1
|
Das R, Dash PP, Bishoyi AK, Mohanty P, Mishra L, Prusty L, Sahoo CR, Padhy RN, Mishra M, Sahoo H, Sahoo SK, Sethi SK, Jali BR. Antibacterial and cytotoxicity studies of pyrrolo-based organic scaffolds and their binding interaction with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8725-8743. [PMID: 38829386 DOI: 10.1007/s00210-024-03187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute of Technology, Surat, 395007, Gujarat, India
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
2
|
Xue Y, Zhou RB, Luo J, Hu BC, Liu ZQ, Jiang C. Palladium-catalyzed C(sp 3)-H nitrooxylation of masked alcohols. Org Biomol Chem 2022; 21:75-79. [PMID: 36448655 DOI: 10.1039/d2ob01919a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A palladium-catalyzed β-C(sp3)-H nitrooxylation of aliphatic alcohols with AgNO2 is reported. An 8-formylquinoline-derived oxime is installed as an exo-type directing group for sp3 C-H activation and selectfluor acts as the oxidant. The reaction tolerates a variety of functional groups and shows good selectivity for β-C-H nitrooxylation of alcohols.
Collapse
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Ruo-Bing Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bing-Cheng Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
3
|
Cerqua I, Musella S, Peltner LK, D’Avino D, Di Sarno V, Granato E, Vestuto V, Di Matteo R, Pace S, Ciaglia T, Bilancia R, Smaldone G, Di Matteo F, Di Micco S, Bifulco G, Pepe G, Basilicata MG, Rodriquez M, Gomez-Monterrey IM, Campiglia P, Ostacolo C, Roviezzo F, Werz O, Rossi A, Bertamino A. Discovery and Optimization of Indoline-Based Compounds as Dual 5-LOX/sEH Inhibitors: In Vitro and In Vivo Anti-Inflammatory Characterization. J Med Chem 2022; 65:14456-14480. [DOI: 10.1021/acs.jmedchem.2c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ida Cerqua
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Lukas Klaus Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany
| | - Danilo D’Avino
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Elisabetta Granato
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Rita Di Matteo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Rossella Bilancia
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Simone Di Micco
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Manuela Rodriquez
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Fiorentina Roviezzo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
4
|
Brandt F, Ullrich M, Seifert V, Haase-Kohn C, Richter S, Kniess T, Pietzsch J, Laube M. Exploring Nitric Oxide (NO)-Releasing Celecoxib Derivatives as Modulators of Radioresponse in Pheochromocytoma Cells. Molecules 2022; 27:molecules27196587. [PMID: 36235124 PMCID: PMC9573605 DOI: 10.3390/molecules27196587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
COX-2 can be considered as a clinically relevant molecular target for adjuvant, in particular radiosensitizing treatments. In this regard, using selective COX-2 inhibitors, e.g., in combination with radiotherapy or endoradiotherapy, represents an interesting treatment option. Based on our own findings that nitric oxide (NO)-releasing and celecoxib-derived COX-2 inhibitors (COXIBs) showed promising radiosensitizing effects in vitro, we herein present the development of a series of eight novel NO-COXIBs differing in the peripheral substitution pattern and their chemical and in vitro characterization. COX-1 and COX-2 inhibition potency was found to be comparable to the lead NO-COXIBs, and NO-releasing properties were demonstrated to be mainly influenced by the substituent in 4-position of the pyrazole (Cl vs. H). Introduction of the N-propionamide at the sulfamoyl residue as a potential prodrug strategy lowered lipophilicity markedly and abolished COX inhibition while NO-releasing properties were not markedly influenced. NO-COXIBs were tested in vitro for a combination with single-dose external X-ray irradiation as well as [177Lu]LuCl3 treatment in HIF2α-positive mouse pheochromocytoma (MPC-HIF2a) tumor spheroids. When applied directly before X-ray irradiation or 177Lu treatment, NO-COXIBs showed radioprotective effects, as did celecoxib, which was used as a control. Radiosensitizing effects were observed when applied shortly after X-ray irradiation. Overall, the NO-COXIBs were found to be more radioprotective compared with celecoxib, which does not warrant further preclinical studies with the NO-COXIBs for the treatment of pheochromocytoma. However, evaluation as radioprotective agents for healthy tissues could be considered for the NO-COXIBs developed here, especially when used directly before irradiation.
Collapse
Affiliation(s)
- Florian Brandt
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Cathleen Haase-Kohn
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Correspondence: (J.P.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Correspondence: (J.P.); (M.L.)
| |
Collapse
|
5
|
Ivan BC, Barbuceanu SF, Hotnog CM, Anghel AI, Ancuceanu RV, Mihaila MA, Brasoveanu LI, Shova S, Draghici C, Olaru OT, Nitulescu GM, Dinu M, Dumitrascu F. New Pyrrole Derivatives as Promising Biological Agents: Design, Synthesis, Characterization, In Silico, and Cytotoxicity Evaluation. Int J Mol Sci 2022; 23:8854. [PMID: 36012121 PMCID: PMC9408590 DOI: 10.3390/ijms23168854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
The current study describes the synthesis, physicochemical characterization and cytotoxicity evaluation of a new series of pyrrole derivatives in order to identify new bioactive molecules. The new pyrroles were obtained by reaction of benzimidazolium bromide derivatives with asymmetrical acetylenes in 1,2-epoxybutane under reflux through the Huisgen [3 + 2] cycloaddition of several ylide intermediates to the corresponding dipolarophiles. The intermediates salts were obtained from corresponding benzimidazole with bromoacetonitrile. The structures of the newly synthesized compounds were confirmed by elemental analysis, spectral techniques (i.e., IR, 1H-NMR and 13C-NMR) and single-crystal X-ray analysis. The cytotoxicity of the synthesized compounds was evaluated on plant cells (i.e., Triticum aestivum L.) and animal cells using aquatic crustaceans (i.e., Artemia franciscana Kellogg and Daphnia magna Straus). The potential antitumor activity of several of the pyrrole derivatives was studied by performing in vitro cytotoxicity assays on human adenocarcinoma-derived cell lines (i.e., LoVo (colon), MCF-7 (breast), and SK-OV-3 (ovary)) and normal human umbilical vein endothelial cells (HUVECs). The obtained results of the cytotoxicity assessment indicated that the tested compounds had nontoxic activity on Triticum aestivum L., while on Artemia franciscana Kellogg nauplii, only compounds 2c and 4c had moderate toxicity. On Daphnia magna, 4b and 4c showed high toxicity; 2a, 2b, and 2c moderate to high toxicity; only 4a and 4d were nontoxic. The compound-mediated cytotoxicity assays showed that several pyrrole compounds demonstrated dose- and time-dependent cytotoxic activity against all tested tumor cell lines, the highest antitumor properties being achieved by 4a and its homologue 4d, especially against LoVo colon cells.
Collapse
Affiliation(s)
- Beatrice-Cristina Ivan
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Stefania-Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Camelia Mia Hotnog
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Adriana Iuliana Anghel
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Robert Viorel Ancuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Antonela Mihaila
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Lorelei Irina Brasoveanu
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Sergiu Shova
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania
| | - Constantin Draghici
- “C.D. Nenitescu” Institute of Organic and Supramolecular Chemistry Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mihaela Dinu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Florea Dumitrascu
- “C.D. Nenitescu” Institute of Organic and Supramolecular Chemistry Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| |
Collapse
|
6
|
Saletti M, Maramai S, Reale A, Paolino M, Brogi S, Di Capua A, Cappelli A, Giorgi G, D'Avino D, Rossi A, Ghelardini C, Di Cesare Mannelli L, Sardella R, Carotti A, Woelkart G, Klösch B, Bigogno C, Dondio G, Anzini M. Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as Cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties. Eur J Med Chem 2022; 241:114615. [DOI: 10.1016/j.ejmech.2022.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
|
7
|
He C, Wu Z, Zhou Y, Cao W, Feng X. Asymmetric catalytic nitrooxylation and azidation of β-keto amides/esters with hypervalent iodine reagents. Org Chem Front 2022. [DOI: 10.1039/d1qo01634b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral Lewis acid-catalyzed enantioselective nitrooxylation and azidation of cyclic and acyclic β-keto amides/esters with hypervalent iodine(iii) reagents.
Collapse
Affiliation(s)
- Changqiang He
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhikun Wu
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Xue Y, Park HS, Jiang C, Yu JQ. Palladium-Catalyzed β-C(sp 3)–H Nitrooxylation of Ketones and Amides Using Practical Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches. J Adv Res 2021; 27:99-113. [PMID: 33318870 PMCID: PMC7728589 DOI: 10.1016/j.jare.2020.05.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The vascular endothelium represents a fundamental mechanical and biological barrier for the maintenance of vascular homeostasis along the entire vascular tree. Changes in its integrity are associated to several cardiovascular diseases, including hypertension, atherosclerosis, hyperhomocysteinemia, diabetes, all linked to the peculiar condition named endothelial dysfunction, which is referred to the loss of endothelial physiological functions, comprehending the regulation of vascular relaxation and/or cell redox balance, the inhibition of leukocyte infiltration and the production of NO. Among the endothelium-released vasoactive factors, in the last years hydrogen sulfide has been viewed as one of the main characters involved in the regulation of endothelium functionality, and many studies demonstrated that H2S behaves as a vasoprotective gasotransmitter in those cardiovascular diseases where endothelial dysfunction seems to be the central issue. AIM The role of hydrogen sulfide in endothelial dysfunction-related cardiovascular diseases is discussed in this review. KEY SCIENTIFIC CONCEPTS Possible therapeutic approaches using molecules able to release H2S.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| |
Collapse
|
10
|
Martelli A, Citi V, Calderone V. Recent efforts in drug discovery on vascular inflammation and consequent atherosclerosis. Expert Opin Drug Discov 2020; 16:411-427. [PMID: 33256484 DOI: 10.1080/17460441.2021.1850688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Preservation of vascular endothelium integrity and maintenance of its full functionality are fundamental aspects in order to avoid both cardiovascular and non-cardiovascular diseases.Areas covered: Although a massive endothelial disruption is a rare condition, caused by acute and uncontrolled inflammatory responses (e.g. the cytokine storm induced by SARS-CoV-2 infection), more frequently the vascular tree is the first target of slowly progressive inflammatory processes which affect the integrity of endothelium and its 'barrier' function, supporting the onset of atherosclerotic plaque and spreading inflammation. This endothelial dysfunction leads to decrease NO biosynthesis, impaired regulation of vascular tone, and increased platelet aggregation. Such chronic subclinic inflammation leads to macrophage infiltration in atherosclerotic lesions. Therefore, many efforts should be addressed to find useful approaches to preserve vascular endothelium from inflammation. In this review, the authors have evaluated the most recent strategies to counteract this pathological condition.Expert opinion: The therapeutic and nutraceutical approaches represent useful tools to treat or prevent different phases of vascular inflammation. In particular, the pharmacological approach should be used in advanced phases characterized by clinical signs of vascular disease, whilst the nutraceutical approach may represent a promising preventive strategy to preserve the integrity of the endothelial tissue.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, Pisa, Italy
| | | | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Consalvi S, Poce G, Ghelardini C, Di Cesare Mannelli L, Patrignani P, Bruno A, Anzini M, Calderone V, Martelli A, Testai L, Giordani A, Biava M. Therapeutic potential for coxibs-nitric oxide releasing hybrids in cystic fibrosis. Eur J Med Chem 2020; 210:112983. [PMID: 33168231 DOI: 10.1016/j.ejmech.2020.112983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
This review discusses the rational for further studies of COX-2 inhibitors-NO releaser hybrids (NO-Coxibs) in the pharmacological treatment of the airway inflammation in Cystic Fibrosis (CF). Our research group developed several classes of NO-Coxibs for the pharmacological treatment of arthritis, and among them several compounds showed an outstanding in vivo efficacy and good pharmacokinetic properties. The good antiinflammatory properties displayed by these compounds during the previous screening could, by itself, suggest appropriate candidates for further testing in CF.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, And Center for Advanced Studies and Technology (CAST), School of Medicine, G. D'Annunzio University, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences, And Center for Advanced Studies and Technology (CAST), School of Medicine, G. D'Annunzio University, Chieti, Italy
| | - Maurizio Anzini
- Department of Biotechnology, Chemistry, And Pharmacy, DoE 2018-2022, University of Siena, 53100, Siena, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
12
|
Calvo R, Le Tellier A, Nauser T, Rombach D, Nater D, Katayev D. Synthesis, Characterization, and Reactivity of a Hypervalent-Iodine-Based Nitrooxylating Reagent. Angew Chem Int Ed Engl 2020; 59:17162-17168. [PMID: 32530081 DOI: 10.1002/anie.202005720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
Herein, the synthesis and characterization of a hypervalent-iodine-based reagent that enables a direct and selective nitrooxylation of enolizable C-H bonds to access a broad array of organic nitrate esters is reported. This compound is bench stable, easy-to-handle, and delivers the nitrooxy (-ONO2 ) group under mild reaction conditions. Activation of the reagent by Brønsted and Lewis acids was demonstrated in the synthesis of nitrooxylated β-keto esters, 1,3-diketones, and malonates, while its activity under photoredox catalysis was shown in the synthesis of nitrooxylated oxindoles. Detailed mechanistic studies including pulse radiolysis, Stern-Volmer quenching studies, and UV/Vis spectroelectrochemistry reveal a unique single-electron-transfer (SET)-induced concerted mechanistic pathway not reliant upon generation of the nitrate radical.
Collapse
Affiliation(s)
- Roxan Calvo
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Antoine Le Tellier
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Thomas Nauser
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - David Rombach
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Darryl Nater
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Dmitry Katayev
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
13
|
Calvo R, Le Tellier A, Nauser T, Rombach D, Nater D, Katayev D. Synthese, Charakterisierung und Reaktivität eines Nitrooxylierungsreagenzes basierend auf einer hypervalenten Iodverbindung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Roxan Calvo
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Antoine Le Tellier
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Schweiz
| | - Thomas Nauser
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - David Rombach
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Darryl Nater
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Dmitry Katayev
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
14
|
Testai L, Citi V, Martelli A, Brogi S, Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 2020; 160:105125. [PMID: 32783975 DOI: 10.1016/j.phrs.2020.105125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| |
Collapse
|
15
|
Synthesis, biological evaluation and molecular modeling of novel selective COX-2 inhibitors: sulfide, sulfoxide, and sulfone derivatives of 1,5-diarylpyrrol-3-substituted scaffold. Bioorg Med Chem 2019; 27:115045. [DOI: 10.1016/j.bmc.2019.115045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022]
|
16
|
Sharma V, Bhatia P, Alam O, Javed Naim M, Nawaz F, Ahmad Sheikh A, Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008–2019). Bioorg Chem 2019; 89:103007. [PMID: 31132600 DOI: 10.1016/j.bioorg.2019.103007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
17
|
Zhong YL, Weisel M, Humphrey GR, Muzzio DJ, Zhang L, Huffman MA, Zhong W, Maloney KM, Campos KR. Scalable Synthesis of Diazeniumdiolates: Application to the Preparation of MK-8150. Org Lett 2019; 21:4210-4214. [PMID: 31117712 DOI: 10.1021/acs.orglett.9b01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic diazeniumdiolate (DAZD)-based nitric oxide is utilized to modulate the nitric oxide (NO) concentration in cellular environments and to control physiological processes, yet chemists are still struggling to find efficient and scalable methodologies that will enable them to access sufficient quantities of the high-energy diazeniumdiolate intermediates for biological studies. Now, a general, scalable, safer, and high-yielding new methodology adaptable to the large-scale synthesis of DAZDs has been developed.
Collapse
Affiliation(s)
- Yong-Li Zhong
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Mark Weisel
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Guy R Humphrey
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Daniel J Muzzio
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Li Zhang
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Mark A Huffman
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Wendy Zhong
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Kevin M Maloney
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Kevin R Campos
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| |
Collapse
|
18
|
Cheleschi S, Calamia V, Fernandez-Moreno M, Biava M, Giordani A, Fioravanti A, Anzini M, Blanco F. In vitro comprehensive analysis of VA692 a new chemical entity for the treatment of osteoarthritis. Int Immunopharmacol 2018; 64:86-100. [DOI: 10.1016/j.intimp.2018.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 08/19/2018] [Indexed: 12/21/2022]
|
19
|
Ren SZ, Wang ZC, Zhu D, Zhu XH, Shen FQ, Wu SY, Chen JJ, Xu C, Zhu HL. Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. Eur J Med Chem 2018; 157:909-924. [PMID: 30149323 DOI: 10.1016/j.ejmech.2018.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/20/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
A series of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy were designed, synthesized and biologically evaluated. Among them, compound 7l displayed the most potent inhibitory against COX-2 (IC50 = 0.82 μM) and antiproliferative activities against Hela cells (IC50 = 0.34 μM) compared with Celecoxib (IC50 = 0.38 and 7.91 μM). The further mechanistic studies revealed that 7l could induce apoptosis of Hela cells by mitochondrial depolarization and the antiproliferative activities of 7l were positively correlated with the levels of intracellular NO release in Hela cells. Most notably, 7l could dramatically suppress tumor growth in Hela cells xenografted mouse model. In summary, compound 7l may be promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China.
| | - Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Fa-Qian Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Song-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Jin-Jin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Gilmore SP, Gonye ALK, Li EC, Espinosa de Los Reyes S, Gupton JT, Quintero OA, Fischer-Stenger K. Effects of a novel microtubule-depolymerizer on pro-inflammatory signaling in RAW264.7 macrophages. Chem Biol Interact 2018; 280:109-116. [PMID: 29247640 PMCID: PMC5766364 DOI: 10.1016/j.cbi.2017.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
The Nuclear Factor-kappa B (NF-κB) pathway is vital for immune system regulation and pro-inflammatory signaling. Many inflammatory disorders and diseases, including cancer, are linked to dysregulation of NF-κB signaling. When macrophages recognize the presence of a pathogen, the signaling pathway is activated, resulting in the nuclear translocation of the transcription factor, NF-κB, to turn on pro-inflammatory genes. Here, we demonstrate the effects of a novel microtubule depolymerizer, NT-07-16, a polysubstituted pyrrole compound, on this process. Treatment with NT-07-16 decreased the production of pro-inflammatory cytokines in RAW264.7 mouse macrophages. It appears that the reduction in pro-inflammatory mediators produced by the macrophages after exposure to NT-07-16 may be due to activities upstream of the translocation of NF-κB into the nucleus. NF-κB translocation occurs after its inhibitory protein, IκB-α is phosphorylated which signals for its degradation releasing NF-κB so it is free to move into the nucleus. Previous studies from other laboratories indicate that these processes are associated with the microtubule network. Our results show that exposure to the microtubule-depolymerizer, NT-07-16 reduces the phosphorylation of IκB-α and also decreases the association of NF-κB with tubulin which may affect the ability of NF-κB to translocate into the nucleus. Therefore, the anti-inflammatory activity of NT-07-16 may be explained, at least in part, by alterations in these steps in the NF-κB signaling pathway leading to less NF-κB entering the nucleus and reducing the production of pro-inflammatory mediators by the activated macrophages.
Collapse
Affiliation(s)
| | - Anna L K Gonye
- Department of Biology, University of Richmond, VA 23173, USA.
| | - Elizabeth C Li
- Department of Biology, University of Richmond, VA 23173, USA.
| | | | - John T Gupton
- Department of Chemistry, University of Richmond, VA 23173, USA.
| | - Omar A Quintero
- Department of Biology, University of Richmond, VA 23173, USA.
| | | |
Collapse
|
21
|
Serafim RAM, Pernichelle FG, Ferreira EI. The latest advances in the discovery of nitric oxide hybrid drug compounds. Expert Opin Drug Discov 2017; 12:941-953. [PMID: 28664751 DOI: 10.1080/17460441.2017.1344400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION There is a great interest in Nitric oxide (NO) within medicinal chemistry since it's involved in human signaling pathways. Prodrugs or hybrid compounds containing NO-donor scaffolds linked to an active compound are valuable, due to their potential for modulating many pathological conditions due to NO's biological properties when released in addition to the native drug. Compounds that selectively inhibit nitric oxide synthase isoforms (NOS) can also increase therapeutic capacity, particularly in the treatment of chronic diseases. However, search for bioactive compounds to efficiently and selectively modulate NO is still a challenge in drug discovery. Areas covered: In this review, the authors highlight the recent advances in the strategies used to discover NO-hybrid derivatives, especially those related to anti-inflammatory, cardiovascular, anticancer and anti-microorganism activities. They also focus on: nitric oxide synthase inhibitors, NO delivery materials and other related activities. Expert opinion: The process of molecular hybridization can be used to obtain NO-releasing compounds that also interact with different targets. The main problem with this approach is to control NO multiple actions in the right biological system. However, the use of NO-releasing groups with many different scaffolds leads to new molecular structures for bioactive compounds, suggesting synergies.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Filipe G Pernichelle
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Elizabeth I Ferreira
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| |
Collapse
|
22
|
Zhao D, Zhu Y, Guo S, Chen W, Zhang G, Yu Y. A three-component one-pot synthesis of penta-substituted pyrroles via ring opening of α-nitroepoxides. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Venditti G, Poce G, Consalvi S, Biava M. 1,5-Diarylpyrroles as potent antitubercular and anti-inflammatory agents. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2050-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Wu MY, Esteban G, Brogi S, Shionoya M, Wang L, Campiani G, Unzeta M, Inokuchi T, Butini S, Marco-Contelles J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur J Med Chem 2016; 121:864-879. [DOI: 10.1016/j.ejmech.2015.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
|
25
|
Bew SP, Hiatt-Gipson GD, Mills GP, Reeves CE. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate. Beilstein J Org Chem 2016; 12:1081-95. [PMID: 27340495 PMCID: PMC4902045 DOI: 10.3762/bjoc.12.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.
Collapse
Affiliation(s)
- Sean P Bew
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Glyn D Hiatt-Gipson
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Graham P Mills
- Centre for Ocean and Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Claire E Reeves
- Centre for Ocean and Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
26
|
Consalvi S, Poce G, Ragno R, Sabatino M, La Motta C, Sartini S, Calderone V, Martelli A, Ghelardini C, Di Cesare Mannelli L, Biava M. A Series of COX-2 Inhibitors Endowed with NO-Releasing Properties: Synthesis, Biological Evaluation, and Docking Analysis. ChemMedChem 2016; 11:1804-11. [DOI: 10.1002/cmdc.201600086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/08/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sara Consalvi
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Piazzale A. Moro 5 00185 Roma Italy
| | - Giovanna Poce
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Piazzale A. Moro 5 00185 Roma Italy
| | - Rino Ragno
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Piazzale A. Moro 5 00185 Roma Italy
| | - Manuela Sabatino
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Piazzale A. Moro 5 00185 Roma Italy
| | - Concettina La Motta
- Dipartimento di Farmacia; Università di Pisa; via Bonanno Pisano 6 56126 Pisa Italy
| | - Stefania Sartini
- Dipartimento di Farmacia; Università di Pisa; via Bonanno Pisano 6 56126 Pisa Italy
| | - Vincenzo Calderone
- Dipartimento di Farmacia; Università di Pisa; via Bonanno Pisano 6 56126 Pisa Italy
| | - Alma Martelli
- Dipartimento di Farmacia; Università di Pisa; via Bonanno Pisano 6 56126 Pisa Italy
| | - Carla Ghelardini
- Dipartimento di Neurologia Psicologia; Area del Farmaco e Salute del Bambino; Università degli Studi di Firenze; Viale G. Pieraccini 6 50139 Firenze Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento di Neurologia Psicologia; Area del Farmaco e Salute del Bambino; Università degli Studi di Firenze; Viale G. Pieraccini 6 50139 Firenze Italy
| | - Mariangela Biava
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Piazzale A. Moro 5 00185 Roma Italy
| |
Collapse
|
27
|
Di Capua A, Sticozzi C, Brogi S, Brindisi M, Cappelli A, Sautebin L, Rossi A, Pace S, Ghelardini C, Di Cesare Mannelli L, Valacchi G, Giorgi G, Giordani A, Poce G, Biava M, Anzini M. Synthesis and biological evaluation of fluorinated 1,5-diarylpyrrole-3-alkoxyethyl ether derivatives as selective COX-2 inhibitors endowed with anti-inflammatory activity. Eur J Med Chem 2016; 109:99-106. [DOI: 10.1016/j.ejmech.2015.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022]
|
28
|
Abstract
INTRODUCTION The COX enzymes play a central role in the biosynthetic pathway of important biological mediators called prostanoids. Differences in regulation of gene expression, stability of transcripts and proteins determine the different biological functions of COX-1 and COX-2. While the COX-1 gene has been considered to be a 'housekeeping' gene expressed in many tissues and cells, COX-2 gene is upregulated during inflammation, hypoxia and in many cancers. AREAS COVERED The first part of this review provides a survey of the development of both modified traditional NSAIDs (tNSAIDs) and COX inhibitors (coxibs) with reduced side effects for the treatment of inflammation and cancer. The second part deals with patents reporting several dual inhibitors characterized by the conjugation of a COX-inhibitor scaffold to a molecule able to modulate a different target. Finally, two patents on novel COX inhibitor scaffolds are reported. EXPERT OPINION The most interesting branch of research concerns the conjugation of a COX-inhibitor scaffold to a molecule able to modulate a different target, in order to either enhance anti-inflammatory activity or to act as a dual inhibitor. Among the described compounds, selenium-containing coxibs inhibiting COX-2 and Akt, in addition to the multi-target biphenyl derivatives as dual inhibitors of COX and fatty acid amide hydrolase, are the most promising ones.
Collapse
Affiliation(s)
- Sara Consalvi
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| | - Mariangela Biava
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| | - Giovanna Poce
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
29
|
Hesse A, Biyikal M, Rurack K, Weller MG. Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement. J Mol Recognit 2015; 29:88-94. [PMID: 26463875 DOI: 10.1002/jmr.2511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 11/06/2022]
Abstract
An improved antibody against the explosive pentaerythritol tetranitrate (PETN) was developed. The immunogen was designed by the concept of bioisosteric replacement, which led to an excellent polyclonal antibody with extreme selectivity and immunoassays of very good sensitivity. Compounds such as nitroglycerine, 2,4,6-trinitrotoluene, 1,3,5-trinitrobenzene, hexogen (RDX), 2,4,6-trinitroaniline, 1,3-dinitrobenzene, octogen (HMX), triacetone triperoxide, ammonium nitrate, 2,4,6-trinitrophenol and nitrobenzene were tested for potential cross-reactivity. The detection limit of a competitive enzyme-linked immunosorbent assay was determined to be around 0.5 µg/l. The dynamic range of the assay was found to be between 1 and 1000 µg/l, covering a concentration range of three decades. This work shows the successful application of the bioisosteric concept in immunochemistry by exchange of a nitroester to a carbonate diester. The antiserum might be used for the development of quick tests, biosensors, microtitration plate immunoassays, microarrays and other analytical methods for the highly sensitive detection of PETN, an explosive frequently used by terrorists, exploiting the extreme difficulty of its detection.
Collapse
Affiliation(s)
- Almut Hesse
- Division 1.5, Protein Analysis, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Mustafa Biyikal
- Division 1.9, Chemical and Optical Sensing, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Knut Rurack
- Division 1.9, Chemical and Optical Sensing, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Michael G Weller
- Division 1.5, Protein Analysis, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| |
Collapse
|
30
|
Cheleschi S, Pascarelli NA, Valacchi G, Di Capua A, Biava M, Belmonte G, Giordani A, Sticozzi C, Anzini M, Fioravanti A. Chondroprotective effect of three different classes of anti-inflammatory agents on human osteoarthritic chondrocytes exposed to IL-1β. Int Immunopharmacol 2015; 28:794-801. [DOI: 10.1016/j.intimp.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/08/2015] [Accepted: 07/05/2015] [Indexed: 11/16/2022]
|
31
|
Brogi S, Butini S, Maramai S, Colombo R, Verga L, Lanni C, De Lorenzi E, Lamponi S, Andreassi M, Bartolini M, Andrisano V, Novellino E, Campiani G, Brindisi M, Gemma S. Disease-modifying anti-Alzheimer's drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation. CNS Neurosci Ther 2015; 20:624-32. [PMID: 24935788 DOI: 10.1111/cns.12290] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022] Open
Abstract
AIMS We recently described multifunctional tools (2a-c) as potent inhibitors of human Cholinesterases (ChEs) also able to modulate events correlated with Aβ aggregation. We herein propose a thorough biological and computational analysis aiming at understanding their mechanism of action at the molecular level. METHODS We determined the inhibitory potency of 2a-c on Aβ1-42 self-aggregation, the interference of 2a with the toxic Aβ oligomeric species and with the postaggregation states by capillary electrophoresis analysis and transmission electron microscopy. The modulation of Aβ toxicity was assessed for 2a and 2b on human neuroblastoma cells. The key interactions of 2a with Aβ and with the Aβ-preformed fibrils were computationally analyzed. 2a-c toxicity profile was also assessed (human hepatocytes and mouse fibroblasts). RESULTS Our prototypical pluripotent analogue 2a interferes with Aβ oligomerization process thus reducing Aβ oligomers-mediated toxicity in human neuroblastoma cells. 2a also disrupts preformed fibrils. Computational studies highlighted the bases governing the diversified activities of 2a. CONCLUSION Converging analytical, biological, and in silico data explained the mechanism of action of 2a on Aβ1-42 oligomers formation and against Aβ-preformed fibrils. This evidence, combined with toxicity data, will orient the future design of safer analogues.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy; Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu W, Lucke AJ, Fairlie DP. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J Mol Graph Model 2015; 57:76-88. [PMID: 25682361 DOI: 10.1016/j.jmgm.2015.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 12/17/2022]
Abstract
Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches.
Collapse
Affiliation(s)
- Weijun Xu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
33
|
Farag DB, Farag NA, Esmat A, Abuelezz SA, Abdel-Salam Ibrahim E, Abou El Ella DA. Synthesis, 3D pharmacophore, QSAR and docking studies of novel quinazoline derivatives with nitric oxide release moiety as preferential COX-2 inhibitors. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00392f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Four novel series of quinazoline derivatives IIIa–c, VIa–c and their NO-hybrid molecules as nitrate esters Va–c and VIIIa–c have been synthesized and evaluated for their anti-inflammatory activity in vivo and in vitro.
Collapse
Affiliation(s)
- Doaa Boshra Farag
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Misr International University
- Cairo
- Egypt
| | - Nahla A. Farag
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Misr International University
- Cairo
- Egypt
| | - Ahmed Esmat
- Pharmacology & Toxicology Department
- Faculty of Pharmacy
- Ain Shams University
- Cairo
- Egypt
| | - Sally A. Abuelezz
- Pharmacology & Therapeutics Department
- Faculty of Medicine
- Ain Shams University
- Cairo
- Egypt
| | | | - Dalal A. Abou El Ella
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Ain Shams University
- Cairo
- Egypt
| |
Collapse
|
34
|
Hilmy KMH, Abdul-Wahab HG, Soliman DH, Khalifa MMA, Hegab AM. Novel pyrrolo[2,3-d]pyrimidines and pyrrolo[2,3-b]pyridines: design, synthesis, and in vivo TNF-α inhibitory activity. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1281-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Biava M, Battilocchio C, Poce G, Alfonso S, Consalvi S, Di Capua A, Calderone V, Martelli A, Testai L, Sautebin L, Rossi A, Ghelardini C, Di Cesare Mannelli L, Giordani A, Persiani S, Colovic M, Dovizio M, Patrignani P, Anzini M. Enhancing the pharmacodynamic profile of a class of selective COX-2 inhibiting nitric oxide donors. Bioorg Med Chem 2014; 22:772-86. [DOI: 10.1016/j.bmc.2013.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
36
|
Martelli A, Testai L, Anzini M, Cappelli A, Di Capua A, Biava M, Poce G, Consalvi S, Giordani A, Caselli G, Rovati L, Ghelardini C, Patrignani P, Sautebin L, Breschi M, Calderone V. The novel anti-inflammatory agent VA694, endowed with both NO-releasing and COX2-selective inhibiting properties, exhibits NO-mediated positive effects on blood pressure, coronary flow and endothelium in an experimental model of hypertension and endothelial dysfunction. Pharmacol Res 2013; 78:1-9. [DOI: 10.1016/j.phrs.2013.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 11/29/2022]
|
37
|
Jafarpour F, Olia MBA, Hazrati H. Highly Regioselective α-Arylation of CoumarinsviaPalladium-Catalyzed CH Activation/Desulfitative Coupling. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300707] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|