1
|
Wang H, Nie C, Luo M, Bai Q, Yao Z, Lv H, Chen B, Wang J, Xu W, Wang S, Chen X. Novel GSH-responsive prodrugs derived from indole-chalcone and camptothecin trigger apoptosis and autophagy in colon cancer. Bioorg Chem 2024; 143:107056. [PMID: 38183685 DOI: 10.1016/j.bioorg.2023.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Antineoplastic agents that target tubulin have shown efficacy as chemotherapeutic drugs, yet they are often constrained by multidrug resistance (MDR) and unwanted side effects. A multi-targeted strategy demonstrates great potency in reducing toxicity and enhancing efficacy and provides an alternative way for attenuating MDR. In this study, a series of dual-targeted anti-cancer agents based on indole-chalcone derivatives and the camptothecin (CPT) scaffold were synthesized. Among them, 14-1 demonstrated superior anti-proliferative activity than its precursor 13-1, CPT or their physical mixtures against tested cancer cells, including multidrug-resistant variants, while exhibited moderate cytotoxicity toward human normal cells. Mechanistic studies revealed that 14-1 acted as a glutathione-responsive prodrug, inducing apoptosis by substantially enhancing intracellular uptake of CPT, inhibiting tubulin polymerization, increasing the accumulation of intracellular reactive oxygen species, and initiating a mitochondrion-dependent apoptotic pathway. Moreover, 14-1 notably induced autophagy and suppressed topoisomerase I activity to further promote apoptosis. Importantly, 14-1 displayed potent inhibitory effect on tumor growth in paclitaxel (PTX)-resistant colorectal cancer (HCT-116/PTX) xenograft models without inducing obvious toxicity compared with CPT- or combo-treated group. These results suggest that 14-1 holds promise as a novel candidate for anti-cancer therapy, particularly in PTX-resistant cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Miao Luo
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Qiwen Bai
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Zhentao Yao
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Saiqi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China.
| |
Collapse
|
2
|
Peng CM, Wang SW, Hwang YL, Sun WC, Chiu LP, Liu YT, Lai YW, Lee HY. CuI-mediated synthesis of 1-aryl-5,6,7-trimethoxybenzimidazoles as potent antitubulin agents. RSC Adv 2023; 13:13169-13176. [PMID: 37124006 PMCID: PMC10140669 DOI: 10.1039/d3ra01927f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
In situ CuI-mediated cyclization methodology helped yield benzimidazoles with different substitution manner, such as 1,2-diarylbenzimidazoles (4 and 5) and 1-arylbenzimidazoles (6-15). The result of structure-activity relationship (SAR) study confirmed the significance of the 5,6,7-trimethoxybenzimidazole moiety, and the representative derivatives (8-10) exhibited marked antiproliferative activity against A549, HCT-116, and PC-3 cells; in addition, they are able to inhibit the polymerization of tubulin. Among them, compound 10 inhibited the growth of A549, HCT-116, and PC-3 cells with a mean IC50 value of 0.07 μM, and its IC50 value of tubulin polymerization is 0.26 μM.
Collapse
Affiliation(s)
- Cong-Min Peng
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College New Taipei City Taiwan
- Department of Medicine, MacKay Medical College New Taipei City Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University Kaohsiung Taiwan
| | - Yi-Lin Hwang
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Wen-Chun Sun
- Institute of Biomedical Sciences, MacKay Medical College New Taipei City Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, MacKay Memorial Hospital Taipei Taiwan
| | - Li-Pin Chiu
- Division of General Surgery, Taipei City Hospital Chushing Branch Taipei Taiwan
- General Education Center, University of Taipei Taipei Taiwan
| | - Yi-Ting Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch Taipei Taiwan
- Department of Urology, School of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University Taipei Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University Taipei Taiwan
| |
Collapse
|
3
|
Peng X, Ren Y, Pan W, Liu J, Chen J. Discovery of Novel Acridane-Based Tubulin Polymerization Inhibitors with Anticancer and Potential Immunomodulatory Effects. J Med Chem 2023; 66:627-640. [PMID: 36516438 DOI: 10.1021/acs.jmedchem.2c01566] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of novel acridane-based tubulin polymerization inhibitors were designed, synthesized, and bioevaluated as anticancer agents. The most potent compound NT-6 exhibited high tubulin polymerization inhibitory activity (IC50 = 1.5 μM) and remarkable antiproliferative potency against four cancer cell lines with an average IC50 of 30 nM, better than colchicine and the hit compound 1f (IC50 of 65 and 126 nM, respectively). In addition, NT-6 (10 mg/kg) exerted excellent antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 65.1% without apparent toxicity. Importantly, the combination of NT-6 with a small-molecule PD-L1 inhibitor NP-19 decreased tumor burden significantly (TGI% = 77.6%). Moreover, the combination of NT-6 with NP-19 enhanced the antitumor immune response, mediated by a decrease of PD-L1 expression levels and increased infiltration of antitumor CD8+ effector T cells in tumor tissues. Collectively, NT-6 represents a novel tubulin polymerization inhibitor with immunopotentiating effects.
Collapse
Affiliation(s)
- Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| |
Collapse
|
4
|
Zheng L, Ren R, Sun X, Zou Y, Shi Y, Di B, Niu MM. Discovery of a Dual Tubulin and Poly(ADP-Ribose) Polymerase-1 Inhibitor by Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, and Biological Evaluation. J Med Chem 2021; 64:15702-15715. [PMID: 34670362 DOI: 10.1021/acs.jmedchem.1c00932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dual inhibition of tubulin and poly(ADP-ribose) polymerase-1 (PARP-1) may become an attractive approach for cancer therapy. Here, we discover a dual tubulin/PARP-1 inhibitor (termed as TP-3) using structure-based virtual screening. TP-3 shows strong dual inhibitory effects on both tubulin and PARP-1. Cellular assays reveal that TP-3 shows superior antiproliferative activities against human cancer cells, including breast, liver, ovarian, and cervical cancers. Further studies indicate that TP-3 plays an antitumor role through multiple mechanisms, including the disturbance of the microtubule network and the PARP-1 DNA repairing function, accumulation of DNA double-strand breaks, inhibition of the tube formation, and induction of G2/M cell cycle arrest and apoptosis. In vivo assessment indicates that TP-3 inhibits the growth of MDA-MB-231 xenograft tumors in nude mouse with no notable side effects. These data demonstrate that TP-3 is a dual-targeting, high-efficacy, and low-toxic antitumor agent.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Ren Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Yiru Shi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Indole derivatives (2010-2020) as versatile tubulin inhibitors: synthesis and structure-activity relationships. Future Med Chem 2021; 13:1795-1828. [PMID: 34468201 DOI: 10.4155/fmc-2020-0385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tubulin inhibitors are conjugates that interfere with the dynamic equilibrium of the polymerization and depolymerization of microtubules. Among all the reported conjugates, indole moiety is one of the most significant classes for the development of new drug candidates for cancer therapy. Due to their presence in a wide range of natural as well as synthetic antitubulin agents, indole has become a versatile scaffold in research, and various synthetic and semisynthetic indole-based antitubulin agents have been identified and reported. The present article focuses on the reported indole-based tubulin inhibitors of synthetic origin from last the decade. Synthesis, structure-activity relationships and biological activities of synthetic indole derivatives along with brief updates on their antitubulin activity are presented.
Collapse
|
6
|
Hawash M, Kahraman DC, Cetin-Atalay R, Baytas SN. Induction of Apoptosis in Hepatocellular Carcinoma Cell Lines by Novel Indolylacrylamide Derivatives: Synthesis and Biological Evaluation. Chem Biodivers 2021; 18:e2001037. [PMID: 33713038 DOI: 10.1002/cbdv.202001037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and one of the leading causes of cancer associated death worldwide. This is due to the highly resistant nature of this malignancy and the lack of effective treatment options for advanced stage HCC patients. The hyperactivity of PI3K/Akt and Ras/Raf/MEK/ERK signaling pathways contribute to the cancer progression, survival, motility, and resistance mechanisms, and the interaction of these two pathways are responsible for the regulation of cancer cell growth and development. Therefore, it is vital to design and develop novel therapeutic options for HCC treatment targeting these hyperactive pathways. For this purpose, novel series of trans-indole-3-ylacrylamide derivatives originated from the lead compound, 3-(1H-indole-3-yl)-N-(3,4,5-trimethoxyphenyl)acrylamide, have been synthesized and analyzed for their bioactivity on cancer cells along with the lead compound. Based on the initial screening, the most potent compounds were selected to elucidate their effects on cellular signaling activity of HCC cell lines. Cell cycle analysis, immunofluorescence, and Western blot analysis revealed that lead compound and (E)-N-(4-tert-butylphenyl)-3-(1H-indole-3-yl)acrylamide induced cell cycle arrest at the G2/M phase, enhanced chromatin condensation and PARP-cleavage, addressing induction of apoptotic cell death. Additionally, these compounds decreased the activity of ERK signaling pathway, where phosphorylated ERK1/2 and c-Jun protein levels diminished significantly. Relevant to these findings, the lead compound was able to inhibit tubulin polymerization as well. To conclude, the novel trans-indole-3-ylacrylamide derivatives inhibit one of the critical pathways associated with HCC which results in cell cycle arrest and apoptosis in HCC cell lines.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.,Present address, Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, 06800, Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, 06800, Ankara, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| |
Collapse
|
7
|
Wang H, Ren B, Liu Y, Jiang B, Guo Y, Wei M, Luo L, Kuang X, Qiu M, Lv L, Xu H, Qi R, Yan H, Xu D, Wang Z, Huo CX, Zhu Y, Zhao Y, Wu Y, Qin Z, Su D, Tang T, Wang F, Sun X, Feng Y, Peng H, Wang X, Gao Y, Liu Y, Gong W, Yu F, Liu X, Wang L, Zhou C. Discovery of Pamiparib (BGB-290), a Potent and Selective Poly (ADP-ribose) Polymerase (PARP) Inhibitor in Clinical Development. J Med Chem 2020; 63:15541-15563. [DOI: 10.1021/acs.jmedchem.0c01346] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Ferric Chloride Catalyzed 1,3-Rearrangement of (Phenoxymethyl)heteroarenes to (Heteroarylmethyl)phenols. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Ieronimo G, Palmisano G, Maspero A, Marzorati A, Scapinello L, Masciocchi N, Cravotto G, Barge A, Simonetti M, Ameta KL, Nicholas KM, Penoni A. A novel synthesis of N-hydroxy-3-aroylindoles and 3-aroylindoles. Org Biomol Chem 2019; 16:6853-6859. [PMID: 30065979 DOI: 10.1039/c8ob01471j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A straightforward indole synthesis via annulation of C-nitrosoaromatics with conjugated terminal alkynones was realised achieving a simple, highly regioselective, atom- and step economical access to 3-aroylindoles in moderate to good yields. Further functionalizations of indole scaffolds were investigated and an easy way to JWH-018, a synthetic cannabinoid, was achieved.
Collapse
Affiliation(s)
- Gabriella Ieronimo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100, Como, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li L, Jiang S, Li X, Liu Y, Su J, Chen J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur J Med Chem 2018; 151:482-494. [PMID: 29649743 DOI: 10.1016/j.ejmech.2018.04.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Microtubules (composed of α- and β-tubulin heterodimers) play a pivotal role in mitosis and cell division, and are regarded as an excellent target for chemotherapeutic agents to treat cancer. There are four unique binding sites in tubulin to which taxanes, vinca alkaloids, laulimalide and colchicine bind respectively. While several tubulin inhibitors that bind to the taxane or vinca alkaloid binding sites have been approved by FDA, currently there are no FDA approved tubulin inhibitors targeting the colchicine binding site. Tubulin inhibitors that bind to the colchicine binding site have therapeutic advantages over taxanes and vinca alkaloids, for example, they can be administered orally, have less drug-drug interaction potential, and are less prone to develop multi-drug resistance. Typically, tubulin inhibitors that bind to the colchicine binding site bear the trimethoxyphenyl (TMP) moiety which is essential for interaction with tubulin. Over the last decade, a variety of molecules bearing the TMP moiety have been designed and synthesized as tubulin inhibitors for cancer treatment. In this review, we focus on the TMP analogs that are designed based on CA-4, indole, chalcone, colchicine and natural product scaffolds which are known to interact with the colchicine binding site in tubulin. The challenges and future direction of the TMP based tubulin inhibitors are also discussed in detail.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sibo Jiang
- College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Xiaoxun Li
- Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu 611731, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities. Eur J Med Chem 2018; 143:792-805. [DOI: 10.1016/j.ejmech.2017.11.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/11/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
|
12
|
Hao Y, Peng J, Zhang Y, Chen L, Luo F, Wang C, Qian Z. Tumor Neovasculature-Targeted APRPG-PEG-PDLLA/MPEG-PDLLA Mixed Micelle Loading Combretastatin A-4 for Breast Cancer Therapy. ACS Biomater Sci Eng 2017; 4:1986-1999. [PMID: 33445269 DOI: 10.1021/acsbiomaterials.7b00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Breast cancer has been the first killer among women. In this study, combretastatin A-4 (CA-4) loaded 5-amino acid peptide Ala-Pro-Arg-Pro-Gly (APRPG) modified PEG-PDLLA mixed micelles was developed to target tumor neovasculature for breast cancer therapy. CA-4 is an effective vascular disrupting agent. The APRPG-modified PEG-PDLLA polymer was successfully synthesized and thin-film hydration method was used to prepare APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles. Drug loading capacity (DL), encapsulation efficiency (EE), and the optimized ratio of APRPG-PEG-PDLLA: MPEG-PDLLA for efficient drug loading was investigated. The particle size, zeta potential, morphology, and the crystallographic study were carried out to characterize the micelles. In vitro release study revealed a sustained release of CA-4 from the mixed micelles while compared to free CA-4. Moreover, the cytotoxicity data of blank and drug loaded mixed micelles suggested that the APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles were safe drug carriers and the encapsulated CA-4 remained potent antitumor effect. The cellular uptake study and the in vivo imaging and biodistribution study demonstrated that the APRPG peptide modified mixed micelles has the higher cellular uptake efficiency and could significantly facilitate the accumulation at tumor site. Furthermore, the micelles were slowly extravasated from blood vessels and inhibited embryonic angiogenesis in the transgenic zebrafish model. Consequently, the CA-4 loaded APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles group demonstrated a significant inhibition of tumor growth in 4T1 breast cancer model. In short, the CA-4 loaded APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles might have great potential for breast cancer therapy.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Feng Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| |
Collapse
|
13
|
Patel VK, Rajak H. Synthesis, biological evaluation and molecular docking studies of 2-amino-3,4,5-trimethoxyaroylindole derivatives as novel anticancer agents. Bioorg Med Chem Lett 2016; 26:2115-8. [DOI: 10.1016/j.bmcl.2016.03.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/04/2016] [Accepted: 03/24/2016] [Indexed: 11/25/2022]
|
14
|
Ultrasound-promoted two-step synthesis of 3-arylselenylindoles and 3-arylthioindoles as novel combretastatin A-4 analogues. Sci Rep 2016; 6:23986. [PMID: 27045272 PMCID: PMC4820744 DOI: 10.1038/srep23986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/17/2016] [Indexed: 02/02/2023] Open
Abstract
A series of 3-(3′-hydroxy-4′-methoxyphenyl)selenyl-5,6,7-trimethoxy-1H-indoles and 3-(3′-hydroxy-4′-methoxyphenyl)thio-5,6,7-trimethoxy-1H-indoles were obtained as a new class of combretastatin A-4 (CA-4) analogues via a convenient ultrasound (US)-assisted two-step process involving 3-selenenylation/sulfenylation followed by O-deallylation. With the assistance of US irradiation, both the reaction rates and yields of selenenylation, sulfenylation and O-deallylation could be significantly improved. A comparison of the reaction rates of O-deallylation and ester reduction demonstrated that O-deallylation was more sensitive to US irradiation. Finally, these products were evaluated for their antiproliferative activities, and most of them showed moderate to potent activities against three human cancer cell lines in vitro.
Collapse
|
15
|
Recent developments in tubulin polymerization inhibitors: An overview. Eur J Med Chem 2014; 87:89-124. [DOI: 10.1016/j.ejmech.2014.09.051] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/14/2014] [Indexed: 12/11/2022]
|
16
|
Antimitotic and vascular disrupting agents: 2-Hydroxy-3,4,5-trimethoxybenzophenones. Eur J Med Chem 2014; 77:306-14. [DOI: 10.1016/j.ejmech.2014.02.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/23/2022]
|
17
|
Hadimani MB, MacDonough MT, Ghatak A, Strecker TE, Lopez R, Sriram M, Nguyen BL, Hall JJ, Kessler RJ, Shirali AR, Liu L, Garner CM, Pettit GR, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Synthesis of a 2-aryl-3-aroyl indole salt (OXi8007) resembling combretastatin A-4 with application as a vascular disrupting agent. JOURNAL OF NATURAL PRODUCTS 2013; 76:1668-78. [PMID: 24016002 PMCID: PMC3985392 DOI: 10.1021/np400374w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The natural products colchicine and combretastatin A-4 are potent inhibitors of tubulin assembly, and they have inspired the design and synthesis of a large number of small-molecule, potential anticancer agents. The indole-based molecular scaffold is prominent among these SAR modifications, leading to a rapidly increasing number of agents. The water-soluble phosphate prodrug 33 (OXi8007) of 2-aryl-3-aroylindole-based phenol 8 (OXi8006) was prepared by chemical synthesis and found to be strongly cytotoxic against selected human cancer cell lines (GI₅₀ = 36 nM against DU-145 cells, for example). The free phenol, 8 (OXi8006), was a strong inhibitor (IC₅₀ = 1.1 μM) of tubulin assembly. The corresponding phosphate prodrug 33 (OXi8007) also demonstrated pronounced interference with tumor vasculature in a preliminary in vivo study utilizing a SCID mouse model bearing an orthotopic PC-3 (prostate) tumor as imaged by color Doppler ultrasound. The combination of these results provides evidence that the indole-based phosphate prodrug 33 (OXi8007) functions as a vascular disrupting agent that may prove useful for the treatment of cancer.
Collapse
Affiliation(s)
- Mallinath B. Hadimani
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Matthew T. MacDonough
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Anjan Ghatak
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Tracy E. Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Ramona Lopez
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9058, USA
| | - Madhavi Sriram
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Benson L. Nguyen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - John J. Hall
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Raymond J. Kessler
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Anupama R. Shirali
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9058, USA
| | - Charles M. Garner
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - George R. Pettit
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604, USA
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - David J. Chaplin
- Oxigene Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California, 94080, USA
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9058, USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas, 76798-7348, USA
- Corresponding Author: Tel: 1-254-710-4117. Fax: 1-254-710-4272.
| |
Collapse
|