370 nM). The results quantify the fundamental role played by the hydrophobic character of the compound in the expression of the biological activity of members in this class (driving the intrinsically reversible DNA alkylation reaction) and define the stunning magnitude of its effect.
Collapse
Affiliation(s)
- Amanda L Wolfe
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
32
|
Wolfe AL, Duncan KK, Parelkar NK, Brown D, Vielhauer GA, Boger DL. Efficacious cyclic N-acyl O-amino phenol duocarmycin prodrugs. J Med Chem 2013; 56:4104-15. [PMID: 23627265 PMCID: PMC3687800 DOI: 10.1021/jm400413r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two novel cyclic N-acyl O-amino phenol prodrugs are reported as new members of a unique class of reductively cleaved prodrugs of the duocarmycin family of natural products. These prodrugs were explored with the expectation that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles and were designed to liberate the free drug without the release of an extraneous group. In vivo evaluation of the prodrug 6 showed that it exhibits extraordinary efficacy (T/C > 1500, L1210; 6/10 one year survivors), substantially exceeding that of the free drug, that its therapeutic window of activity is much larger, permitting a dosing ≥ 40-fold higher than the free drug, and yet that it displays a potency in vivo that approaches the free drug (within 3-fold). Clearly, the prodrug 6 benefits from either its controlled slow release of the free drug or its preferential intracellular reductive cleavage.
Collapse
Affiliation(s)
- Amanda L Wolfe
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
33
|
Collins CJ, McCauliff LA, Hyun SH, Zhang Z, Paul LN, Kulkarni A, Zick K, Wirth M, Storch J, Thompson DH. Synthesis, characterization, and evaluation of pluronic-based β-cyclodextrin polyrotaxanes for mobilization of accumulated cholesterol from Niemann-Pick type C fibroblasts. Biochemistry 2013; 52:3242-53. [PMID: 23560535 DOI: 10.1021/bi3010889] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several lines of evidence suggest that β-cyclodextrin (β-CD) derivatives initiate the efflux of accumulated, unesterified cholesterol from the late endosomal/lysosomal compartment in Niemann Pick C (NPC) disease models. Unfortunately, repeated injections or continuous infusions of current β-CD therapies are required to sustain suppression of symptoms and prolong life. In an effort to make CD treatment a more viable option by boosting efficacy and improving pharmacokinetics, a library of Pluronic surfactant-based β-CD polyrotaxanes has been developed using biocompatible poly(ethylene glycol) (PEG)-polypropylene glycol (PPG)-PEG triblock copolymers. These compounds carry multiple copies of β-CD as shown by (1)H NMR, 2D nuclear Overhouser effect spectroscopy, gel permeation chromatography/multiangle light scattering, analytical ultracentrifugation analysis, matrix assisted laser desorption/ionization mass spectrometry, and diffusion-ordered spectroscopy. Analyses of free β-cyclodextrin contamination in the compounds were made by reverse phase high pressure liquid chromatography and hydrophilic interaction liquid chromatography. Dethreading kinetics were studied by reverse phase high pressure liquid chromatography, UV/vis, and (1)H NMR analysis. Filipin staining studies using npc2(-/-) fibroblasts show significant reversal of cholesterol accumulation after treatment with polyrotaxane compounds. The rate and efficacy of reversal is similar to that achieved by equivalent amounts of monomeric β-CD alone.
Collapse
Affiliation(s)
- Christopher J Collins
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47904, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alcaide B, Almendros P, Quirós MT, Fernández I. Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones. Beilstein J Org Chem 2013; 9:818-26. [PMID: 23766795 PMCID: PMC3678844 DOI: 10.3762/bjoc.9.93] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/26/2013] [Indexed: 01/07/2023] Open
Abstract
A combined experimental and computational study on regioselective gold-catalyzed synthetic routes to 1,3-oxazinan-2-ones (kinetically controlled products) and 1,3-oxazin-2-one derivatives (thermodynamically favored) from easily accessible allenic carbamates has been carried out.
Collapse
Affiliation(s)
- Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006-Madrid, Spain
| | - M Teresa Quirós
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain
| |
Collapse
|
35
|
Tietze LF, Müller M, Duefert SC, Schmuck K, Schuberth I. Photoactivatable Prodrugs of Highly Potent Duocarmycin Analogues for a Selective Cancer Therapy. Chemistry 2012; 19:1726-31. [DOI: 10.1002/chem.201202773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/24/2012] [Indexed: 12/11/2022]
|