1
|
Guo Q, Xie C, Zi G, Hou G. Enantioselective Synthesis of Chiral 1,5-Benzodiazepin-2-ones by Pd-Catalyzed Asymmetric Hydrogenation and Reductive Amination. Org Lett 2024; 26:8702-8707. [PMID: 39360951 DOI: 10.1021/acs.orglett.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The enantioselective synthesis of chiral 4-substituted 4,5-dihydro-1H-[1,5]benzodiazepin-2(3H)-ones via asymmetric hydrogenation catalyzed by the Pd/f-spiroPhos complex in the presence of hydrochloric acid as an additive has been developed, achieving excellent enantioselectivities and high turnover numbers, up to 99% ee and TON = 4600. More significantly, the asymmetric reductive amination of β-keto esters with 1,2-phenylenediamine has also been successfully realized to afford chiral 4-substituted 4,5-dihydro-1H-[1,5]benzodiazepin-2(3H)-ones with comparable enantioselectivities of up to 99% ee.
Collapse
Affiliation(s)
- Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Ayoup MS, Wahby Y, Abdel-Hamid H, Abu-Serie MM, Ramadan S, Barakat A, Teleb M, Ismail MMF. Reinvestigation of Passerini and Ugi scaffolds as multistep apoptotic inducers via dual modulation of caspase 3/7 and P53-MDM2 signaling for halting breast cancer. RSC Adv 2023; 13:27722-27737. [PMID: 37736568 PMCID: PMC10509784 DOI: 10.1039/d3ra04029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Selective induction of breast cancer apoptosis is viewed as the mainstay of various ongoing oncology drug discovery programs. Passerini scaffolds have been recently exploited as selective apoptosis inducers via a caspase 3/7 dependent pathway. Herein, the optimized Passerini caspase activators were manipulated to synergistically induce P53-dependent apoptosis via modulating the closely related P53-MDM2 signaling axis. The adopted design rationale and synthetic routes relied on mimicking the general thematic features of lead MDM2 inhibitors incorporating multiple aromatic rings. Accordingly, the cyclization of representative Passerini derivatives and related Ugi compounds into the corresponding diphenylimidazolidine and spiro derivative was performed, resembling the nutlin-based and spiro MDM-2 inhibitors, respectively. The study was also extended to explore the apoptotic induction capacity of the scaffold after simplification and modifications. MTT assay on MCF-7 and MDA-MB231 breast cancer cells compared to normal fibroblasts (WI-38) revealed their promising cytotoxic activities. The flexible Ugi derivatives 3 and 4, cyclic analog 8, Passerini adduct 12, and the thiosemicarbazide derivative 17 were identified as the study hits regarding cytotoxic potency and selectivity, being over 10-folds more potent (IC50 = 0.065-0.096 μM) and safer (SI = 4.4-18.7) than doxorubicin (IC50 = 0.478 μM, SI = 0.569) on MCF-7 cells. They promoted apoptosis induction via caspase 3/7 activation (3.1-4.1 folds) and P53 induction (up to 4 folds). Further apoptosis studies revealed that these compounds enhanced gene expression of BAX by 2 folds and suppressed Bcl-2 expression by 4.29-7.75 folds in the treated MCF-7 cells. Docking simulations displayed their plausible binding modes with the molecular targets and highlighted their structural determinants of activities for further optimization studies. Finally, in silico prediction of the entire library was computationally performed, showing that most of them could be envisioned as drug-like candidates.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Yasmin Wahby
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Egypt
| | - Sherif Ramadan
- Chemistry Department, Michigan State University East Lansing MI 48824 USA
- Department of Chemistry, Benha University Benha Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
3
|
Fiore M, Mosconi M, Bonì F, Parodi A, Salis A, Tasso B, Mastrangelo E, Millo E, Cossu F. New Class of Benzodiazepinone Derivatives as Pro-Death Agents Targeting BIR Domains in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010446. [PMID: 36615638 PMCID: PMC9823934 DOI: 10.3390/molecules28010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.
Collapse
Affiliation(s)
- Michele Fiore
- National Research Council (IBF-CNR) Genoa Unit, Institute of Biophysics, Via De Marini 6, 16149 Genova, Italy
| | - Michele Mosconi
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Francesco Bonì
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Eloise Mastrangelo
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
- Correspondence: (E.M.); (F.C.); Tel.: +39-010-335-3032 (E.M.); +39-0250314890 (F.C.)
| | - Federica Cossu
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
- Correspondence: (E.M.); (F.C.); Tel.: +39-010-335-3032 (E.M.); +39-0250314890 (F.C.)
| |
Collapse
|
4
|
Ayoup MS, Mansour AF, Abdel-Hamid H, Abu-Serie MM, Mohyeldin SM, Teleb M. Nature-inspired new isoindole-based Passerini adducts as efficient tumor-selective apoptotic inducers via caspase-3/7 activation. Eur J Med Chem 2023; 245:114865. [DOI: 10.1016/j.ejmech.2022.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
|
5
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
6
|
den Besten W, Verma K, Yamazoe S, Blaquiere N, Phung W, Izrael-Tomasevic A, Mulvihill MM, Helgason E, Prakash S, Goncharov T, Vucic D, Dueber E, Fairbrother WJ, Wertz I, Yu K, Staben ST. Primary Amine Tethered Small Molecules Promote the Degradation of X-Linked Inhibitor of Apoptosis Protein. J Am Chem Soc 2021; 143:10571-10575. [PMID: 34236858 DOI: 10.1021/jacs.1c05269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We hypothesized that the proximity-driven ubiquitylation of E3-interacting small molecules could affect the degradation of E3 ubiquitin ligases. A series of XIAP BIR2 domain-binding small molecules was modified to append a nucleophilic primary amine. This modification transforms XIAP binders into inducers of XIAP degradation. The degradation of XIAP is E1- and proteasome-dependent, dependent on the ligase function of XIAP, and is rescued by subtle modifications of the small molecule that would obviate ubiquitylation. We demonstrate in vitro ubiquitylation of the small molecule that is dependent on its interaction with XIAP. Taken together, these results demonstrate the designed ubiquitylation of an engineered small molecule and a novel approach for the degradation of E3 ubiquitin ligases.
Collapse
|
7
|
Bricelj A, Steinebach C, Kuchta R, Gütschow M, Sosič I. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Front Chem 2021; 9:707317. [PMID: 34291038 PMCID: PMC8287636 DOI: 10.3389/fchem.2021.707317] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) have received tremendous attention as a new and exciting class of therapeutic agents that promise to significantly impact drug discovery. These bifunctional molecules consist of a target binding unit, a linker, and an E3 ligase binding moiety. The chemically-induced formation of ternary complexes leads to ubiquitination and proteasomal degradation of target proteins. Among the plethora of E3 ligases, only a few have been utilized for the novel PROTAC technology. However, extensive knowledge on the preparation of E3 ligands and their utilization for PROTACs has already been acquired. This review provides an in-depth analysis of synthetic entries to functionalized ligands for the most relevant E3 ligase ligands, i.e. CRBN, VHL, IAP, and MDM2. Less commonly used E3 ligase and their ligands are also presented. We compare different preparative routes to E3 ligands with respect to feasibility and productivity. A particular focus was set on the chemistry of the linker attachment by discussing the synthetic opportunities to connect the E3 ligand at an appropriate exit vector with a linker to assemble the final PROTAC. This comprehensive review includes many facets involved in the synthesis of such complex molecules and is expected to serve as a compendium to support future synthetic attempts towards PROTACs.
Collapse
Affiliation(s)
- Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Robert Kuchta
- Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | | | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Small molecules targeting ubiquitination to control inflammatory diseases. Drug Discov Today 2021; 26:2414-2422. [PMID: 33992766 DOI: 10.1016/j.drudis.2021.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
The ubiquitination and deubiquitination of proteins govern signal transduction in every aspect of physiology and pathology, especially in cancer, inflammation, and autoimmune diseases. Rapid progress has been made in obtaining an in-depth understanding of the ubiquitination system since its first discovery during the 1970s. Manipulation of ubiquitination by small molecules is considered a novel therapeutic avenue. In this review, we summarize key applications of small molecules targeting ubiquitination enzymes and currently available technologies applied to the discovery of small molecules that control ubiquitination.
Collapse
|
9
|
Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci Rep 2021; 11:4049. [PMID: 33603068 PMCID: PMC7892887 DOI: 10.1038/s41598-021-83626-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is a member of inhibitor of apoptosis protein (IAP) family responsible for neutralizing the caspases-3, caspases-7, and caspases-9. Overexpression of the protein decreased the apoptosis process in the cell and resulting development of cancer. Different types of XIAP antagonists are generally used to repair the defective apoptosis process that can eliminate carcinoma from living bodies. The chemically synthesis compounds discovered till now as XIAP inhibitors exhibiting side effects, which is making difficulties during the treatment of chemotherapy. So, the study has design to identifying new natural compounds that are able to induce apoptosis by freeing up caspases and will be low toxic. To identify natural compound, a structure-based pharmacophore model to the protein active site cavity was generated following by virtual screening, molecular docking and molecular dynamics (MD) simulation. Initially, seven hit compounds were retrieved and based on molecular docking approach four compounds has chosen for further evaluation. To confirm stability of the selected drug candidate to the target protein the MD simulation approach were employed, which confirmed stability of the three compounds. Based on the finding, three newly obtained compounds namely Caucasicoside A (ZINC77257307), Polygalaxanthone III (ZINC247950187), and MCULE-9896837409 (ZINC107434573) may serve as lead compounds to fight against the treatment of XIAP related cancer, although further evaluation through wet lab is necessary to measure the efficacy of the compounds.
Collapse
|
10
|
Metibemu DS, Akinloye OA, Akamo AJ, Okoye JO, Ojo DA, Morifi E, Omotuyi IO. Carotenoid isolates of Spondias mombin demonstrate anticancer effects in DMBA-induced breast cancer in Wistar rats through X-linked inhibitor of apoptosis protein (XIAP) antagonism and anti-inflammation. J Food Biochem 2020; 44:e13523. [PMID: 33084091 DOI: 10.1111/jfbc.13523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most prevalent cancer in women. X-linked inhibitor of apoptosis protein (XIAP) that is constantly overexpressed in cancer is a promising therapeutic target in cancer treatments. The mechanisms of the anticancer effects of carotenoid isolates of Spondias mombim in DMBA-induced breast cancer in Wistar rats through XIAP antagonism were investigated in the present study. Carotenoids isolated from the leaves of Spondias mombim were subjected to Liquid Chromatography/Mass Spectrometry (LC/MS) and Electrospray Ionization (ESI) for characterization. The characterized carotenoid isolates were docked against XIAP BIR2 domain and XIAP BIR3 domain. The anticancer effects of the carotenoid isolates of Spondias mombim in DMBA-induced breast cancer in Wistar rats were also investigated through the expression of XIAP, COX-2, TNF, BCl-2 mRNAs by qRT-PCR and biochemical parameters of catalase, lipid peroxidation, LDH, ALP, and ALT. These show the carotenoid isolates demonstrate anticancer effects by antagonism of XIAP, proapoptotic, and anti-inflammatory properties. PRACTICAL APPLICATIONS: The present study showed that carotenoids (astaxanthin, β-carotene-15,15'-epoxide, and 7,7',8,8'-tetrahydro-β, β-carotene) isolated from the leaves of Spondias mombim are proapoptotic, it further gives credence to the chemopreventive abilities of carotenoids. This study validated XIAP as a druggable target in cancer treatment and hence more phytochemicals should be screened against it, for possible lead compounds of plant origin. Cancer cells often explore XIAP for antiapoptotic and resistance tendencies, hence, β-carotene-15,15'-epoxide and 7,7',8,8'-tetrahydro-β, β-carotene (XIAP antagonists) are promising drug candidates that can withstand resistant and prone cancer cells to apoptotic cell death. There is a need to synthesize β-carotene-15,15'-epoxide and 7,7',8,8'-tetrahydro-β for further investigation in clinical studies.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Adio Jamiu Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Jude Ogechukwu Okoye
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Awka, Nigeria
| | - David Ajiboye Ojo
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Eric Morifi
- Department of Chemistry, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
11
|
Lin X, Xiang H, Luo G. Targeting estrogen receptor α for degradation with PROTACs: A promising approach to overcome endocrine resistance. Eur J Med Chem 2020; 206:112689. [PMID: 32829249 DOI: 10.1016/j.ejmech.2020.112689] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alfa (ERα) is expressed in approximate 70% of breast cancer (BC) which is the most common malignancy in women worldwide. To date, the foremost intervention in the treatment of ER positive (ER+) BC is still the endocrine therapy. However, resistance to endocrine therapies remains a major hurdle in the long-term management of ER + BC. Although the mechanisms underlying endocrine resistance are complex, cumulative evidence revealed that ERα still plays a critical role in driving BC tumor cells to grow in resistance state. Fulvestrant, a selective estrogen receptor degrader (SERD), has moved to first line therapy for metastatic ER + BC, suggesting that removing ERα would be a useful strategy to overcome endocrine resistance. Proteolysis-Targeting Chimera (PROTAC) technology, an emerging paradigm for protein degradation, has the potential to eliminate both wild type and mutant ERα in breast cancer cells. Excitingly, ARV-471, an ERα-targeted PROTAC developed by Arvinas, has been in phase 1 clinical trials. In this review, we will summarize recent progress of ER-targeting PROTACs from publications and patents along with their therapeutic opportunities for the treatment of endocrine-resistant BC.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Blaquiere N, Villemure E, Staben ST. Medicinal Chemistry of Inhibiting RING-Type E3 Ubiquitin Ligases. J Med Chem 2020; 63:7957-7985. [PMID: 32142281 DOI: 10.1021/acs.jmedchem.9b01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin proteasome system (UPS) presents many opportunities for pharmacological intervention. Key players in the UPS are E3 ubiquitin ligases, responsible for conjugation of ubiquitin to specific cognate substrates. Numbering more than 600 members, these ligases represent the most selective way to intervene within this physiologically important system. This Perspective highlights some of the dedicated medicinal chemistry efforts directed at inhibiting the function of specific single-protein and multicomponent RING-type E3 ubiquitin ligases. We present opportunities and challenges associated with targeting this important class of enzymes.
Collapse
Affiliation(s)
- Nicole Blaquiere
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Dragovich PS, Adhikari P, Blake RA, Blaquiere N, Chen J, Cheng YX, den Besten W, Han J, Hartman SJ, He J, He M, Rei Ingalla E, Kamath AV, Kleinheinz T, Lai T, Leipold DD, Li CS, Liu Q, Lu J, Lu Y, Meng F, Meng L, Ng C, Peng K, Lewis Phillips G, Pillow TH, Rowntree RK, Sadowsky JD, Sampath D, Staben L, Staben ST, Wai J, Wan K, Wang X, Wei B, Wertz IE, Xin J, Xu K, Yao H, Zang R, Zhang D, Zhou H, Zhao Y. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg Med Chem Lett 2019; 30:126907. [PMID: 31902710 DOI: 10.1016/j.bmcl.2019.126907] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.
Collapse
Affiliation(s)
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Jinhua Chen
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Yun-Xing Cheng
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Jinping Han
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Jintang He
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Amrita V Kamath
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Tommy Lai
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | | | - Chun Sing Li
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Qi Liu
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Jiawei Lu
- WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Ying Lu
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Fanwei Meng
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Lingyao Meng
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Carl Ng
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kaishan Peng
- WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | | | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Deepak Sampath
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Leanna Staben
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven T Staben
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Wai
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Kunpeng Wan
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Xinxin Wang
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ingrid E Wertz
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianfeng Xin
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Keyang Xu
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hui Yao
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Richard Zang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Zhou
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Yongxin Zhao
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| |
Collapse
|
14
|
Xu H, Tang Z, Zuo Y, Xiong F, Chen K, Jiang H, Luo C, Zhang H. Molecular dynamics simulation revealed the intrinsic conformational change of cellular inhibitor of apoptosis protein-1. J Biomol Struct Dyn 2019; 38:975-984. [PMID: 30843765 DOI: 10.1080/07391102.2019.1591303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis, and protein targets for the development of anti-cancer drugs. Cellular inhibitor of apoptosis protein-1 (cIAP1) is an important member of IAPs. Peptides or small-molecular antagonists can induce the dimerization, auto-ubiquitination, and proteasomal degradation of the cellular inhibitor of apoptosis protein-1 (cIAP1). While in the absence of antagonists, several mutations of the cIAP1 protein also lead to its dimerization and auto-ubiquitination. Even though the crystal structure of cIAP1 protein has been determined, the intrinsic mechanism of its dimerization remains unexplored. Accumulating evidence indicated that intrinsic conformational change existed during the binding of antagonists with cIAP1 protein, or introduction of mutations. To reveal this intrinsic conformational change, molecular dynamics simulations at microsecond scale were applied for the wild-type and mutant-type cIAP1 proteins. Compared to the crystal structure, significant conformational change was observed during the simulations, which could explain the importance of previously identified key mutations. To validate these findings revealed by our simulations, a new mutation D303A was constructed and the following native polyacrylamide gel electrophoresis (native-PAGE) assay observed a proportion of spontaneous dimerization, in comparison with the wild-type control. Taken together, these computational and experimental results revealed the intrinsic conformational change of cIAP1, which could not only explain previously identified key mutations, but also be exploited for further design and development of anti-tumor compounds that target the cIAP1 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Heng Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Yu Zuo
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Fengmin Xiong
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Targeting the BIR Domains of Inhibitor of Apoptosis (IAP) Proteins in Cancer Treatment. Comput Struct Biotechnol J 2019; 17:142-150. [PMID: 30766663 PMCID: PMC6360406 DOI: 10.1016/j.csbj.2019.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/07/2023] Open
Abstract
Inhibitor of apoptosis (IAP) proteins are characterized by the presence of the conserved baculoviral IAP repeat (BIR) domain that is involved in protein-protein interactions. IAPs were initially thought to be mainly responsible for caspase inhibition, acting as negative regulators of apoptosis, but later works have shown that IAPs also control a plethora of other different cellular pathways. As X-linked IAP (XIAP), and other IAP, levels are often deregulated in cancer cells and have been shown to correlate with patients' prognosis, several approaches have been pursued to inhibit their activity in order to restore apoptosis. Many small molecules have been designed to target the BIR domains, the vast majority being inspired by the N-terminal tetrapeptide of Second Mitochondria-derived Activator of Caspases/Direct IAp Binding with Low pI (Smac/Diablo), which is the natural XIAP antagonist. These compounds are therefore usually referred to as Smac mimetics (SMs). Despite the fact that SMs were intended to specifically target XIAP, it has been shown that they also interact with cellular IAP-1 (cIAP1) and cIAP2, promoting their proteasome-dependent degradation. SMs have been tested in combination with several cytotoxic compounds and are now considered promising immune modulators which can be exploited in cancer therapy, especially in combination with immune checkpoint inhibitors. In this review, we give an overview of the structural hot-spots of BIRs, focusing on their fold and on the peculiar structural patches which characterize the diverse BIRs. These structures are exploited/exploitable for the development of specific and active IAP inhibitors.
Collapse
|
16
|
Cong H, Xu L, Wu Y, Qu Z, Bian T, Zhang W, Xing C, Zhuang C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J Med Chem 2019; 62:5750-5772. [DOI: 10.1021/acs.jmedchem.8b01668] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hui Cong
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yougen Wu
- College of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
17
|
Disruption of XIAP-RIP2 Association Blocks NOD2-Mediated Inflammatory Signaling. Mol Cell 2018; 69:551-565.e7. [DOI: 10.1016/j.molcel.2018.01.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/26/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
|
18
|
Schwerd T, Pandey S, Yang HT, Bagola K, Jameson E, Jung J, Lachmann RH, Shah N, Patel SY, Booth C, Runz H, Düker G, Bettels R, Rohrbach M, Kugathasan S, Chapel H, Keshav S, Elkadri A, Platt N, Muise AM, Koletzko S, Xavier RJ, Marquardt T, Powrie F, Wraith JE, Gyrd-Hansen M, Platt FM, Uhlig HH. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn's disease. Gut 2017; 66:1060-1073. [PMID: 26953272 PMCID: PMC5532464 DOI: 10.1136/gutjnl-2015-310382] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Patients with Niemann-Pick disease type C1 (NPC1), a lysosomal lipid storage disorder that causes neurodegeneration and liver damage, can present with IBD, but neither the significance nor the functional mechanism of this association is clear. We studied bacterial handling and antibacterial autophagy in patients with NPC1. DESIGN We characterised intestinal inflammation in 14 patients with NPC1 who developed IBD. We investigated bacterial handling and cytokine production of NPC1 monocytes or macrophages in vitro and compared NPC1-associated functional defects to those caused by IBD-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants or mutations in X-linked inhibitor of apoptosis (XIAP). RESULTS Patients with the lysosomal lipid storage disorder NPC1 have increased susceptibility to early-onset fistulising colitis with granuloma formation, reminiscent of Crohn's disease (CD). Mutations in NPC1 cause impaired autophagy due to defective autophagosome function that abolishes NOD2-mediated bacterial handling in vitro similar to variants in NOD2 or XIAP deficiency. In contrast to genetic NOD2 and XIAP variants, NPC1 mutations do not impair NOD2-receptor-interacting kinase 2 (RIPK2)-XIAP-dependent cytokine production. Pharmacological activation of autophagy can rescue bacterial clearance in macrophages in vitro by increasing the autophagic flux and bypassing defects in NPC1. CONCLUSIONS NPC1 confers increased risk of early-onset severe CD. Our data support the concept that genetic defects at different checkpoints of selective autophagy cause a shared outcome of CD-like immunopathology linking monogenic and polygenic forms of IBD. Muramyl dipeptide-driven cytokine responses and antibacterial autophagy induction are parallel and independent signalling cascades downstream of the NOD2-RIPK2-XIAP complex.
Collapse
Affiliation(s)
- Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Huei-Ting Yang
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Katrin Bagola
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Elisabeth Jameson
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK
| | - Jonathan Jung
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Neil Shah
- Great Ormond Street Hospital, London, UK
| | - Smita Y Patel
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Claire Booth
- Department of Clinical Immunology, Great Ormond Street Hospital, London, UK
| | - Heiko Runz
- University of Heidelberg, Heidelberg, Germany
| | - Gesche Düker
- University Children's Hospital Bonn, Bonn, Germany
| | | | - Marianne Rohrbach
- Children's Research Centre Zurich, University Children's Hospital, Zurich, Switzerland
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helen Chapel
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Satish Keshav
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Alexio M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ramnik J Xavier
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Fiona Powrie
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - James E Wraith
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK
| | - Mads Gyrd-Hansen
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK,Department of Pediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 2016; 15:533-50. [DOI: 10.1038/nrd.2016.29] [Citation(s) in RCA: 625] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Tinworth CP, Lithgow H, Churcher I. Small molecule-mediated protein knockdown as a new approach to drug discovery. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00347h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Research into degradation of cellular proteins induced by small molecule agents known as Protacs has gathered pace recently. This article reviews recent progress and assesses the challenges to be addressed to enable clinical evaluation of agents.
Collapse
Affiliation(s)
| | - Hannah Lithgow
- GlaxoSmithKline
- Medicines Research Centre
- Stevenage
- UK
- Department of Pure and Applied Chemistry
| | - Ian Churcher
- GlaxoSmithKline
- Medicines Research Centre
- Stevenage
- UK
| |
Collapse
|
21
|
Chessari G, Buck IM, Day JEH, Day PJ, Iqbal A, Johnson CN, Lewis EJ, Martins V, Miller D, Reader M, Rees DC, Rich SJ, Tamanini E, Vitorino M, Ward GA, Williams PA, Williams G, Wilsher NE, Woolford AJA. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against cIAP1 and XIAP. J Med Chem 2015. [PMID: 26218264 DOI: 10.1021/acs.jmedchem.5b00706] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). Structure-based hit optimization together with an analysis of protein-ligand electrostatic potential complementarity allowed us to significantly increase binding affinity of the starting hits. Subsequent optimization gave a potent nonalanine IAP antagonist structurally distinct from all IAP antagonists previously reported. The lead compound had activity in cell-based assays and in a mouse xenograft efficacy model and represents a highly promising start point for further optimization.
Collapse
Affiliation(s)
- Gianni Chessari
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Ildiko M Buck
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - James E H Day
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Philip J Day
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Aman Iqbal
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Christopher N Johnson
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Edward J Lewis
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Vanessa Martins
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Darcey Miller
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Michael Reader
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - David C Rees
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Sharna J Rich
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Emiliano Tamanini
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Marc Vitorino
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - George A Ward
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Pamela A Williams
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Glyn Williams
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Nicola E Wilsher
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| | - Alison J-A Woolford
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom
| |
Collapse
|
22
|
Chaudhary AK, Yadav N, Bhat TA, O'Malley J, Kumar S, Chandra D. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today 2015; 21:38-47. [PMID: 26232549 DOI: 10.1016/j.drudis.2015.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
X-chromosome-linked inhibitor of apoptosis protein (XIAP) has an important regulatory role in programmed cell death by inhibiting the caspase cascade. Activation of XIAP-dependent signaling culminates into regulation of multiple cellular processes including apoptosis, innate immunity, epithelial-to-mesenchymal transition, cell migration, invasion, metastasis and differentiation. Although XIAP localizes to the cytosolic compartment, XIAP-mediated cellular signaling encompasses mitochondrial and post-mitochondrial levels. Recent findings demonstrate that XIAP also localizes to mitochondria and regulates mitochondria functions. XIAP acts upstream of mitochondrial cytochrome c release and modulates caspase-dependent apoptosis. The new function of XIAP has potential to enhance mitochondrial membrane permeabilization and other cellular functions controlling cytochrome c release. These findings could exploit the overexpression of XIAP in human tumors for therapeutic benefits.
Collapse
Affiliation(s)
- Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
23
|
Hird AW, Aquila BM, Hennessy EJ, Vasbinder MM, Yang B. Small molecule inhibitor of apoptosis proteins antagonists: a patent review. Expert Opin Ther Pat 2015; 25:755-74. [PMID: 25980951 DOI: 10.1517/13543776.2015.1041922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The family of inhibitor of apoptosis proteins (IAPs) plays a key role in the suppression of proapoptotic signaling; hence, a small molecule that disrupts the binding of IAPs with their functional partner should restore apoptotic response to proapoptotic stimuli in cells. The continued publication of new patent applications of IAP antagonists over the past 4 years is a testament to the continued interest surrounding the IAP family of proteins. AREAS COVERED This review summarizes the IAP antagonist patent literature from 2010 to 2014. Monovalent and bivalent Smac mimetics will be covered as well as two new developments in the field: IAP antagonists coupled to or merged with other targeted agents and new BIR2 selective IAP antagonists. EXPERT OPINION In addition to the well-explored scaffolds for monovalent and bivalent Smac-mimetics, some companies have taken more drastic approaches to explore new chemical space - for example, fragment-based approaches and macrocyclic inhibitors. Furthermore, other companies have designed compounds with alternative biological profiles - tethering to known kinase binding structures, trying to target to the mitochondria or introducing selective binding to the BIR2 domain. An overview of the status for the four small molecule IAP antagonists being evaluated in active human clinical trials is also provided.
Collapse
Affiliation(s)
- Alexander W Hird
- AstraZeneca, Medicinal Chemistry, Oncology iMed , 35 Gatehouse Drive, Waltham, MA 02451 , USA +1 781 839 4145 ;
| | | | | | | | | |
Collapse
|
24
|
Abstract
The Inhibitor of Apoptosis Proteins (IAPs) play a critical role in the regulation of cellular apoptosis and cytokine signaling. IAP family members include XIAP, cIAP1, cIAP2, NAIP, survivin, Apollon/Bruce, ML-IAP/livin and TIAP. The IAPs have been targeted using both antisense oligonucleotides and small molecule inhibitors. Several research teams have advanced compounds that bind the highly conserved BIR3 domains of the IAPs into clinical trials, as single agents and in combination with standard of care. This patent review highlights the medicinal chemistry strategies that have been applied to the development of clinical compounds.
Collapse
|
25
|
Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 2014; 4:197. [PMID: 25120954 PMCID: PMC4112792 DOI: 10.3389/fonc.2014.00197] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023] Open
Abstract
Defects in apoptosis regulation are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as inhibitor of apoptosis proteins (IAPs). IAPs are cell death regulators that, among other functions, bind caspases, and interfere with apoptotic signaling via death receptors or intrinsic cell death pathways. All IAPs share one to three common structures, the so called baculovirus-IAP-repeat (BIR)-domains that allow them to bind caspases and other proteins. X-linked inhibitor of apoptosis protein (XIAP) is the most potent and best-defined anti-apoptotic IAP family member that directly neutralizes caspase-9 via its BIR3 domain and the effector caspases-3 and -7 via its BIR2 domain. A natural inhibitor of XIAP is SMAC/Diablo, which is released from mitochondria in apoptotic cells and displaces bound caspases from the BIR2/BIR3 domains of XIAP thereby reactivating cell death execution. The central apoptosis-inhibitory function of XIAP and its overexpression in many different types of advanced cancers have led to significant efforts to identify therapeutics that neutralize its anti-apoptotic effect. Most of these drugs are chemical derivatives of the N-terminal part of SMAC/Diablo. These “SMAC-mimetics” either specifically induce apoptosis in cancer cells or act as drug-sensitizers. Several “SMAC-mimetics” are currently tested by the pharmaceutical industry in Phase I and Phase II trials. In this review, we will discuss recent advances in understanding the function of IAPs in normal and malignant cells and focus on approaches to specifically neutralize XIAP in cancer cells.
Collapse
Affiliation(s)
- Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck , Innsbruck , Austria ; Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Michael J Ausserlechner
- Tyrolean Cancer Research Institute , Innsbruck , Austria ; Department of Pediatrics I, Medical University Innsbruck , Innsbruck , Austria
| |
Collapse
|
26
|
Donnell AF, Michoud C, Rupert KC, Han X, Aguilar D, Frank KB, Fretland AJ, Gao L, Goggin B, Hogg JH, Hong K, Janson CA, Kester RF, Kong N, Le K, Li S, Liang W, Lombardo LJ, Lou Y, Lukacs CM, Mischke S, Moliterni JA, Polonskaia A, Schutt AD, Solis DS, Specian A, Taylor RT, Weisel M, Remiszewski SW. Benzazepinones and Benzoxazepinones as Antagonists of Inhibitor of Apoptosis Proteins (IAPs) Selective for the Second Baculovirus IAP Repeat (BIR2) Domain. J Med Chem 2013; 56:7772-87. [DOI: 10.1021/jm400731m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrew F. Donnell
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Christophe Michoud
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Kenneth C. Rupert
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Xiaochun Han
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Douglas Aguilar
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Karl B. Frank
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Adrian J. Fretland
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Lin Gao
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Barry Goggin
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - J. Heather Hogg
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Kyoungja Hong
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Cheryl A. Janson
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Robert F. Kester
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Norman Kong
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Kang Le
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Shirley Li
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Weiling Liang
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Louis J. Lombardo
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Yan Lou
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Christine M. Lukacs
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Steven Mischke
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - John A. Moliterni
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Ann Polonskaia
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Andrew D. Schutt
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Dave S. Solis
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Anthony Specian
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Robert T. Taylor
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Martin Weisel
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Stacy W. Remiszewski
- Departments of Discovery
Chemistry, ‡Discovery Technologies, §Non-clinical Safety,
Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| |
Collapse
|