1
|
Kumar S, Sahu RK, Kumari P, Maity J, Kumar B, Chhatwal RJ, Singh BK, Prasad AK. Efficient and stereoselective synthesis of sugar fused pyrano[3,2- c]pyranones as anticancer agents. RSC Adv 2023; 13:24604-24616. [PMID: 37601594 PMCID: PMC10436030 DOI: 10.1039/d3ra02371k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
A highly stereoselective, efficient and facile route was achieved for the synthesis of novel and biochemically potent sugar fused pyrano[3,2-c]pyranone derivatives starting from inexpensive, naturally occurring d-galactose and d-glucose. First, β-C-glycopyranosyl aldehydes were synthesized from these d-hexose sugars in six steps, with overall yields 41-55%. Next, two different 1-C-formyl glycals were synthesized from these β-C-glycopyranosyl aldehydes by treatment in basic conditions. The optimization of reaction conditions was carried out following reactions between 1-C-formyl galactal and 4-hydroxycoumarin. Next, 1-C-formyl galactal and 1-C-formyl glucal were treated with nine substituted 4-hydroxy coumarins at room temperature (25 °C) in ethyl acetate for ∼1-2 h in the presence of l-proline to obtain exclusively single diastereomers of pyrano[3,2-c]pyranone derivatives in excellent yields. Four compounds were found to be active for the MCF-7 cancer cell line. The MTT assay, apoptosis assay and migration analysis showed significant death of the cancer cells induced by the synthesized compounds.
Collapse
Affiliation(s)
- Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
- Department of Chemistry, Ramjas College, University of Delhi Delhi-110007 India
| | - Ram Krishna Sahu
- National Institute of Cancer Prevention & Research Noida Uttar Pradesh India
| | - Priti Kumari
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen College, University of Delhi Delhi-110007 India
| | - Binayak Kumar
- National Institute of Cancer Prevention & Research Noida Uttar Pradesh India
| | | | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
2
|
Morita S, Ren Z, Fan H, Hua DH. Synthesis of Chiral Tricyclic Pyrone Molecules via Palladium(0)-Catalyzed Displacement Reactions of Chiral Tricyclic Pyrone Acetate With Azide or Amine. ChemistrySelect 2023; 8:e202301435. [PMID: 38045653 PMCID: PMC10691853 DOI: 10.1002/slct.202301435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 12/05/2023]
Abstract
Tricyclic pyrone (TP) molecules have shown protection of MC65 neuroblastoma cells death induced by amyloid-β proteins through SβC gene, a decrease of amyloid-β peptide levels, and improvement of motor functions and memory in Alzheimer's disease mouse and rat models. Mechanistic studies suggest TP molecules modulate N-methyl-D-aspartate receptor. A short synthesis of chiral TP analogs was sought using a Pd(0)-catalyzed displacement of TP allylic acetate intermediate with sodium azide or substituted benzylamines. A three-step sequence of reactions by the treatment of 2-{(5aS,7S)-3-methyl-1-oxo-1,5a,6,7,8,9-hexahydropyrano[4,3-b]chromen-7-yl}allyl acetate (9) with (Ph3P)4Pd and sodium azide, followed by reduction with Zn-NH4OCHO and coupling with 3-fluoro-4-hydroxybenzaldehyde and NaCNBH3 was found to give TP coupling molecule, (5aS,7S)-7-(1-(3-fluoro-4-hydroxybenzylamino)prop-2-en-2-yl)-3-methyl-6,7,8,9-tetrahydropyrano[4,3-b]chromen-1(5aH)-one (2), in a good yield. An alternative shorter pathway - a two-step sequence of reactions - by the displacement of 9 by 4-(t-butyldimethylsilyloxy)-3-fluoro-benzylamine with a catalytic amount of (Ph3P)4Pd in THF followed by removal of the silyl ether protecting group gave 2, albeit in a lower chemical yield. The described syntheses should provide general procedures for the synthesis of a library of TP molecules for the discovery of anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Shunya Morita
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, U.S.A
| | - Zhaoyang Ren
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, U.S.A
| | - Huafang Fan
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, U.S.A
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, U.S.A
| |
Collapse
|
3
|
Wing PAC, Schmidt NM, Peters R, Erdmann M, Brown R, Wang H, Swadling L, Newman J, Thakur N, Shionoya K, Morgan SB, Hinks TSC, Watashi K, Bailey D, Hansen SB, Davidson AD, Maini MK, McKeating JA. An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity. PLoS Pathog 2023; 19:e1011323. [PMID: 37134108 PMCID: PMC10202285 DOI: 10.1371/journal.ppat.1011323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/22/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nathalie M. Schmidt
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Rory Peters
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maximilian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Hao Wang
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, San Diego, California, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California, United States of America
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | | | | | | | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy SC Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Scott B. Hansen
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mala K. Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Osyanin VA, Osipov DV, Semenova IA, Korzhenko KS, Lukashenko AV, Demidov OP, Klimochkin YN. Eco-friendly synthesis of fused pyrano[2,3- b]pyrans via ammonium acetate-mediated formal oxa-[3 + 3]cycloaddition of 4 H-chromene-3-carbaldehydes and cyclic 1,3-dicarbonyl compounds. RSC Adv 2020; 10:34344-34354. [PMID: 35514419 PMCID: PMC9056786 DOI: 10.1039/d0ra06450e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
Various substituted polycyclic pyrano[2,3-b]pyrans were synthesized via the condensation of 4H-chromene-3-carbaldehydes and their areno-condensed analogues with hetero- and carbocyclic 1,3-dicarbonyl compounds in acetic acid. Ammonium acetate was used as a green catalyst for the reaction. The process also involves the subsequent Knoevenagel condensation and 6π-electrocyclization of the 1-oxatriene intermediates formed. Fused pyridines were isolated as the products of the conjugated addition of ammonia to 1-oxatriene intermediates while using carbocyclic 1,3-dicarbonyl compounds and increasing the reaction time, indicating the reversibility of the electrocyclization stage. The calculated values of the Gibbs free energies and reaction rate constants for the 1-oxatriene - 2H-pyran equilibrium also testified to the irreversibility of pyrano[2,3-b]pyran formation in the case of using of heterocyclic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Vitaly A Osyanin
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Dmitry V Osipov
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Irina A Semenova
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Kirill S Korzhenko
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - A V Lukashenko
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Oleg P Demidov
- Department of Chemistry, North Caucasus Federal University 1 Pushkin St. Stavropol 355009 Russia
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| |
Collapse
|
5
|
Balavigneswaran CK, Kumar G, Vignesh Kumar C, Sellamuthu S, Kasiviswanathan U, Ray B, Muthuvijayan V, Mahto SK, Misra N. Gelatin grafted poly(D,L-lactide) as an inhibitor of protein aggregation: An in vitro case study. Biopolymers 2020; 111:e23383. [PMID: 32604473 DOI: 10.1002/bip.23383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 11/10/2022]
Abstract
Amyloids are a group of proteins that are capable of forming aggregated amyloid fibrils, which is responsible for many neurodegenerative diseases including Alzheimer's disease (AD). In our previous study, synthesis and characterization of star-shaped poly(D,L-lactide)-b-gelatin (ss-pLG) have been reported. In the present work, we have extended our work to study ss-pLG against protein aggregation. To the best of our knowledge, this is the first report on the inhibition of amyloid fibrillation by protein grafted poly(D,L-lactide). Bovine serum albumin (BSA) was chosen as the model protein, which readily forms fibril under high temperature. We found that ss-pLG efficiently suppressed the fibril formation of BSA compared with gelatin (Gel), which was supported by Thioflavin T assay, circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). In addition, ss-pLG significantly curtailed amyloid-induced hemolysis. We also found that incubation of ss-pLG with neuroblastoma cells (MC65) protected the cells from fibril-induced toxicity. The rescuing efficiency of ss-pLG was better than Gel, which could be attributed to the reduced lamella thickness in branched ss-pLG. These results suggest the significance of gelatin grafting, which probably allows gelatin to interact with the key residues of the amyloidogenic core of BSA effectively.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Polymer Engineering Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.,Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Gaurav Kumar
- Electrophysiology Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.,Department of Clinical Research, School of Biosciences and Biomedical Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India
| | | | - Satheeshkumar Sellamuthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Uvanesh Kasiviswanathan
- Bioelectronics and Instrumentation Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Biswajit Ray
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Nira Misra
- Polymer Engineering Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Mustra Rakic J, Wang XD. Role of lycopene in smoke-promoted chronic obstructive pulmonary disease and lung carcinogenesis. Arch Biochem Biophys 2020; 689:108439. [PMID: 32504553 DOI: 10.1016/j.abb.2020.108439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are a major cause of morbidity and mortality worldwide, with cigarette smoking being the single most important risk factor for both. Emerging evidence indicates alterations in reverse cholesterol transport-mediated removal of excess cholesterol from lung, and intracellular cholesterol overload to be involved in smoke-promoted COPD and lung cancer development. Since there are currently few effective treatments for COPD and lung cancer, it is important to identify food-derived, biologically active compounds, which can protect against COPD and lung cancer development. High intake of the carotenoid lycopene, as one of phytochemicals, is associated with a decreased risk of chronic lung lesions. This review article summarizes and discusses epidemiologic evidence, in vitro and in vivo studies regarding the prevention of smoke-promoted COPD and lung carcinogenesis through dietary lycopene as an effective intervention strategy. We focus on the recent research implying that lycopene preventive effect is through targeting the main genes involved in reverse cholesterol transport. This review also indicates gaps in knowledge about the function of lycopene against COPD and lung cancer, offering directions for further research.
Collapse
Affiliation(s)
- Jelena Mustra Rakic
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, Jean Mayer USDA-Human Nutrition Research Center on Aging (HNRCA) at Tufts University, Boston, MA, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
7
|
Shen Y, Wang C, Chen W, Cui S. Cascade reaction involving Diels–Alder cascade: modular synthesis of amino α-pyrones, indolines and anilines. Org Chem Front 2018. [DOI: 10.1039/c8qo00939b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cascade reaction involving Diels–Alder reaction for modular synthesis of amino α-pyrones, indolines and anilines is reported.
Collapse
Affiliation(s)
- Yangyong Shen
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Chaorong Wang
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Wei Chen
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou 310058
- China
| | - Sunliang Cui
- Institute of Drug Discovery and Design
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
8
|
Burns VE, Kerppola TK. ATR-101 inhibits cholesterol efflux and cortisol secretion by ATP-binding cassette transporters, causing cytotoxic cholesterol accumulation in adrenocortical carcinoma cells. Br J Pharmacol 2017; 174:3315-3332. [PMID: 28710789 DOI: 10.1111/bph.13951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE To further the development of new agents for the treatment of adrenocortical carcinoma (ACC), we characterized the molecular and cellular mechanisms of cytotoxicity by the adrenalytic compound ATR-101 (PD132301-02). EXPERIMENTAL APPROACH We compared the effects of ATR-101, PD129337, and ABC transporter inhibitors on cholesterol accumulation and efflux, on cortisol secretion, on ATP levels, and on caspase activation in ACC-derived cell lines. We examined the effects of these compounds in combination with methyl-β-cyclodextrin or exogenous cholesterol to determine the roles of altered cholesterol levels in the effects of these compounds. KEY RESULTS ATR-101 caused cholesterol accumulation, ATP depletion, and caspase activation within 30 minutes after addition to ACC-derived cells, whereas PD129337 did not. Suppression of cholesterol accumulation by methyl-β-cyclodextrin or exogenous cholesterol, prevented ATP depletion and caspase activation by ATR-101. ATR-101 blocked cholesterol efflux and cortisol secretion, suggesting that it inhibited ABCA1, ABCG1, and MDR1 transporters. Combinations of ABCA1, ABCG1, and MDR1 inhibitors were also cytotoxic. Combinations of ATR-101 with inhibitors of ABCG1, MDR1, or mitochondrial functions had increased cytotoxicity. Inhibitors of steroidogenesis reduced ATP depletion by ATR-101, whereas U18666A enhanced cholesterol accumulation and ATP depletion together with ATR-101. ATR-101 repressed ABCA1, ABCG1, and IDOL transcription by mechanisms that were distinct from the mechanisms that caused cholesterol accumulation. CONCLUSIONS AND IMPLICATIONS Inhibition of multiple ABC transporters and the consequent accumulation of cholesterol mediated the cytotoxicity of ATR-101. Compounds that replicate these effects in tumours are likely to be useful in the treatment of ACC.
Collapse
Affiliation(s)
| | - Tom Klaus Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Maezawa I, Zou B, Di Lucente J, Cao WS, Pascual C, Weerasekara S, Zhang M, Xie XS, Hua DH, Jin LW. The Anti-Amyloid-β and Neuroprotective Properties of a Novel Tricyclic Pyrone Molecule. J Alzheimers Dis 2017; 58:559-574. [PMID: 28482635 PMCID: PMC5438482 DOI: 10.3233/jad-161175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
There is an urgent unmet need for new therapeutics for Alzheimer's disease (AD), the most common cause of dementia in the elderly. Therapeutic approaches targeting amyloid-β (Aβ) and its downstream toxicities have become major strategies in AD drug development. We have taken a rational design approach and synthesized a class of tricyclic pyrone (TP) compounds that show anti-Aβ and other neuroprotective actions. The in vivo efficacy of a lead TP named CP2 to ameliorate AD-like pathologies has been shown in mouse models. Here we report the selection and initial characterization of a new lead TP70, which exhibited an anti-Aβ therapeutic index even higher than CP2. Moreover, TP70 was able to reduce oxidative stress, inhibit acyl-coenzyme A:cholesterol acyltransferase (ACAT), and upregulate the expression of ATP-binding cassette subfamily A, member 1 (ABCA1), actions considered neuroprotective in AD. TP70 further showed excellent pharmacokinetic properties, including brain penetration and oral availability. When administered to 5xFAD mice via intraperitoneal or oral route, TP70 enhanced the overall solubility and decreased the level of cerebral Aβ, including both fibrillary and soluble Aβ species. Interestingly, TP70 enhanced N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potential (EPSP) in the hippocampal CA1 area, increased the magnitude of NMDA-dependent hippocampal long-term potentiation (LTP), a cellular model of learning and memory, and prevented the Aβ oligomer-impaired LTP. Significantly, a single dose of TP70 administered to aged 5xFAD mice was effective in mitigating the impaired LTP induction, recorded at 24 h after administration. Our results support a potential of TP70 in clinical development for AD in view of its synergistic neuroprotective actions, ability to positively modulate NMDA receptor-mediated hippocampal plasticity, and favorable pharmacokinetic properties in rodents.
Collapse
Affiliation(s)
- Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Bende Zou
- AfaSci Research Laboratory, Redwood City, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | - Man Zhang
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | | | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- Alzheimer’s Disease Center, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
10
|
Kai T, Zhang L, Wang X, Jing A, Zhao B, Yu X, Zheng J, Zhou F. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42). ACS Chem Neurosci 2015; 6:879-88. [PMID: 25874995 DOI: 10.1021/acschemneuro.5b00015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid fibrils are key events in the amyloid cascade hypothesis for the etiology of Alzheimer's disease (AD). Using thioflavin-T (ThT) fluorescence assay, atomic force microscopy, circular dichroism, size exclusion chromatography, surface plasmon resonance (SPR), and cytotoxicity tests, we demonstrate that tabersonine, an ingredient extracted from the bean of Voacanga africana, disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. A small amount of tabersonine (e.g., 10 μM) can effectively inhibit the formation of Aβ(1-42) (e.g., 80 μM) fibrils or convert mature fibrils into largely innocuous amorphous aggregates. SPR results indicate that tabersonine binds to Aβ(1-42) oligomers in a dose-dependent way. Molecular dynamics (MD) simulations further confirm that tabersonine can bind to oligomers such as the pentamer of Aβ(1-42). Tabersonine preferentially interact with the β-sheet grooves of Aβ(1-42) containing aromatic and hydrophobic residues. The various binding sites and modes explain the diverse inhibitory effects of tabersonine on Aβ aggregation. Given that tabersonine is a natural product and a precursor for vincristine used in cancer chemotherapy, the biocompatibility and small size essential for permeating the blood-brain barrier make it a potential therapeutic drug candidate for treating AD.
Collapse
Affiliation(s)
- Tianhan Kai
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lin Zhang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaoying Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Aihua Jing
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China
| | - Bingqing Zhao
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Xiang Yu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| |
Collapse
|
11
|
Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer's Disease. EBioMedicine 2015; 2:294-305. [PMID: 26086035 PMCID: PMC4465115 DOI: 10.1016/j.ebiom.2015.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Development of therapeutic strategies to prevent Alzheimer's Disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD.
Collapse
|
12
|
Prior AM, Gunaratna MJ, Kikuchi D, Desper J, Kim Y, Chang KO, Maezawa I, Jin LW, Hua DH. Syntheses of 3-[(Alkylamino)methylene]-6-methylpyridine-2,4(1 H,3 H)-diones, 3-Substituted 7-Methyl-2 H-pyrano[3,2- c]pyridine-2,5(6 H)-dione Fluorescence Probes, and Tetrahydro-1 H,9 H-2,10-dioxa-9-azaanthracen-1-ones. SYNTHESIS-STUTTGART 2014; 46:2179-2190. [PMID: 25177061 PMCID: PMC4146570 DOI: 10.1055/s-0033-1339027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Various condensation and ring-closing reactions were used for the syntheses of 3-[(alkylamino)methylene]-6-methylpyri-dine-2,4(1H,3H)-diones, bicyclic pyridinones, and tricyclic morpholinopyrones. For instance, 3-[(dialkylamino)methylene]-6-methylpyridine-2,4(1H,3H)-diones were synthesized from the condensation of dialkylamines and 3-formyl-4-hydroxy-6-methylpyridin-2(1H)-one. 3-Formyl-4-hydroxy-6-methylpyridin-2(1H)-one, derived from 3-formyl-4-hydroxy-6-methylpyridin-2(1H)-one, was used to construct a number of bicyclic pyridinones via a one-pot Knoevenagal and intramolecular lactonization reaction. Tricyclic morpholinopyrones were assembled from a dialkylation reaction involving a dinucleophile, 3-amino-4-hydroxy-6-methyl-2H-pyran-2-one, and a dielectrophile, trans-3,6-dibromocyclohexene. Depending on the reaction conditions, isomers of the tricyclic molecules can be selectively produced, and their chemical structures were unequivocally determined using single-crystal X-ray analyses and 2D COSY spectroscopy. The fluorescently active bicyclic pyridinone compounds show longer absorption (368-430 nm; maximum) and emission wavelengths (450-467 nm) than those of 7-amino-4-methylcoumarin (AMC; λabs,max = 350 nm; λem = 430 nm) suggesting these molecules, such as 3-(2-aminoacetyl)-7-methyl-2H-pyrano[3,2-c]pyridine-2,5(6H)-dione, can be employed as fluorescence activity based probes for tracing biological pathways.
Collapse
Affiliation(s)
- Allan M. Prior
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Medha J. Gunaratna
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Daisuke Kikuchi
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - John Desper
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0401, USA
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, USA
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, USA
| | - Duy H. Hua
- Department of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0401, USA
| |
Collapse
|
13
|
Lu J, Maezawa I, Weerasekara S, Erenler R, Nguyen TDT, Nguyen J, Swisher LZ, Li J, Jin LW, Ranjan A, Srivastava SK, Hua DH. Syntheses, neural protective activities, and inhibition of glycogen synthase kinase-3β of substituted quinolines. Bioorg Med Chem Lett 2014; 24:3392-7. [PMID: 24951331 PMCID: PMC4110911 DOI: 10.1016/j.bmcl.2014.05.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/13/2023]
Abstract
A new series of fifteen 5-, 6-, and 8-appended 4-methylquinolines were synthesized and evaluated for their neural protective activities. Selected compounds were further examined for their inhibition of glycogen synthase kinase-3β (GSK-3β) and protein kinase C (PKC). Two most potent analogs, compounds 3 and 10, show nanomolar protective activities in amyloid β-induced MC65 cells and enzymatic inhibitory activities against GSK-3β, but poor PKC inhibitory activities. Using normal mouse model, the distribution of the most potent analog 3 in various tissues and possible toxic effects in the locomotors and inhibition of liver transaminases activities were carried out. No apparent decline of locomotor activity and no inhibition of liver transaminases were found. The compound appears to be safe for long-term use in Alzheimer's disease mouse model.
Collapse
Affiliation(s)
- Jianyu Lu
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, United States
| | - Sahani Weerasekara
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Ramazan Erenler
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Tuyen D T Nguyen
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - James Nguyen
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Luxi Z Swisher
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Jun Li
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology, 2825 50th Street, UC Davis Health System, Sacramento, CA 95817, United States
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, United States
| | - Duy H Hua
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
14
|
Abstract
Collaborative research projects between chemists, biologists, and medical scientists have inevitably produced many useful drugs, biosensors, and medical instrumentation. Organic chemistry lies at the heart of drug discovery and development. The current range of organic synthetic methodologies allows for the construction of unlimited libraries of small organic molecules for drug screening. In translational research projects, we have focused on the discovery of lead compounds for three major diseases: Alzheimer's disease (AD), breast cancer, and viral infections. In the AD project, we have taken a rational-design approach and synthesized a new class of tricyclic pyrone (TP) compounds that preserve memory and motor functions in amyloid precursor protein (APP)/presenilin-1 (PS1) mice. TPs could protect neuronal death through several possible mechanisms, including their ability to inhibit the formation of both intraneuronal and extracellular amyloid β (Aβ) aggregates, to increase cholesterol efflux, to restore axonal trafficking, and to enhance long-term potentiation (LTP) and restored LTP following treatment with Aβ oligomers. We have also synthesized a new class of gap-junction enhancers, based on substituted quinolines, that possess potent inhibitory activities against breast-cancer cells in vitro and in vivo. Although various antiviral drugs are available, the emergence of viral resistance to existing antiviral drugs and various understudied viral infections, such as norovirus and rotavirus, emphasizes the demand for the development of new antiviral agents against such infections and others. Our laboratories have undertaken these projects for the discovery of new antiviral inhibitors. The discussion of these aforementioned projects may shed light on the future development of drug candidates in the fields of AD, cancer, and viral infections.
Collapse
Affiliation(s)
- Duy H Hua
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506-040, USA.
| |
Collapse
|