1
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Sai Varshini M, Reddy RA, Krishnamurthy PT, Selvaraj D. Rational Design of Dual Inhibitors for Alzheimer's Disease: Insights from Computational Screening of BACE1 and GSK-3β. Curr Comput Aided Drug Des 2024; 20:998-1012. [PMID: 37921183 DOI: 10.2174/0115734099270256231018072007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most concerned neurodegenerative disorders across the world characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to cognitive decline and memory loss. Targeting key pathways involved in AD like Aβ and NFT pathways, are crucial for the development of effective therapeutic strategies. In this study, we aimed to identify and establish promising dual inhibitors targeting BACE1 and GSK-3β, two proteins implicated in Aβ and NFT formation respectively. METHODS We have used molecular docking, ADME property analysis, and MMGBSA calculations for the identification of hit molecules and further evaluation of binding affinity, drug-like properties, and stability against BACE1 and GSK-3β. RESULTS Our results demonstrated strong binding affinities of ZINC000034853956 towards the active sites of both proteins, with favorable interactions involving key residues crucial for inhibitory activity. Additionally, ZINC000034853956 exhibited favorable drug-like properties. MD simulations revealed the stable binding of ZINC000034853956 to both BACE1 and GSK-3β over a 50 ns period, with consistent ligand-protein interactions, such as hydrogen bonding and hydrophobic contacts. These findings highlight the potential of ZINC000034853956 as a promising candidate for AD treatment, acting as a dual inhibitor targeting both BACE1 and GSK-3β. Overall, our study provides valuable insights into the potential of ZINC000034853956 as a dual inhibitor for AD. The strong binding affinity, favorable drug-like properties, and stability observed in MD simulations support its suitability for further optimization and preclinical studies. CONCLUSION Further investigations are warranted to elucidate the precise molecular mechanisms and therapeutic benefits of ZINC000034853956. Our findings offer hope for the development of novel therapeutic interventions targeting crucial pathways involved in AD neurodegeneration.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| |
Collapse
|
3
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhang Y, Feng J, Ou C, Zhou X, Liao Y. AQP4 mitigates chronic neuropathic pain-induced cognitive impairment in mice. Behav Brain Res 2023; 440:114282. [PMID: 36596395 DOI: 10.1016/j.bbr.2022.114282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Neuropathic pain is a risk factor for cognitive defects. The ubiquitous expression of AQP4 in astrocytes throughout the central nervous system is altered in the neurodegenerative disease. However, the exact role of AQP4 in cognitive impairment induced by chronic neuropathic pain remains unclear. In this study, we discovered that AQP4 protein and mRNA expression decreased time-dependently in the model of chronic neuropathic pain-induced cognitive disorder. AQP4 overexpression recovered mice from cognitive impairment. Furthermore, the concentration of Aβ1-42 in the serum and hippocampus reduced in mice with AQP4 overexpression adeno-associated virus injection. In conclusion, AQP4 in astrocytes is important in mitigating cognitive impairment caused by chronic neuropathic pain.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Yonghong Liao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer's disease (AD): A review. Bioorg Med Chem 2022; 74:117047. [DOI: 10.1016/j.bmc.2022.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
7
|
|
8
|
Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A Key Regulator in Alzheimer's Disease Progression and Current Development of its Inhibitors. Curr Neuropharmacol 2022; 20:1174-1193. [PMID: 34852746 PMCID: PMC9886827 DOI: 10.2174/1570159x19666211201094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD. OBJECTIVE This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD. METHODS We have searched and collected the relevant quality work from PubMed using the following keywords "BACE1", BACE2", "inhibitors", and "Alzheimer's disease". In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors. RESULTS In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression. CONCLUSION BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.
Collapse
Affiliation(s)
| | - Ankush Vardhaman Bansoad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Rakesh Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, ,Address correspondence to this author at the Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, India, 226002; E-mail: ,
| |
Collapse
|
9
|
Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer's disease from bench to bedside. Mol Neurobiol 2022; 59:4384-4404. [PMID: 35545730 DOI: 10.1007/s12035-022-02859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and cognitive impairment; yet, there is currently no treatment. A buildup of Aβ, tau protein phosphorylation, oxidative stress, and inflammation in AD is pathogenic. The accumulation of amyloid-beta (Aβ) peptides in these neurocognitive areas is a significant characteristic of the disease. Therefore, inhibiting Aβ peptide aggregation has been proposed as the critical therapeutic approach for AD treatment. Resveratrol has been demonstrated in multiple studies to have a neuroprotective, anti-inflammatory, and antioxidant characteristic and the ability to minimize Aβ peptides aggregation and toxicity in the hippocampus of Alzheimer's patients, stimulating neurogenesis and inhibiting hippocampal degeneration. Furthermore, resveratrol's antioxidant effect promotes neuronal development by activating the silent information regulator-1 (SIRT1), which can protect against the detrimental effects of oxidative stress. Resveratrol-induced SIRT1 activation is becoming more crucial in developing novel therapeutic options for AD and other diseases that have neurodegenerative characteristics. This review highlighted a better knowledge of resveratrol's mechanism of action and its promising therapeutic efficacy in treating AD. We also highlighted the therapeutic potential of resveratrol as an AD therapeutic agent, which is effective against neurodegenerative disorders.
Collapse
|
10
|
do Bomfim MR, Barbosa DB, de Carvalho PB, da Silva AM, de Oliveira TA, Taranto AG, Leite FHA. Identification of potential human beta-secretase 1 inhibitors by hierarchical virtual screening and molecular dynamics. J Biomol Struct Dyn 2022:1-15. [DOI: 10.1080/07391102.2022.2069155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mayra Ramos do Bomfim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Deyse Brito Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Alisson Marques da Silva
- Departamento de Informática, Gestão e Design, Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis, Brazil
| | - Tiago Alves de Oliveira
- Departamento de Informática, Gestão e Design, Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis, Brazil
- Departamento de Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Alex Gutterres Taranto
- Departamento de Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
- Faculty of Computing, University of Latvia (UL), Riga, Latvia
| | - Franco Henrique Andrade Leite
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
11
|
Rombouts FJR, Hsiao CC, Bache S, De Cleyn M, Heckmann P, Leenaerts J, Martinéz-Lamenca C, Van Brandt S, Peschiulli A, Vos A, Gijsen HJM. Modulating physicochemical properties of tetrahydropyridine-2-amine BACE1 inhibitors with electron-withdrawing groups: A systematic study. Eur J Med Chem 2022; 228:114028. [PMID: 34920170 DOI: 10.1016/j.ejmech.2021.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022]
Abstract
A common challenge for medicinal chemists is to reduce the pKa of strongly basic groups' conjugate acids into a range that preserves the desired effects, usually potency and/or solubility, but avoids undesired effects like high volume of distribution (Vd), limited membrane permeation, and off-target binding to, notably, the hERG channel and monoamine receptors. We faced this challenge with a 3,4,5,6-tetrahydropyridine-2-amine scaffold harboring an amidine, a key structural component of potential inhibitors of BACE1, the rate-limiting enzyme in the production of Aβ species that make up amyloid plaques in Alzheimer's disease. In our endeavor to balance potency with desirable properties to achieve brain penetration, we introduced a diverse set of groups in beta position of the amidine that modulate logD, PSA and pKa. Given the synthetic challenge to prepare these highly functionalized warheads, we first developed a design flow including predicted physicochemical parameters which allowed us to select only the most promising candidates for synthesis. For this we evaluated a set of commercial packages to predict physicochemical properties, which can guide medicinal chemists in their endeavors to modulate pKa values of amidine and amine bases.
Collapse
Affiliation(s)
| | - Chien-Chi Hsiao
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Solène Bache
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Michel De Cleyn
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Pauline Heckmann
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Jos Leenaerts
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | | | - Sven Van Brandt
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Aldo Peschiulli
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Ann Vos
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Harrie J M Gijsen
- Janssen Research & Development, Turnhoutseweg 30, B-2340, Beerse, Belgium
| |
Collapse
|
12
|
Shcherbakov NV, Titov GD, Chikunova EI, Filippov IP, Rostovskii NV, Kukushkin VY, Dubovtsev AY. Modular approach to non-aromatic and aromatic pyrroles through gold-catalyzed [3 + 2] cycloaddition of 2 H-azirines and ynamides. Org Chem Front 2022. [DOI: 10.1039/d2qo01105k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The developed modular approach to hard-to-reach non-aromatic 3H- and 2H-pyrroles is based on the integration of 2H-azirines and ynamides.
Collapse
Affiliation(s)
- Nikolay V. Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Gleb D. Titov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Elena I. Chikunova
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Ilya P. Filippov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Nikolai V. Rostovskii
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Laboratory of Crystal Engineering of Functional Materials, South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
13
|
Henderson JA, Shen J. Exploring the pH- and Ligand-Dependent Flap Dynamics of Malarial Plasmepsin II. J Chem Inf Model 2021; 62:150-158. [PMID: 34964641 DOI: 10.1021/acs.jcim.1c01180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria remains a global health threat─over 400,000 deaths occurred in 2019. Plasmepsins are promising targets of antimalarial therapeutics; however, no inhibitors have reached the clinic. To fuel the progress, a detailed understanding of the pH- and ligand-dependent conformational dynamics of plasmepsins is needed. Here we present the continuous constant pH molecular dynamics study of the prototypical plasmepsin II and its complexed form with a substrate analogue. The simulations revealed that the catalytic dyads D34 and D214 are highly coupled in the apo protein and that the pepstatin binding enhances the difference in proton affinity, making D34 the general base and D214 the general acid. The simulations showed that the flap adopts an open state regardless of pH; however, upon pepstatin binding the flap can close or open depending on the protonation state of D214. These and other data are discussed and compared with the off-targets human cathepsin D and renin. This study lays the groundwork for a systematic investigation of pH- and ligand-modulated dynamics of the entire family of plasmepsins to help design more potent and selective inhibitors.
Collapse
Affiliation(s)
- Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
14
|
Machauer R, Lueoend R, Hurth K, Veenstra SJ, Rueeger H, Voegtle M, Tintelnot-Blomley M, Rondeau JM, Jacobson LH, Laue G, Beltz K, Neumann U. Discovery of Umibecestat (CNP520): A Potent, Selective, and Efficacious β-Secretase (BACE1) Inhibitor for the Prevention of Alzheimer's Disease. J Med Chem 2021; 64:15262-15279. [PMID: 34648711 DOI: 10.1021/acs.jmedchem.1c01300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After identification of lead compound 6, 5-amino-1,4-oxazine BACE1 inhibitors were optimized in order to improve potency, brain penetration, and metabolic stability. Insertion of a methyl and a trifluoromethyl group at the 6-position of the 5-amino-1,4-oxazine led to 8 (NB-360), an inhibitor with a pKa of 7.1, a very low P-glycoprotein efflux ratio, and excellent pharmacological profile, enabling high central nervous system penetration and exposure. Fur color changes observed with NB-360 in efficacy studies in preclinical animal models triggered further optimization of the series. Herein, we describe the steps leading to the discovery of 3-chloro-5-trifluoromethyl-pyridine-2-carboxylic acid [6-((3R,6R)-5-amino-3,6-dimethyl-6-trifluoromethyl-3,6-dihydro-2H-[1,4]oxazin-3-yl)-5-fluoro-pyridin-2-yl]amide 15 (CNP520, umibecestat), an inhibitor with superior BACE1/BACE2 selectivity and pharmacokinetics. CNP520 reduced significantly Aβ levels in mice and rats in acute and chronic treatment regimens without any side effects and thus qualified for Alzheimer's disease prevention studies in the clinic.
Collapse
Affiliation(s)
- Rainer Machauer
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Rainer Lueoend
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Konstanze Hurth
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Siem J Veenstra
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Heinrich Rueeger
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Markus Voegtle
- Global Discovery Chemistry, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | | | - Jean-Michel Rondeau
- Chemical Biology and Therapeutics, Structural Biology Platform, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Laura H Jacobson
- Department of Neuroscience, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Grit Laue
- Pharmacokinetic-Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Karen Beltz
- Pharmacokinetic-Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - Ulf Neumann
- Department of Neuroscience, Novartis Pharma AG, CH-4056 Basel, Switzerland
| |
Collapse
|
15
|
Zhao AX, Horsfall LE, Hulme AN. New Methods for the Synthesis of Spirocyclic Cephalosporin Analogues. Molecules 2021; 26:6035. [PMID: 34641579 PMCID: PMC8512572 DOI: 10.3390/molecules26196035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Spiro compounds provide attractive targets in drug discovery due to their inherent three-dimensional structures, which enhance protein interactions, aid solubility and facilitate molecular modelling. However, synthetic methodology for the spiro-functionalisation of important classes of penicillin and cephalosporin β-lactam antibiotics is comparatively limited. We report a novel method for the generation of spiro-cephalosporin compounds through a Michael-type addition to the dihydrothiazine ring. Coupling of a range of catechols is achieved under mildly basic conditions (K2CO3, DMF), giving the stereoselective formation of spiro-cephalosporins (d.r. 14:1 to 8:1) in moderate to good yields (28-65%).
Collapse
Affiliation(s)
- Alan X. Zhao
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| | - Louise E. Horsfall
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Science, The University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK;
| | - Alison N. Hulme
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| |
Collapse
|
16
|
Singh R, Ganeshpurkar A, Ghosh P, Pokle AV, Kumar D, Singh RB, Singh SK, Kumar A. Classification of beta-site amyloid precursor protein cleaving enzyme 1 inhibitors by using machine learning methods. Chem Biol Drug Des 2021; 98:1079-1097. [PMID: 34592057 DOI: 10.1111/cbdd.13965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a transmembrane aspartyl-protease, that cleaves amyloid precursor protein (APP) at the β-site. The sequential proteolytic cleavage of APP, first by β-secretase and then by γ-secretase complex, leads to the production and release of amyloid-β peptide, a pathological hallmark of Alzheimer's disease (AD). BACE1 inhibitors are reported to possess considerable potential in decreasing the level of amyloid-β in brain and preventing the progression of AD. A classification study has been conducted on 3536 diverse BACE1 inhibitors, obtained from Binding DB database, by extracting two types of descriptors, that is molecular property (Mordred) and fingerprints (Pubchem, MACCS and KRFP). Furthermore, based on the descriptors, various machine learning algorithms such as Naïve Bayesian (NB), nearest known neighbours (kNN), support vector machine (SVM), random forest (RF) and gradient-boosted algorithms (XGB) were applied to develop classification models. The performance of models was evaluated by using accuracy, precision, recall and F1 score of test set. The best NB, kNN, SVM, RF and XGB classifiers had F1 score of 0.74, 0.85, 0.86, 0.87 and 0.87, respectively. The diverse 3536 BACE1 inhibitors were clustered into 11 subsets, and the structural features of each subset were evaluated. The important fragments present in active and inactive compounds were also identified. The model developed in the study would serve as a valuable tool for the designing of BACE1 inhibitors, and also in virtual screening of molecules to identify these.
Collapse
Affiliation(s)
- Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | | | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
17
|
|
18
|
Shah H, Patel A, Parikh V, Nagani A, Bhimani B, Shah U, Bambharoliya T. The β-Secretase Enzyme BACE1: A Biochemical Enigma for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 19:184-194. [PMID: 32452328 DOI: 10.2174/1871527319666200526144141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023]
Abstract
Beta site amyloid precursor protein cleaving enzyme 1 (BACE1) is a rational target in Alzheimer's Disease (AD) drug development due to its role in amyloidogenic cleavage of Amyloid Precursor Protein (APP) in generating Amyloid β (Aβ). This β-secretase cleaves not only Amyloid Precursor Protein (APP) and its homologues, but also small series of substrates including neuregulin and β subunit of voltage-gated sodium channel that play a very important role in the development and normal function of the brain. Moreover, BACE1 is modulated at the post-translational level by several factors that are associated with both physiological and pathological functions. Since the discovery of BACE1 over a decade ago, medicinal chemistry and pharmacokinetics of BACE1 small molecule inhibitors have proven challenging for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hirak Shah
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Vruti Parikh
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Afzal Nagani
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Bhargav Bhimani
- Piramal Discovery Solution, Pharmaceutical Special Economic Zone, Ahmedabad 382213, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Tushar Bambharoliya
- Pharmaceutical Polymer Technology, North Carolina State University, North Carolina, NC, United States
| |
Collapse
|
19
|
Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2021; 13:273-294. [PMID: 32321414 DOI: 10.2174/1874467213666200422090135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. OBJECTIVE Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. METHODS We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were "Alzheimer's disease" or "dementia" and "medicine" or "drug" or "treatment" and "clinical trials" and "interventions". Manuscripts that met the objective of this study were included for further evaluations. RESULTS Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. CONCLUSION The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Ugbaja S, Lawal I, Kumalo H, Lawal M. Alzheimer's Disease and β-Secretase Inhibition: An Update With a Focus on Computer-Aided Inhibitor Design. Curr Drug Targets 2021; 23:266-285. [PMID: 34370634 DOI: 10.2174/1389450122666210809100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of β-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHOD We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION Researchers have employed computational methodologies to unravel potential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantitative structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechanics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational framework for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial compounds, are available in the literature. CONCLUSION The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor design. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and blood-brain barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strategy. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.
Collapse
Affiliation(s)
- Samuel Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Isiaka Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, Saudi Arabia
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| |
Collapse
|
21
|
Chen J, Zhang S, Wang W, Sun H, Zhang Q, Liu X. Binding of Inhibitors to BACE1 Affected by pH-Dependent Protonation: An Exploration from Multiple Replica Gaussian Accelerated Molecular Dynamics and MM-GBSA Calculations. ACS Chem Neurosci 2021; 12:2591-2607. [PMID: 34185514 DOI: 10.1021/acschemneuro.0c00813] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To date, inhibiting the activity of β-amyloid cleaving enzyme 1 (BACE1) has been considered an efficient approach for treating Alzheimer's disease (AD). In the current work, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations and the molecular mechanics general Born surface area (MM-GBSA) method were combined to investigate the effect of pH-dependent protonation on the binding of the inhibitors CS9, C6U, and 6WE to BACE1. Dynamic analyses based on the MR-GaMD trajectory show that pH-dependent protonation strongly affects the structural flexibility, correlated motions, and dynamic behavior of inhibitor-bound BACE1. According to the constructed free energy profiles, in the protonated state at low pH, inhibitor-bound BACE1 tends to populate at more conformations than in high pH. The binding free energies calculated by MM-GBSA suggest that inhibitors possess stronger binding abilities under the protonation conditions at high pH than under the protonation conditions at low pH. Moreover, pH-dependent protonation exerts a significant effect on the hydrogen bonding interactions of CS9, C6U, and 6WE to BACE1, which correspondingly alters the binding abilities of the three inhibitors to BACE1. Furthermore, in different protonated environments, three inhibitors share common interaction clusters and similar binding sites in BACE1, which are reliably used as efficient targets for the design of potent inhibitors of BACE1.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
22
|
Rueeger H, Lueoend R, Machauer R, Veenstra SJ, Holzer P, Hurth K, Voegtle M, Frederiksen M, Rondeau JM, Tintelnot-Blomley M, Jacobson LH, Staufenbiel M, Laue G, Neumann U. Synthesis of the Potent, Selective, and Efficacious β-Secretase (BACE1) Inhibitor NB-360. J Med Chem 2021; 64:4677-4696. [PMID: 33844524 DOI: 10.1021/acs.jmedchem.0c02143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Starting from lead compound 4, the 1,4-oxazine headgroup was optimized to improve potency and brain penetration. Focusing at the 6-position of the 5-amino-1,4-oxazine, the insertion of a Me and a CF3 group delivered an excellent pharmacological profile with a pKa of 7.1 and a very low P-gp efflux ratio enabling high central nervous system (CNS) penetration and exposure. Various synthetic routes to access BACE1 inhibitors bearing a 5-amino-6-methyl-6-(trifluoromethyl)-1,4-oxazine headgroup were investigated. Subsequent optimization of the P3 fragment provided the highly potent N-(3-((3R,6R)-5-amino-3,6-dimethyl-6-(trifluoromethyl)-3,6-dihydro-2H-1,4-oxazin-3-yl)-4-fluorophenyl)-5-cyano-3-methylpicolinamide 54 (NB-360), able to reduce significantly Aβ levels in mice, rats, and dogs in acute and chronic treatment regimens.
Collapse
|
23
|
Structure-Based Approaches to Improving Selectivity through Utilizing Explicit Water Molecules: Discovery of Selective β-Secretase (BACE1) Inhibitors over BACE2. J Med Chem 2021; 64:3075-3085. [PMID: 33719429 DOI: 10.1021/acs.jmedchem.0c01858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACE1 is an attractive target for disease-modifying treatment of Alzheimer's disease. BACE2, having high homology around the catalytic site, poses a critical challenge to identifying selective BACE1 inhibitors. Recent evidence indicated that BACE2 has various roles in peripheral tissues and the brain, and therefore, the chronic use of nonselective inhibitors may cause side effects derived from BACE2 inhibition. Crystallographic analysis of the nonselective inhibitor verubecestat identified explicit water molecules with different levels of free energy in the S2' pocket. Structure-based design targeting them enabled the identification of propynyl oxazine 3 with improved selectivity. Further optimization efforts led to the discovery of compound 6 with high selectivity. The cocrystal structures of 7, a close analogue of 6, bound to BACE1 and BACE2 confirmed that one of the explicit water molecules is displaced by the propynyl group, suggesting that the difference in the relative water displacement cost may contribute to the improved selectivity.
Collapse
|
24
|
Koriyama Y, Hori A, Ito H, Yonezawa S, Baba Y, Tanimoto N, Ueno T, Yamamoto S, Yamamoto T, Asada N, Morimoto K, Einaru S, Sakai K, Kanazu T, Matsuda A, Yamaguchi Y, Oguma T, Timmers M, Tritsmans L, Kusakabe KI, Kato A, Sakaguchi G. Discovery of Atabecestat (JNJ-54861911): A Thiazine-Based β-Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor Advanced to the Phase 2b/3 EARLY Clinical Trial. J Med Chem 2021; 64:1873-1888. [PMID: 33588527 DOI: 10.1021/acs.jmedchem.0c01917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Accumulation of amyloid β peptides (Aβ) is thought to be one of the causal factors of Alzheimer's disease (AD). The aspartyl protease β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting protease for Aβ production, and therefore, BACE1 inhibition is a promising therapeutic approach for the treatment of AD. Starting with a dihydro-1,3-thiazine-based lead, Compound J, we discovered atabecestat 1 (JNJ-54861911) as a centrally efficacious BACE1 inhibitor that was advanced into the EARLY Phase 2b/3 clinical trial for the treatment of preclinical AD patients. Compound 1 demonstrated robust and dose-dependent Aβ reduction and showed sufficient safety margins in preclinical models. The potential of reactive metabolite formation was evaluated in a covalent binding study to assess its irreversible binding to human hepatocytes. Unfortunately, the EARLY trial was discontinued due to significant elevation of liver enzymes, and subsequent analysis of the clinical outcomes showed dose-related cognitive worsening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Maarten Timmers
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Luc Tritsmans
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | | | |
Collapse
|
25
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Peng H, Zhang Y, Deng G, Deng H. Silver( i)-catalyzed tandem reaction of enynones and 4-alkynyl isoxazoles: regioselective synthesis of highly functionalized 4 H-furan[3,4- c]pyrroles. Org Chem Front 2021. [DOI: 10.1039/d1qo00510c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work reports a silver(i)-catalyzed tandem reaction of enynones with 4-alkynyl isoxazoles.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Hongmei Deng
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
27
|
Hrabinova M, Pejchal J, Kucera T, Jun D, Schmidt M, Soukup O. Is It the Twilight of BACE1 Inhibitors? Curr Neuropharmacol 2021; 19:61-77. [PMID: 32359337 PMCID: PMC7903497 DOI: 10.2174/1570159x18666200503023323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
β-secretase (BACE1) has been regarded as a prime target for the development of amyloid beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hypothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are classified into four generations. Those that underwent clinical trials displayed adverse effects, including weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. We still believe that drugs targeting BACE1 may still hide some potential, but a different approach to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational modification should now be followed.
Collapse
Affiliation(s)
| | - Jaroslav Pejchal
- Address correspondence to this author at the Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Hradec Kralove, Czech Republic;E-mail:
| | | | | | | | | |
Collapse
|
28
|
Ma S, Henderson JA, Shen J. Exploring the pH-Dependent Structure-Dynamics-Function Relationship of Human Renin. J Chem Inf Model 2020; 61:400-407. [PMID: 33356221 DOI: 10.1021/acs.jcim.0c01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Renin is a pepsin-like aspartyl protease and an important drug target for the treatment of hypertension; despite three decades' research, its pH-dependent structure-function relationship remains poorly understood. Here, we employed continuous constant pH molecular dynamics (CpHMD) simulations to decipher the acid/base roles of renin's catalytic dyad and the conformational dynamics of the flap, which is a common structural feature among aspartyl proteases. The calculated pKa's suggest that catalytic Asp38 and Asp226 serve as the general base and acid, respectively, in agreement with experiment and supporting the hypothesis that renin's neutral optimum pH is due to the substrate-induced pKa shifts of the aspartic dyad. The CpHMD data confirmed our previous hypothesis that hydrogen bond formation is the major determinant of the dyad pKa order. Additionally, our simulations showed that renin's flap remains open regardless of pH, although a Tyr-inhibited state is occasionally formed above pH 5. These findings are discussed in comparison to the related aspartyl proteases, including β-secretases 1 and 2, cathepsin D, and plasmepsin II. Our work represents a first step toward a systematic understanding of the pH-dependent structure-dynamics-function relationships of pepsin-like aspartyl proteases that play important roles in biology and human disease states.
Collapse
Affiliation(s)
- Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
29
|
Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats. Mol Biol Rep 2020; 47:5737-5745. [PMID: 32648077 DOI: 10.1007/s11033-020-05629-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023]
Abstract
Recent studies have showed that the long non-coding RNAs (lncRNAs) expression is dysregulated in different neurodegenerative disorders like Alzheimer's disease (AD). In the present study, the effects of memantine on the level of Bace1-as and Bace1 genes' expression in streptozotocin (STZ)-induced Alzheimer's and memantine treated rats were investigated. The male Wistar rats were randomly divided into four groups: 1-Normal control, 2-Sham-operated control, 3- Alzheimer'scontrol rats (ICV-STZ), 4-Experimental group rats treated by memantine in a dose of 30 mg/kg/day for 28 days in ICV-STZ rats. The expression of Bace1-as and Bace1 genes was measured by quantitative-PCR in the brain and blood tissues. ELISA was used to analyze Bace1 and Aβ proteins. Expression of Bace1-as was significantly increased in the brain and blood tissues of the experimental group (p = 0.032 and p = 0.034, respectively). The expression of Bace1 gene showed no significant changes in the brain. Furthermore, the ELISA analysis revealed that Bace1 protein was significantly increased in the plasma of the Alzheimer's control group (p = 0.000) and in the brain tissue of the experimental group (p = 0.000). Additionally, Aβ levels had no significant changes between all groups studied. The Bace1 protein may be used as a prognostic biomarker in plasma, or before using memantine as a treatment. Furthermore, Bace1-as gene expression may play a role in monitoring the progression of AD.
Collapse
|
30
|
Biological evaluation and interaction mechanism of beta-site APP cleaving enzyme 1 inhibitory pentapeptide from egg albumin. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Gupta SP, Patil VM. Recent Studies on Design and Development of Drugs Against Alzheimer's Disease (AD) Based on Inhibition of BACE-1 and Other AD-causative Agents. Curr Top Med Chem 2020; 20:1195-1213. [PMID: 32297584 DOI: 10.2174/1568026620666200416091623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the neurodegenerative diseases and has been hypothesized to be a protein misfolding disease. In the generation of AD, β-secretase, γ-secretase, and tau protein play an important role. A literature search reflects ever increasing interest in the design and development of anti-AD drugs targeting β-secretase, γ-secretase, and tau protein. OBJECTIVE The objective is to explore the structural aspects and role of β-secretase, γ-secretase, and tau protein in AD and the efforts made to exploit them for the design of effective anti-AD drugs. METHODS The manuscript covers the recent studies on design and development of anti-AD drugs exploiting amyloid and cholinergic hypotheses. RESULTS Based on amyloid and cholinergic hypotheses, effective anti-AD drugs have been searched out in which non-peptidic BACE1 inhibitors have been most prominent. CONCLUSION Further exploitation of the structural aspects and the inhibition mechanism for β-secretase, γ-secretase, and tau protein and the use of cholinergic hypothesis may lead still more potent anti-AD drugs.
Collapse
Affiliation(s)
- Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, India
| | - Vaishali M Patil
- Computer Aided Drug Design Lab, Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad-201206, Uttar Pradesh, India
| |
Collapse
|
32
|
Peschiulli A, Oehlrich D, Rombouts F, Vos A, Gijsen HJM. 3,3-Difluoro-3,4,5,6-tetrahydropyridin-2-amines: Potent and permeable BACE-1 inhibitors. Bioorg Med Chem Lett 2020; 30:126999. [DOI: 10.1016/j.bmcl.2020.126999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022]
|
33
|
Coimbra JRM, Baptista SJ, Dinis TCP, Silva MMC, Moreira PI, Santos AE, Salvador JAR. Combining Virtual Screening Protocol and In Vitro Evaluation towards the Discovery of BACE1 Inhibitors. Biomolecules 2020; 10:biom10040535. [PMID: 32244832 PMCID: PMC7226079 DOI: 10.3390/biom10040535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The treatment options for a patient diagnosed with Alzheimer’s disease (AD) are currently limited. The cerebral accumulation of amyloid-β (Aβ) is a critical molecular event in the pathogenesis of AD. When the amyloidogenic β-secretase (BACE1) is inhibited, the production of Aβ peptide is reduced. Henceforth, the main goal of this study is the discovery of new small bioactive molecules that potentially reach the brain and inhibit BACE1. The work was conducted by a customized molecular modelling protocol, including pharmacophore-based and molecular docking-based virtual screening (VS). Structure-based (SB) and ligand-based (LB) pharmacophore models were designed to accurately screen several drug-like compound databases. The retrieved hits were subjected to molecular docking and in silico filtered to predict their ability to cross the blood–brain barrier (BBB). Additionally, 34 high-scoring compounds structurally distinct from known BACE1 inhibitors were selected for in vitro screening assay, which resulted in 13 novel hit-compounds for this relevant therapeutic target. This study disclosed new BACE1 inhibitors, proving the utility of combining computational and in vitro approaches for effectively predicting anti-BACE1 agents in the early drug discovery process.
Collapse
Affiliation(s)
- Judite R. M. Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
| | - Salete J. Baptista
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Chem4Pharma, Edifício IPN Incubadora, 3030-199 Coimbra, Portugal
| | - Teresa C. P. Dinis
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria M. C. Silva
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
| | - Paula I. Moreira
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E. Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.R.M.C.); (M.M.C.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal; (S.J.B.); (T.C.P.D.); (P.I.M.); (A.E.S.)
- Correspondence: ; Tel.: +351-239-488-479
| |
Collapse
|
34
|
Jagtap AD, Kondekar NB, Hung PY, Hsieh CE, Yang CR, Chen GS, Chern JW. 4-Substituted 2-amino-3,4-dihydroquinazolines with a 3-hairpin turn side chain as novel inhibitors of BACE-1. Bioorg Chem 2020; 95:103135. [PMID: 31923631 DOI: 10.1016/j.bioorg.2019.103135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022]
Abstract
Herein, we report the identification, design, and synthesis of a series of 4-substituted 2-amino-3,4-dihydroquinazolines with hairpin turn side chains as novel inhibitors of BACE-1. The dihydroquinazoline derivatives were rationally designed by modifying the amide group and relocating the α -hydrophobic substituent on the hairpin turn side chain of lead compound 2 to the C4-position on the 3,4-dihydroquinazoline scaffold to facilitate interactions with the S1, S2 and S1' subsites of BACE-1. Among these derivatives, two compounds exhibited potent BACE-1 inhibitory activity: 4-methyl-substituted (22a, BACE-1 CFA IC50 = 0.38 μM; BACE-1 WCA IC50 = 0.14 μM) and 4-cyclohexylmethyl-substituted (22b, BACE-1 CFA IC50 = 0.49 μM; BACE-1 WCA IC50 = 0.14 μM) 2-amino-3,4-dihydroquinazoline, each bearing a side chain of N-cyclohexyl-N-((1-methyl-1H-pyrazol-4-yl)methyl amide. The results suggest that the structural modifications maintain the hairpin turn topology similar to that of compound 2 and provide an additional interaction with the S2 subsite.
Collapse
Affiliation(s)
- Ajit Dhananjay Jagtap
- School of Pharmacy, College of Medicine and Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, Lin Sen South Road, Taipei 10050, Taiwan; AnnJi Pharmaceutical Co., Ltd., 18, Siyuan Street, Taipei 10087, Taiwan
| | - Nagendra B Kondekar
- School of Pharmacy, College of Medicine and Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, Lin Sen South Road, Taipei 10050, Taiwan
| | - Pei-Yun Hung
- AnnJi Pharmaceutical Co., Ltd., 18, Siyuan Street, Taipei 10087, Taiwan
| | - Chen-En Hsieh
- Department of Applied Chemistry, Providence University, No. 200, Section 7, Taiwan Boulevard, Taichung 43301, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine and Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, Lin Sen South Road, Taipei 10050, Taiwan
| | - Grace Shiahuy Chen
- Department of Applied Chemistry, Providence University, No. 200, Section 7, Taiwan Boulevard, Taichung 43301, Taiwan.
| | - Ji-Wang Chern
- School of Pharmacy, College of Medicine and Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, Lin Sen South Road, Taipei 10050, Taiwan.
| |
Collapse
|
35
|
Discovery of a series of selective and cell permeable beta-secretase (BACE1) inhibitors by fragment linking with the assistance of STD-NMR. Bioorg Chem 2019; 92:103253. [DOI: 10.1016/j.bioorg.2019.103253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/27/2019] [Accepted: 09/04/2019] [Indexed: 11/23/2022]
|
36
|
Molecular insights into the inhibitory mechanism of bi-functional bis-tryptoline triazole against β-secretase (BACE1) enzyme. Amino Acids 2019; 51:1593-1607. [PMID: 31654211 DOI: 10.1007/s00726-019-02797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
The β-site amyloid precursor protein-cleaving enzyme 1 (β-secretase, BACE1) is involved in the formation of amyloid-β (Aβ) peptide that aggregates into soluble oligomers, amyloid fibrils, and plaques responsible for the neurodegeneration in Alzheimer disease (AD). BACE1 is one of the prime therapeutic targets for the design of inhibitors against AD as BACE1 participate in the rate-limiting step in Aβ production. Jiaranaikulwanitch et al. reported bis-tryptoline triazole (BTT) compound as a potent inhibitor against BACE1, Aβ aggregation as well as possessing metal chelation and antioxidant activity. However, the molecular mechanism of BACE1 inhibition by BTT remains unclear. Thus, molecular docking and molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of BTT against BACE1. MD simulations highlight that BTT interact with catalytic aspartic dyad residues (Asp32 and Asp228) and active pocket residues of BACE1. The hydrogen-bond interactions, hydrophobic contacts, and π-π stacking interactions of BTT with flap residues (Val67-Asp77) of BACE1 confine the movement of the flap and help to achieve closed (non-active) conformation. The PCA analysis highlights lower conformational fluctuations for BACE1-BTT complex, which suggests enhanced conformational stability in comparison to apo-BACE1. The results of the present study provide key insights into the underlying inhibitory mechanism of BTT against BACE1 and will be helpful for the rational design of novel inhibitors with enhanced potency against BACE1.
Collapse
|
37
|
Dorababu A. Critical evaluation of current Alzheimer's drug discovery (2018-19) & futuristic Alzheimer drug model approach. Bioorg Chem 2019; 93:103299. [PMID: 31586701 DOI: 10.1016/j.bioorg.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease responsible for death of millions of people worldwide is a progressive clinical disorder which causes neurons to degenerate and ultimately die. It is one of the common causes of dementia wherein a person's incapability to independently think, behave and decline in social skills can be quoted as major symptoms. However the early signs include the simple non-clinical symptoms such as forgetting recent events and conversations. Onset of these symptoms leads to worsened conditions wherein the AD patient suffers severe memory impairment and eventually becomes unable to work out everyday tasks. Even though there is no complete cure for AD, rigorous research has been going on to reduce the progress of AD. Currently, a very few clinical drugs are prevailing for AD treatment. So this is the need of hour to design, develop and discovery of novel anti-AD drugs. The main factors for the cause of AD according to scientific research reveals structural changes in brain proteins such as beta amyloid, tau proteins into plaques and tangles respectively. The abnormal proteins distort the neurons. Despite the high potencies of the synthesized molecules; they could not get on the clinical tests up to human usage. In this review article, the recent research carried out with respect to inhibition of AChE, BuChE, NO, BACE1, MAOs, Aβ, H3R, DAPK, CSF1R, 5-HT4R, PDE, σ1R and GSK-3β is compiled and organized. The summary is focused mainly on cholinesterases, Aβ, BACE1 and MAOs classes of potential inhibitors. The review also covers structure activity relationship of most potent compounds of each class of inhibitors alongside redesign and remodeling of the most significant inhibitors in order to expect cutting edge inhibitory properties towards AD. Alongside the molecular docking studies of the some final compounds are discussed.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in Chemistry, SRMPP Govt. First Grade College, Huvinahadagali 583219, Karnataka, India.
| |
Collapse
|
38
|
Vilseck JZ, Sohail N, Hayes RL, Brooks CL. Overcoming Challenging Substituent Perturbations with Multisite λ-Dynamics: A Case Study Targeting β-Secretase 1. J Phys Chem Lett 2019; 10:4875-4880. [PMID: 31386370 PMCID: PMC7015761 DOI: 10.1021/acs.jpclett.9b02004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alchemical free energy calculations have made a dramatic impact upon the field of structure-based drug design by allowing functional group modifications to be explored computationally prior to experimental synthesis and assay evaluation, thereby informing and directing synthetic strategies. In furthering the advancement of this area, a series of 21 β-secretase 1 (BACE1) inhibitors developed by Janssen Pharmaceuticals were examined to evaluate the ability to explore large substituent perturbations, some of which contain scaffold modifications, with multisite λ-dynamics (MSλD), an innovative alchemical free energy framework. Our findings indicate that MSλD is able to efficiently explore all structurally diverse ligand end-states simultaneously within a single MD simulation with a high degree of precision and with reduced computational costs compared to the widely used approach TI/MBAR. Furthermore, computational predictions were shown to be accurate to within 0.5-0.8 kcal/mol when CM1A partial atomic charges were combined with CHARMM or OPLS-AA-based force fields, demonstrating that MSλD is force field independent and a viable alternative to FEP or TI approaches for drug design.
Collapse
Affiliation(s)
- Jonah Z. Vilseck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Noor Sohail
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Ryan L. Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: Current status and future directions in treating Alzheimer's disease. Med Res Rev 2019; 40:339-384. [PMID: 31347728 DOI: 10.1002/med.21622] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no current cure. One of the important therapeutic approaches of AD is the inhibition of β-site APP cleaving enzyme-1 (BACE1), which is involved in the rate-limiting step of the cleavage process of the amyloid precursor protein (APP) leading to the generation of the neurotoxic amyloid β (Aβ) protein after the γ-secretase completes its function. The produced insoluble Aβ aggregates lead to plaques deposition and neurodegeneration. BACE1 is, therefore, one of the attractive targets for the treatment of AD. This approach led to the development of potent BACE1 inhibitors, many of which were advanced to late stages in clinical trials. Nonetheless, the high failure rate of lead drug candidates targeting BACE1 brought to the forefront the need for finding new targets to uncover the mystery behind AD. In this review, we aim to discuss the most promising classes of BACE1 inhibitors with a description and analysis of their pharmacodynamic and pharmacokinetic parameters, with more focus on the lead drug candidates that reached late stages of clinical trials, such as MK8931, AZD-3293, JNJ-54861911, E2609, and CNP520. In addition, the manuscript discusses the safety concerns and insignificant physiological effects, which were highlighted for the most successful BACE1 inhibitors. Furthermore, the review demonstrates with increasing evidence that despite tremendous efforts and promising results conceived with BACE1 inhibitors, the latest studies suggest that their clinical use for treating Alzheimer's disease should be reconsidered. Finally, the review sheds light on alternative therapeutic options for targeting AD.
Collapse
Affiliation(s)
- Nour M Moussa-Pacha
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hasan Alniss
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
40
|
Li D, Wang L, Yang Y, Zhang M, Peng T, Yang D, Wang R. Construction of Optically Active 2H‐ and 3H‐Pyrroles by Cyclization and Chirality Maintaining1,5‐Ester Shift Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dan Li
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Linqing Wang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Yuling Yang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Minmin Zhang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Tianyu Peng
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Dongxu Yang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Rui Wang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
41
|
Guo Q, Zheng X, Yang P, Pang X, Qian K, Wang P, Xu S, Sheng D, Wang L, Cao J, Lu W, Zhang Q, Jiang X. Small interfering RNA delivery to the neurons near the amyloid plaques for improved treatment of Alzheimer׳s disease. Acta Pharm Sin B 2019; 9:590-603. [PMID: 31193846 PMCID: PMC6543096 DOI: 10.1016/j.apsb.2018.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/29/2018] [Accepted: 11/15/2018] [Indexed: 02/02/2023] Open
Abstract
Gene therapy represents a promising treatment for the Alzheimer׳s disease (AD). However, gene delivery specific to brain lesions through systemic administration remains big challenge. In our previous work, we have developed an siRNA nanocomplex able to be specifically delivered to the amyloid plaques through surface modification with both CGN peptide for the blood–brain barrier (BBB) penetration and QSH peptide for β-amyloid binding. But, whether the as-designed nanocomplex could indeed improve the gene accumulation in the impaired neuron cells and ameliorate AD-associated symptoms remains further study. Herein, we prepared the nanocomplexes with an siRNA against β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), the rate-limiting enzyme of Aβ production, as the therapeutic siRNA of AD. The nanocomplexes exhibited high distribution in the Aβ deposits-enriched hippocampus, especially in the neurons near the amyloid plaques after intravenous administration. In APP/PS1 transgenic mice, the nanocomplexes down-regulated BACE1 in both mRNA and protein levels, as well as Aβ and amyloid plaques to the level of wild-type mice. Moreover, the nanocomplexes significantly increased the level of synaptophysin and rescued memory loss of the AD transgenic mice without hematological or histological toxicity. Taken together, this work presented direct evidences that the design of precise gene delivery to the AD lesions markedly improves the therapeutic outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Lu
- Corresponding authors. Tel.: +86 21 519980068; fax: +86 21 51980067.
| | - Qizhi Zhang
- Corresponding authors. Tel.: +86 21 519980068; fax: +86 21 51980067.
| | | |
Collapse
|
42
|
Fujimoto K, Matsuoka E, Asada N, Tadano G, Yamamoto T, Nakahara K, Fuchino K, Ito H, Kanegawa N, Moechars D, Gijsen HJM, Kusakabe KI. Structure-Based Design of Selective β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors: Targeting the Flap to Gain Selectivity over BACE2. J Med Chem 2019; 62:5080-5095. [DOI: 10.1021/acs.jmedchem.9b00309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Das S, Chakraborty S, Basu S. Hybrid approach to sieve out natural compounds against dual targets in Alzheimer's Disease. Sci Rep 2019; 9:3714. [PMID: 30842555 PMCID: PMC6403309 DOI: 10.1038/s41598-019-40271-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/13/2019] [Indexed: 11/10/2022] Open
Abstract
Excess Aβ production by the key protease BACE1, results in Aβ aggregation, forming amyloid plaques, all of which contribute to the pathogenesis of Alzheimer’s disease. Besides the multi-factorial nature of the disease, the diversity in the size and shape of known ligands that bind to the active site of BACE1, that is the flexibility of the enzyme, pose a serious challenge for the identification of drug candidates. To address the issue of receptor flexibility we have carried out ensemble docking with multiple receptor conformations. Therein, two representative structures each from closed and semi-open BACE1 conformations were selected for virtual screening to identify compounds that bind to the active site of both the conformations. These outperformed compounds were ranked using pharmacophore models generated by a ligand-based approach, for the identification of BACE1 inhibitors. The inhibitors were further predicted for anti-amyloidogenic activity using a QSAR model already established by our group thus enlisting compounds with dual potency. BACE1 inhibitory and anti-amyloidogenic activity for the commercially available compounds were validated using in vitro studies. Thus, incorporation of receptor flexibility in BACE1 through ensemble docking in conjunction with structure and ligand-based approach for screening might act as an effective protocol for obtaining promising scaffolds against AD.
Collapse
Affiliation(s)
- Sucharita Das
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India
| | - Sandipan Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
44
|
Abstract
Alzheimer's disease (AD), the most common cause of age-dependent dementia, is one of the most significant healthcare problems worldwide. Aggravating this situation, drugs that are currently US Food and Drug Administration (FDA)-approved for AD treatment do not prevent or delay disease progression. Therefore, developing effective therapies for AD patients is of critical urgency. Human genetic and clinical studies over the past three decades have indicated that abnormal generation or accumulation of amyloid-β (Aβ) peptides is a likely culprit in AD pathogenesis. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1) (memapsin 2, β-secretase, Asp 2 protease) and γ-secretase. Mice deficient in BACE1 show abrogated production of Aβ. Therefore, pharmacological inhibition of BACE1 is being intensively pursued as a therapeutic approach to treat AD patients. Recent setbacks in clinical trials with BACE1 inhibitors have highlighted the critical importance of understanding how to properly inhibit BACE1 to treat AD patients. This review summarizes the recent studies on the role of BACE1 in synaptic functions as well as our views on BACE1 inhibition as an effective AD treatment.
Collapse
Affiliation(s)
- Brati Das
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
45
|
New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg Med Chem Lett 2019; 29:761-777. [DOI: 10.1016/j.bmcl.2018.12.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
46
|
Bekker GJ, Araki M, Oshima K, Okuno Y, Kamiya N. Dynamic Docking of a Medium-Sized Molecule to Its Receptor by Multicanonical MD Simulations. J Phys Chem B 2019; 123:2479-2490. [DOI: 10.1021/acs.jpcb.8b12419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kanji Oshima
- Biotechnology Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
47
|
Hu H, Chen Z, Xu X, Xu Y. Structure-Based Survey of the Binding Modes of BACE1 Inhibitors. ACS Chem Neurosci 2019; 10:880-889. [PMID: 30540177 DOI: 10.1021/acschemneuro.8b00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACE1 is a key aspartic protease that cleaves the amyloid precursor protein to generate of the amyloid peptide that is believed to be responsible for the Alzheimer's disease amyloid cascade. It is thus recognized as a promising therapeutic target for Alzheimer's disease treatment, and large efforts have been made in the discovery of novel BACE1 inhibitors. This Review presents a systematic mining of BACE1 inhibitors based on 354 crystal structures of the BACE1 catalytic domain in complex with ligands in the Protein Data Bank. A thorough exploration on the frequency as well as the patterns of residue-ligand interactions enables us to subdivide the ligand binding pocket into 10 subsites and then identify favorable substructures of ligands for each subsite. In addition, it is found that the assembly of subsites with an 8-like shape is responsible to bind all inhibitors and four major ligand binding modes are revealed. Thus, such a systematic survey deepens our understanding of the structural requirements for establishment of BACE1-ligand interactions that determine the affinity of a ligand to BACE1, which is pivotal for structure-based lead optimization and design of novel inhibitors.
Collapse
Affiliation(s)
- Hangchen Hu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqiang Chen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
49
|
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg Chem 2018; 84:363-371. [PMID: 30530107 DOI: 10.1016/j.bioorg.2018.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder with diverse underlying pathological processes. Several lines of evidence suggest that BACE1 is a key enzyme in the pathogenesis of AD and its inhibition is of particular importance in AD treatment. Ten new 3-hydrazinyl-1,2,4-triazines bearing pendant aryl phenoxy methyl-1,2,3-triazole were synthesized as multifunctional ligands against AD. We show that compounds containing Cl and NO2 groups at the para position of the phenyl ring, namely compounds 7c (IC50 = 8.55 ± 3.37 µM) and 7d (IC50 = 11.42 ± 2.01 µM), possess promising BACE1 inhibitory potential. Furthermore, we assessed the neuroprotective activities of 7c and 7d derivatives in PC12 neuronal cell line, which showed moderate protection against amyloid β peptide toxicity. In addition, compound 7d demonstrated metal chelating activity and moderate antioxidant potential (IC50 = 44.42 ± 7.33 µM). Molecular docking studies of these molecules revealed high-affinity binding to several amino acids of BACE1, which are essential for efficient inhibition. These results demonstrate that 1,2,4-triazine derivatives bearing an aryl phenoxy methyl-1,2,3-triazole have promising properties as therapeutic agents for AD.
Collapse
Affiliation(s)
- Mahnaz Yazdani
- Department of Chemistry, Khozestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran; Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Rashid Badri
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
Prieto-Ramírez MC, Fernández I, da Silva I, González-Platas J, de Armas P, García-Tellado F. Stereodiversified Modular Synthesis of Non-planar Five-Membered Cyclic N
-Hydroxylamidines: Reactivity Study and Application to the Synthesis of Cyclic Amidines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mary Cruz Prieto-Ramírez
- Instituto de Productos Naturales y Agrobiología-CSIC; Astrofísico Francisco Sánchez 3 38206 La Laguna Spain
| | - Israel Fernández
- Departamento de Química Orgánica I y Centro de Innovación en Química Avanzada (ORFEO-CINQA); Facultad de Ciencias Químicas, Universidad Complutense; 28040 Madrid Spain
| | - Ivan da Silva
- ISIS Facility; STFC Rutherford Appleton Laboratory; Chilton, Oxfordshire OX11 0QX UK
| | - Javier González-Platas
- Servicio de Difracción de Rayos X, Departamento de Física; Universidad de La Laguna; Astrofísico Francisco Sánchez 2 38204 La Laguna Spain
| | - Pedro de Armas
- Instituto de Productos Naturales y Agrobiología-CSIC; Astrofísico Francisco Sánchez 3 38206 La Laguna Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología-CSIC; Astrofísico Francisco Sánchez 3 38206 La Laguna Spain
| |
Collapse
|