1
|
Guo C, Zhang G, Wu C, Lei Y, Wang Y, Yang J. Emerging trends in small molecule inhibitors targeting aldosterone synthase: A new paradigm in cardiovascular disease treatment. Eur J Med Chem 2024; 274:116521. [PMID: 38820853 DOI: 10.1016/j.ejmech.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Aldosterone synthase (CYP11B2) is the rate-limiting enzyme in aldosterone production. In recent years, CYP11B2 has become an appealing target for treating conditions associated with excess aldosterone, such as hypertension, heart failure, and cardiometabolic diseases. Several small-molecule inhibitors of CYP11B2 have demonstrated efficacy in both preclinical studies and clinical trials. Among them, the tetrahydroisoquinoline derivative Baxdrostat has entered clinical trial phases and demonstrated efficacy in treating patients with hypertension. However, the high homology (>93 %) between CYP11B2 and steroid-11β-hydroxylase (CYP11B1), which catalyzes cortisol production, implies that insufficient drug specificity can lead to severe side effects. Developing selective inhibitors for CYP11B2 remains a considerable challenge that requires ongoing attention. This review summarizes recent research progress on small-molecule inhibitors targeting CYP11B2, focusing on structure-activity relationships (SAR) and structural optimization. It discusses strategies for enhancing the specificity and inhibitory activity of inhibitors, while also exploring potential applications and future prospects for CYP11B2 inhibitors, providing a theoretical foundation for developing the new generation of CYP11B2-targeted medications.
Collapse
Affiliation(s)
- Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangbing Zhang
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, General Practice Research Institute, West China Hospital, Sichuan University, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China; Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Meguro M, Miyauchi S, Kanao-Arisumi Y, Naito S, Suzuki K, Inoue S, Yamada K, Homma T, Chiba K, Nara F, Furuzono S. Identification of sulfonylpyrimidines as novel selective aldosterone synthase (CYP11B2) inhibitors. Bioorg Med Chem 2024; 108:117775. [PMID: 38851000 DOI: 10.1016/j.bmc.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
4-[(5-[2-Methyl-5-(methylsulfonyl)pentan-2-yl]sulfonylpyrimidin-4-yl)amino]benzonitrile 2 was identified as a novel potent aldosterone synthase inhibitor. Compound 2 was found to inhibit human CYP11B2 in the nanomolar range, and showed an aldosterone-lowering effect in a furosemide-treated cynomolgus monkey model. Although human CYP11B2 has the high homology sequence with human CYP11B1, compound 2 showed more than 80 times higher selectivity over human CYP11B1 in vitro.
Collapse
Affiliation(s)
- Masaki Meguro
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Satoru Miyauchi
- Technology Division, Technology Business Management Group, Daiichi Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Yukiko Kanao-Arisumi
- Pharmaunion Co., Ltd., 1-23-39 Hiikawa, Jounan-ku, Fukuoka-shi, Fukuoka 814-0153, Japan
| | - Satoru Naito
- Site Operations Department, Shinagawa Site Operation Group, Daiichi Sankyo Business Associe Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kanae Suzuki
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shinichi Inoue
- Daiichi Sankyo Inc., 211 Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Keisuke Yamada
- Medical Affairs Division, Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., 3-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8426, Japan
| | - Tsuyoshi Homma
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Chiba
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Futoshi Nara
- Shin Nippon Biomedical Laboratories, Ltd., 8-1-28, Akashicho, Chuo-ku, Tokyo 104-0044, Japan
| | - Shinji Furuzono
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
3
|
Guengerich FP. Cytochrome P450 Enzymes as Drug Targets in Human Disease. Drug Metab Dispos 2024; 52:493-497. [PMID: 37793784 PMCID: PMC11114603 DOI: 10.1124/dmd.123.001431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
Although the mention of cytochrome P450 (P450) inhibition usually brings to mind unwanted variability in pharmacokinetics, in several cases P450s are good targets for inhibition. These P450s are essential, but in certain disease states, it is desirable to reduce the concentrations of their products. Most of the attention to date has been with human P450s 5A1, 11A1, 11B1, 11B2, 17A1, 19A1, and 51A1. In some of those cases, there are multiple drugs in use, e.g., exemestane, letrozole, and anastrozole with P450 19A1, the steroid aromatase target in breast cancer. There are also several targets that are less developed, e.g., P450s 2A6, 8B1, 4A11, 24A1, 26A1, and 26B1. SIGNIFICANCE STATEMENT: The selective inhibition of certain cytochrome P450s that have major physiological functions has been shown to be very efficacious in certain human diseases. In several cases, the search for better drugs continues.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
4
|
Verma S, Pandey A, Pandey AK, Butler J, Lee JS, Teoh H, Mazer CD, Kosiborod MN, Cosentino F, Anker SD, Connelly KA, Bhatt DL. Aldosterone and aldosterone synthase inhibitors in cardiorenal disease. Am J Physiol Heart Circ Physiol 2024; 326:H670-H688. [PMID: 38133623 DOI: 10.1152/ajpheart.00419.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Modulation of the renin-angiotensin-aldosterone system is a foundation of therapy for cardiovascular and kidney diseases. Excess aldosterone plays an important role in cardiovascular disease, contributing to inflammation, fibrosis, and dysfunction in the heart, kidneys, and vasculature through both genomic and mineralocorticoid receptor (MR)-mediated as well as nongenomic mechanisms. MR antagonists have been a key therapy for attenuating the pathologic effects of aldosterone but are associated with some side effects and may not always adequately attenuate the nongenomic effects of aldosterone. Aldosterone is primarily synthesized by the CYP11B2 aldosterone synthase enzyme, which is very similar in structure to other enzymes involved in steroid biosynthesis including CYP11B1, a key enzyme involved in glucocorticoid production. Lack of specificity for CYP11B2, off-target effects on the hypothalamic-pituitary-adrenal axis, and counterproductive increased levels of bioactive steroid intermediates such as 11-deoxycorticosterone have posed challenges in the development of early aldosterone synthase inhibitors such as osilodrostat. In early-phase clinical trials, newer aldosterone synthase inhibitors demonstrated promise in lowering blood pressure in patients with treatment-resistant and uncontrolled hypertension. It is therefore plausible that these agents offer protection in other disease states including heart failure or chronic kidney disease. Further clinical evaluation will be needed to clarify the role of aldosterone synthase inhibitors, a promising class of agents that represent a potentially major therapeutic advance.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Avinash Pandey
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Arjun K Pandey
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- University of Mississippi, Jackson, Mississippi, United States
| | - John S Lee
- LJ Biosciences, LLC, Rockville, Maryland, United States
- PhaseBio Pharmaceuticals, Malvern, Pennsylvania, United States
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri, United States
- University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kim A Connelly
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, United States
| |
Collapse
|
5
|
Tinivella A, Banchi M, Gambacorta G, Borghi F, Orlandi P, Baxendale IR, Di Paolo A, Bocci G, Pinzi L, Rastelli G. Discovery of a Potent Dual Inhibitor of Aromatase and Aldosterone Synthase. ACS Pharmacol Transl Sci 2023; 6:1870-1883. [PMID: 38093846 PMCID: PMC10714424 DOI: 10.1021/acsptsci.3c00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2024]
Abstract
Estrogen deficiency derived from inhibition of estrogen biosynthesis is a typical condition of postmenopausal women and breast cancer (BCs) patients undergoing antihormone therapy. The ensuing increase in aldosterone levels is considered to be the major cause for cardiovascular diseases (CVDs) affecting these patients. Since estrogen biosynthesis is regulated by aromatase (CYP19A1), and aldosterone biosynthesis is modulated by aldosterone synthase (CYP11B2), a dual inhibitor would allow the treatment of BC while reducing the cardiovascular risks typical of these patients. Moreover, this strategy would help overcome some of the disadvantages often observed in single-target or combination therapies. Following an in-depth analysis of a library of synthesized benzylimidazole derivatives, compound X21 was found to be a potent and selective dual inhibitor of aromatase and aldosterone synthase, with IC50 values of 2.3 and 29 nM, respectively. Remarkably, the compound showed high selectivity with respect to 11β-hydroxylase (CYP11B1), as well as CYP3A4 and CYP1A2. When tested in cells, X21 showed potent antiproliferative activity against BC cell lines, particularly against the ER+ MCF-7 cells (IC50 of 0.26 ± 0.03 μM at 72 h), and a remarkable pro-apoptotic effect. In addition, the compound significantly inhibited mTOR phosphorylation at its IC50 concentration, thereby negatively modulating the PI3K/Akt/mTOR axis, which represents an escape for the dependency from ER signaling in BC cells. The compound was further investigated for cytotoxicity on normal cells and potential cardiotoxicity against hERG and Nav1.5 ion channels, demonstrating a safe biological profile. Overall, these assays demonstrated that the compound is potent and safe, thus constituting an excellent candidate for further evaluation.
Collapse
Affiliation(s)
- Annachiara Tinivella
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Marta Banchi
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Guido Gambacorta
- Department
of Chemistry, University of Durham, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K.
| | - Federica Borghi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Paola Orlandi
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Ian R. Baxendale
- Department
of Chemistry, University of Durham, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K.
| | - Antonello Di Paolo
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Guido Bocci
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Luca Pinzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| | - Giulio Rastelli
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via G. Campi, Modena 41125, Italy
| |
Collapse
|
6
|
In silico selectivity modeling of pyridine and pyrimidine based CYP11B1 and CYP11B2 inhibitors: A case study. J Mol Graph Model 2022; 116:108238. [PMID: 35691091 DOI: 10.1016/j.jmgm.2022.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022]
Abstract
DESIGN of selective drug candidates for highly structural similar targets is a challenging task for researchers. The main objective of this study was to explore the selectivity modeling of pyridine and pyrimidine scaffold towards the highly homologous targets CYP11B1 and CYP11B2 enzymes by in silico (Molecular docking and QSAR) approaches. In this regard, a big dataset (n = 228) of CYP11B1 and CYP11B2 inhibitors were gathered and classified based on heterocyclic ring and the exhaustive analysis was carried out for pyridine and pyrimidinescaffolds. The LibDock algorithm was used to explore the binding pattern, screening, and identify the structural feature responsible for the selectivity of the ligands towards the studied targets. Finally, QSAR analysis was done to explore the correlation between various binding parameters and structural features responsible for the inhibitory activity and selectivity of the ligands in a quantitative way. The docking and QSAR analysis clearly revealed and distinguished the importance of structural features, functional groups attached for CYP11B2 and CYP11B1 selectivity for pyridine and pyrimidine analogs. Additionally, the docking analysis highlighted the differentiating amino acids residues for selectivity for ligands for each of the enzymes. The results obtained from this research work will be helpful in designing the selective CYP11B1/CYP11B2 inhibitors.
Collapse
|
7
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
8
|
Wu J, Ding X, Tan X. A patent review of aldosterone synthase inhibitors (2014-present). Expert Opin Ther Pat 2021; 32:13-28. [PMID: 34365871 DOI: 10.1080/13543776.2021.1965991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Aldosterone synthase (AS) is a key enzyme involved in the final three rate-limiting steps of the biosynthesis pathway of aldosterone, and its inhibition has been considered as an effective strategy to treat hypertension, heart failure, and related cardio-metabolic diseases. AREA COVERED This review provides an update on the discovery and development of aldosterone synthase inhibitors by means of patents published between January 2014 and March 2021. The molecules are classified by pharmaceutical company with progress that has been made in clinical trials being highlighted. EXPERT OPINION Mineralocorticoid receptor antagonists (MRAs) and aldosterone synthase inhibitors (ASI) represent two of the main approaches for the blockade of aldosterone. Clinical success, as well as foreseen side effects of steroidal MRAs, prompted the discovery and development of ASI. Since the observation of decreased cortisol levels in clinical trials for LCI699, subsequent efforts have been largely focused on improving its selectivity over hCYP11B1. Candidates with improved potency and selectivity are under investigation across a wide range of indications. Whether ASI will provide an additional therapeutic advantage over current safe and selective non-steroidal MRAs is highly anticipated.
Collapse
Affiliation(s)
- Jun Wu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| | - Xiao Ding
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| | - Xuefei Tan
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| |
Collapse
|
9
|
Brixius-Anderko S, Scott EE. Aldosterone Synthase Structure With Cushing Disease Drug LCI699 Highlights Avenues for Selective CYP11B Drug Design. Hypertension 2021; 78:751-759. [PMID: 34247511 DOI: 10.1161/hypertensionaha.121.17615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Emily E Scott
- Departments of Medicinal Chemistry (S.B.-A., E.E.S.), University of Michigan, Ann Arbor.,Pharmacology (E.E.S.), University of Michigan, Ann Arbor
| |
Collapse
|
10
|
Zhu H, Liu M, Li H, Guan T, Zhang Q, Chen Y, Liu Y, Hartmann RR, Yin L, Hu Q. Design, synthesis and biological evaluation of pyridyl substituted benzoxazepinones as potent and selective inhibitors of aldosterone synthase. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Brixius-Anderko S, Scott EE. Structural and functional insights into aldosterone synthase interaction with its redox partner protein adrenodoxin. J Biol Chem 2021; 296:100794. [PMID: 34015331 PMCID: PMC8215293 DOI: 10.1016/j.jbc.2021.100794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023] Open
Abstract
Aldosterone is the major mineralocorticoid in the human body controlling blood pressure and salt homeostasis. Overproduction of aldosterone leads to primary aldosteronism, which is the most common form of secondary hypertension with limited treatment options. Production of aldosterone by cytochrome P450 11B2 (CYP11B2, aldosterone synthase) requires two reduction events with the electrons delivered by the iron/sulfur protein adrenodoxin. Very limited information is available about the structural and functional basis of adrenodoxin/CYP11B2 interaction, which impedes the development of new treatment options for primary aldosteronism. A systematic study was carried out to determine if adrenodoxin interaction with CYP11B2 might also have an allosteric component in addition to electron transfer. Indeed, local increases in adrenodoxin concentration promote binding of the substrate 11-deoxycorticosterone and the inhibitor osilodrostat (LCI699) in the active site-over 17 Å away-as well as enhance the inhibitory effect of this latter drug. The CYP11B2 structure in complex with adrenodoxin identified specific residues at the protein-protein interface interacting via five salt bridges and four hydrogen bonds. Comparisons with cholesterol-metabolizing CYP11A1 and cortisol-producing CYP11B1, which also bind adrenodoxin, revealed substantial structural differences in these regions. The structural and functional differences between different P450 interactions with adrenodoxin may provide valuable clues for an orthogonal treatment approach for primary aldosteronism by specifically targeting the interaction between CYP11B2 and adrenodoxin.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Liu Y, Wu J, Zhou M, Chen W, Li D, Wang Z, Hornsperger B, Aebi JD, Märki HP, Kuhn B, Wang L, Kuglstatter A, Benz J, Müller S, Hochstrasser R, Ottaviani G, Xin J, Kirchner S, Mohr S, Verry P, Riboulet W, Shen HC, Mayweg AV, Amrein K, Tan X. Discovery of 3-Pyridyl Isoindolin-1-one Derivatives as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors. J Med Chem 2020; 63:6876-6897. [DOI: 10.1021/acs.jmedchem.0c00233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Li X, Liao J, Jiang Z, Liu X, Chen S, He X, Zhu L, Duan X, Xu Z, Qi B, Guo X, Tong R, Shi J. A concise review of recent advances in anti-heart failure targets and its small molecules inhibitors in recent years. Eur J Med Chem 2020; 186:111852. [PMID: 31759729 DOI: 10.1016/j.ejmech.2019.111852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Heart failure is a disease with high mortality and the risk of heart failure increases in magnitude with age. The patients of heart failure is increasing year by year. Hence, Pharmaceutical researchers have to develop new drugs with better pharmacological effects to coping with this phenomenon. In this article, we reviewed the small molecule compounds for heart failure that have been marketed in recent years or are promising to enter clinical research. We also reviewed the SAR (structure activity relationship) of these molecules, such as renin inhibitors, ROMK inhibitors, a kind of new diuretics, and some dual-targets inhibitors. These small molecules proven to be beneficial effect on heart failure patients. Which may provide ideas for the design of novel anti-heart failure therapeutic drugs.
Collapse
Affiliation(s)
- Xingxing Li
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Jing Liao
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Pediatric Department Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, People's Republic of China, Chengdu, 610072, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xinyu Liu
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Shan Chen
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Xia He
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China
| | - Ling Zhu
- Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Xingmei Duan
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China
| | - Zhuyu Xu
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaoqiang Guo
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Rongsheng Tong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China.
| | - Jianyou Shi
- School of Medicine, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, 610054, China; Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Individual Key Laboratory, Chengdu, People's Republic of China, Chengdu, 610072, China.
| |
Collapse
|
14
|
Bongarzone S, Basagni F, Sementa T, Singh N, Gakpetor C, Faugeras V, Bordoloi J, Gee AD. Development of [ 18F]FAMTO: A novel fluorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands. Nucl Med Biol 2019; 68-69:14-21. [PMID: 30578137 PMCID: PMC6859501 DOI: 10.1016/j.nucmedbio.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Primary aldosteronism accounts for 6-15% of hypertension cases, the single biggest contributor to global morbidity and mortality. Whilst ~50% of these patients have unilateral aldosterone-producing adenomas, only a minority of these have curative surgery as the current diagnosis of unilateral disease is poor. Carbon-11 radiolabelled metomidate ([11C]MTO) is a positron emission tomography (PET) radiotracer able to selectively identify CYP11B1/2 expressing adrenocortical lesions of the adrenal gland. However, the use of [11C]MTO is limited to PET centres equipped with on-site cyclotrons due to its short half-life of 20.4 min. Radiolabelling a fluorometomidate derivative with fluorine-18 (radioactive half life 109.8 min) in the para-aromatic position ([18F]FAMTO) has the potential to overcome this disadvantage and allow it to be transported to non-cyclotron-based imaging centres. METHODS Two strategies for the one-step radio-synthesis of [18F]FAMTO were developed. [18F]FAMTO was obtained via radiofluorination via use of sulfonium salt (1) and boronic ester (2) precursors. [18F]FAMTO was evaluated in vitro by autoradiography of pig adrenal tissues and in vivo by determining its biodistribution in rodents. Rat plasma and urine were analysed to determine [18F]FAMTO metabolites. RESULTS [18F]FAMTO is obtained from sulfonium salt (1) and boronic ester (2) precursors in 7% and 32% non-isolated radiochemical yield (RCY), respectively. Formulated [18F]FAMTO was obtained with >99% radiochemical and enantiomeric purity with a synthesis time of 140 min from the trapping of [18F]fluoride ion on an anion-exchange resin (QMA cartridge). In vitro autoradiography of [18F]FAMTO demonstrated exquisite specific binding in CYP11B-rich pig adrenal glands. In vivo [18F]FAMTO rapidly accumulates in adrenal glands. Liver uptake was about 34% of that in the adrenals and all other organs were <12% of the adrenal uptake at 60 min post-injection. Metabolite analysis showed 13% unchanged [18F]FAMTO in blood at 10 min post-administration and rapid urinary excretion. In vitro assays in human blood showed a free fraction of 37.5%. CONCLUSIONS [18F]FAMTO, a new 18F-labelled analogue of metomidate, was successfully synthesised. In vitro and in vivo characterization demonstrated high selectivity towards aldosterone-producing enzymes (CYP11B1 and CYP11B2), supporting the potential of this radiotracer for human investigation.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Filippo Basagni
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Teresa Sementa
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Nisha Singh
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Caleb Gakpetor
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Vincent Faugeras
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Jayanta Bordoloi
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Antony D Gee
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
15
|
Abstract
The mineralocorticoid aldosterone is an important regulator of blood pressure and electrolyte balance. However, excess aldosterone can be deleterious as a driver of inflammation, vascular remodeling and tissue fibrosis associated with cardiometabolic diseases. Mineralocorticoid receptor antagonists (MRA) and renin-angiotensin-aldosterone system (RAAS) antagonists are current clinical therapies used to antagonize deleterious effects of aldosterone in patients. MRAs compete with aldosterone for binding at its cognate receptor thereby limiting its effect while RAS antagonists reduce aldosterone levels indirectly by blocking the stimulatory effect of angiotensin. Both MRAs and RAS antagonists can result in incomplete inhibition of the harmful effects of excess aldosterone. Aldosterone synthase (AS) inhibitors (ASI) attenuate the production of aldosterone directly and have been proposed as an alternative to MRAs and RAS blockers. Cortisol synthase (CS) is an enzyme closely related to AS and responsible for generating the important glucocorticoid cortisol, required for maintaining critical metabolic and immune responses. The importance of selectivity against CS is shown by early examples of ASIs that were only modestly selective and as such, attenuated cortisol responses when evaluated in patients. Recently, next-generation, highly selective ASIs have been described and are presently being evaluated in the clinic as an alternative to angiotensin and MR antagonists for cardiometabolic disease. Herein we provide a brief review of the challenges associated with discovery of selective ASIs and the transition from the early compounds that paved the way toward the next-generation of highly selective ASIs currently under development.
Collapse
Affiliation(s)
- Steven M Weldon
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States.
| | - Nicholas F Brown
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
16
|
Ramsden D, Smith D, Arenas R, Frederick K, Cerny MA. Identification and Characterization of a Selective Human Carbonyl Reductase 1 Substrate. Drug Metab Dispos 2018; 46:1434-1440. [DOI: 10.1124/dmd.118.082487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
|
17
|
Sakakibara R, Sasaki W, Onda Y, Yamaguchi M, Ushirogochi H, Hiraga Y, Sato K, Nishio M, Egi Y, Takedomi K, Shimizu H, Ohbora T, Akahoshi F. Discovery of Novel Pyrazole-Based Selective Aldosterone Synthase (CYP11B2) Inhibitors: A New Template to Coordinate the Heme-Iron Motif of CYP11B2. J Med Chem 2018; 61:5594-5608. [DOI: 10.1021/acs.jmedchem.8b00328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ryo Sakakibara
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Wataru Sasaki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Yuichi Onda
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Minami Yamaguchi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Hideki Ushirogochi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Yuki Hiraga
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Kanako Sato
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Masashi Nishio
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Yasuhiro Egi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Kei Takedomi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Hidetoshi Shimizu
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Tomoko Ohbora
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| | - Fumihiko Akahoshi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan
| |
Collapse
|
18
|
Mayurasakorn K, Hasanah N, Homma T, Homma M, Rangel IK, Garza AE, Romero JR, Adler GK, Williams GH, Pojoga LH. Caloric restriction improves glucose homeostasis, yet increases cardiometabolic risk in caveolin-1-deficient mice. Metabolism 2018; 83:92-101. [PMID: 29410348 PMCID: PMC10619427 DOI: 10.1016/j.metabol.2018.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE The plasma membrane protein caveolin-1 (CAV-1) has been shown to be involved in modulating glucose homeostasis and the actions of the renin-angiotensin-aldosterone system (RAAS). Caloric restriction (CR) is widely accepted as an effective therapeutic approach to improve insulin sensitivity and reduce the severity of diabetes. Recent data indicate that polymorphisms of the CAV-1 gene are strongly associated with insulin resistance, hypertension and metabolic abnormalities in non-obese individuals. Therefore, we sought to determine whether CR improves the metabolic and cardiovascular (CV) risk factors in the lean CAV-1 KO mice. MATERIALS/METHODS Twelve- to fourteen-week-old CAV-1 knockout (KO) and genetically matched wild-type (WT) male mice were randomized by genotype to one of two dietary regimens: ad libitum (ad lib) food intake or 40% CR for 4 weeks. Three weeks following the onset of dietary restriction, all groups were assessed for insulin sensitivity. At the end of the study, all groups were assessed for fasting glucose, insulin, HOMA-IR, lipids, corticosterone levels and blood pressure (BP). Aldosterone secretion was determined from acutely isolated Zona Glomerulosa cells. RESULTS We confirmed that the CAV-1 KO mice on the ad lib diet display a phenotype consistent with the cardiometabolic syndrome, as shown by higher systolic BP (SBP), plasma glucose, HOMA-IR and aldosterone levels despite lower body weight compared with WT mice on the ad lib diet. CAV-1 KO mice maintained their body weight on the ad lib diet, but had substantially greater weight loss with CR, as compared to caloric restricted WT mice. CR-mediated changes in weight were associated with dramatic improvements in glucose and insulin tolerance in both genotypes. These responses to CR, however, were more robust in CAV-1KO vs. WT mice and were accompanied by reductions in plasma glucose, insulin and HOMA-IR in CAV-1KO but not WT mice. Surprisingly, in the CAV-1 KO, but not in WT mice, CR was associated with increased SBP and aldosterone levels, suggesting that in CAV-1 KO mice CR induced an increase in some CV risk factors. CONCLUSIONS CR improved the metabolic phenotype in CAV-1 KO mice by increasing insulin sensitivity; nevertheless, this intervention also increased CV risk by inappropriate adaptive responses in the RAAS and BP.
Collapse
Affiliation(s)
- Korapat Mayurasakorn
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nurul Hasanah
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Universiti Teknologi MARA, Kuala Lumpur, Malaysia
| | - Tsuyoshi Homma
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mika Homma
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isis Katayama Rangel
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Dihydrobenzisoxazole-4-one compounds are novel selective inhibitors of aldosterone synthase (CYP11B2) with in vivo activity. Bioorg Med Chem Lett 2018; 28:979-984. [DOI: 10.1016/j.bmcl.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022]
|
20
|
Infante M, Armani A, Mammi C, Fabbri A, Caprio M. Impact of Adrenal Steroids on Regulation of Adipose Tissue. Compr Physiol 2017; 7:1425-1447. [PMID: 28915330 DOI: 10.1002/cphy.c160037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Corticosteroids are secreted by the adrenal glands and control the functions of adipose tissue via the activation of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). In turn, adipocytes release a large variety of adipokines into the bloodstream, regulating the function of several organs and tissues, including the adrenal glands, hereby controlling corticosteroid production. In adipose tissue, the activation of the MR by glucocorticoids (GC) and aldosterone affects important processes such as adipocyte differentiation, oxidative stress, autophagic flux, adipokine expression as well as local production of GC through upregulation of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Notably, the proinflammatory responses induced by the MR are counteracted by activation of the GR, whose activity inhibits the expression of inflammatory adipokines. Both GR and MR are deeply involved in adipogenesis and adipose expansion; hence pharmacological blockade of these two receptors has proven effective against adipose tissue dysfunction in experimental models of obesity and metabolic syndrome (MetS), suggesting a potential use for MR and GR antagonists in these clinical settings. Importantly, obesity and Cushing's syndrome (CS) share metabolic similarities and are characterized by high levels of circulating corticosteroids, which in turn are able to deeply affect adipose tissue. In addition, pharmacological approaches aimed at reducing aldosterone and GC levels, by means of the inhibition of CYP11B2 (aldosterone synthase) or 11β-HSD1, represent alternative strategies to counter the detrimental effects of excessive levels of corticosteroids, which are often observed in obesity and, more general, in MetS. © 2017 American Physiological Society. Compr Physiol 7:1425-1447, 2017.
Collapse
Affiliation(s)
- Marco Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
21
|
Hoyt SB, Taylor J, London C, Ali A, Ujjainwalla F, Tata J, Struthers M, Cully D, Wisniewski T, Ren N, Bopp C, Sok A, Verras A, McMasters D, Chen Q, Tung E, Tang W, Salituro G, Clemas J, Zhou G, MacNeil D, Duffy R, Xiong Y. Discovery of indazole aldosterone synthase (CYP11B2) inhibitors as potential treatments for hypertension. Bioorg Med Chem Lett 2017; 27:2384-2388. [DOI: 10.1016/j.bmcl.2017.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/10/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
22
|
Meguro M, Miyauchi S, Kanao Y, Naito S, Suzuki K, Inoue S, Yamada K, Homma T, Chiba K, Nara F, Furuzono S. 4-Anilino-pyrimidine, novel aldosterone synthase (CYP11B2) inhibitors bearing pyrimidine structures. Bioorg Med Chem Lett 2017; 27:1902-1906. [DOI: 10.1016/j.bmcl.2017.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
|
23
|
Petrilli WL, Hoyt SB, London C, McMasters D, Verras A, Struthers M, Cully D, Wisniewski T, Ren N, Bopp C, Sok A, Chen Q, Li Y, Tung E, Tang W, Salituro G, Knemeyer I, Karanam B, Clemas J, Zhou G, Gibson J, Shipley CA, MacNeil DJ, Duffy R, Tata JR, Ujjainwalla F, Ali A, Xiong Y. Discovery of Spirocyclic Aldosterone Synthase Inhibitors as Potential Treatments for Resistant Hypertension. ACS Med Chem Lett 2017; 8:128-132. [PMID: 28105288 PMCID: PMC5238464 DOI: 10.1021/acsmedchemlett.6b00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 01/26/2023] Open
Abstract
Herein we report the discovery and hit-to-lead optimization of a series of spirocyclic piperidine aldosterone synthase (CYP11B2) inhibitors. Compounds from this series display potent CYP11B2 inhibition, good selectivity versus related CYP enzymes, and lead-like physical and pharmacokinetic properties.
Collapse
Affiliation(s)
- Whitney L. Petrilli
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Scott B. Hoyt
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Clare London
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Daniel McMasters
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Andreas Verras
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Mary Struthers
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Doris Cully
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Thomas Wisniewski
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Ning Ren
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Charlene Bopp
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Andrea Sok
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Qing Chen
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Ying Li
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Elaine Tung
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Wei Tang
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gino Salituro
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Ian Knemeyer
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Bindhu Karanam
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Joseph Clemas
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gaochao Zhou
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jack Gibson
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Carrie Ann Shipley
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Douglas J. MacNeil
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Ruth Duffy
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - James R. Tata
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Feroze Ujjainwalla
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Amjad Ali
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Yusheng Xiong
- Departments
of Discovery Chemistry, Chemistry Modeling & Informatics, Hypertension, Drug Metabolism
& Pharmacokinetics, and In Vitro Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| |
Collapse
|
24
|
Imidazopyridyl compounds as aldosterone synthase inhibitors. Bioorg Med Chem Lett 2017; 27:143-146. [DOI: 10.1016/j.bmcl.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022]
|
25
|
Ohnishi S, Ichiba H, Saito M, Hamazaki T, Matsumura H, Shintaku H. Glucocorticoids and erythropoietin in chronic lung disease of prematurity: Proliferative potential in lung fibroblast and epithelial cells exposed to tracheal aspirates. Pediatr Int 2016; 58:1163-1170. [PMID: 27076443 DOI: 10.1111/ped.13009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/03/2016] [Accepted: 04/01/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND We investigated the effects of glucocorticoids, erythropoietin (EPO) and spironolactone (SPL) n human fetal lung fibroblasts and human alveolar epithelial cells exposed to tracheal aspirate fluid (TAF) from extremely premature infants with chronic lung disease (CLD), characterized by fibrosis and changes in the alveolar epithelium. METHODS Fibroblasts and epithelial cells (FHs 738Lu and A549, respectively) were treated with different concentrations of hydrocortisone (HDC), dexamethasone (DEX), betamethasone (BET), SPL, and EPO in the absence or presence of TAF from infants with CLD (gestational age, 25.3 ± 0.8 weeks; birthweight, 658 ± 77 g; postnatal age, 0-28 days) and assayed for proliferation. RESULTS Exposure to TAF resulted in a concentration-dependent proliferation of fibroblasts and epithelial cells. Proliferation of TAF-exposed fibroblasts was suppressed most significantly by 100 μmol/L DEX (21%, P = 0.046) and 300 mIU/mL EPO (18%, P = 0.02) and promoted most significantly by 0.4 μmol/L HDC (10%, P = 0.04). Epithelial proliferation was promoted by 4 μmol/L HDC (15%, P = 0.04), 10 μmol/L DEX (53%, P < 0.01), 0.2 μmol/L BET (56%, P < 0.01), and 300 mIU/mL EPO (35%, P < 0.01) in the presence of TAF. Treatment with glucocorticoids alone did not significantly affect fibroblast proliferation. CONCLUSIONS Glucocorticoids and EPO reduced fibroproliferation while promoting epithelial cell growth in vitro within certain dose ranges. Appropriate doses of glucocorticoids and EPO may be useful in the prevention and resolution of CLD in extremely premature infants.
Collapse
Affiliation(s)
- Satoshi Ohnishi
- Department of Pediatrics Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Neonatology Osaka City General Hospital, Osaka, Japan
| | - Hiroyuki Ichiba
- Department of Neonatology Osaka City General Hospital, Osaka, Japan
| | - Mika Saito
- Department of Pediatrics Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takashi Hamazaki
- Department of Pediatrics Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hisako Matsumura
- Department of Pediatrics Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Neonatology Osaka City General Hospital, Osaka, Japan
| | - Haruo Shintaku
- Department of Pediatrics Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
26
|
Abstract
The first mineralocorticoid receptor (MR) antagonist, spironolactone, was developed almost 60 years ago to treat primary aldosteronism and pathological edema. Its use waned in part because of its lack of selectivity. Subsequently, knowledge of the scope of MR function was expanded along with clinical evidence of the therapeutic importance of MR antagonists to prevent the ravages of inappropriate MR activation. Forty-two years elapsed between the first and MR-selective second generation of MR antagonists. Fifteen years later, despite serious shortcomings of the existing antagonists, a third-generation antagonist has yet to be marketed. Progress has been slowed by the lack of appreciation of the large variety of cell types that express the MR and its diverse cell-type-specific actions, and also its unique complex interaction actions at the molecular level. New MR antagonists should preferentially target the inflammatory and fibrotic effects of MR and perhaps its excitatory effects on sympathetic nervous system, but not the renal tubular epithelium or neurons of the cortex and hippocampus. This review briefly describes efforts to develop a third-generation MR antagonist and why fourth generation antagonists and selective agonists based on structural determinants of tissue and ligand-specific MR activation should be contemplated.
Collapse
|
27
|
Ma L, Yin L, Hu Q. Therapeutic compounds for Cushing's syndrome: a patent review (2012-2016). Expert Opin Ther Pat 2016; 26:1307-1323. [PMID: 27454103 DOI: 10.1080/13543776.2016.1217331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Endogenous Cushing's syndrome (CS) is a set of disorders caused by chronic exposure to excess glucocorticoids induced by neuroendocrine tumors in pituitary, adrenals, and infrequently other sites (ectopic ACTH syndrome). Due to various comorbidities, CS patients exhibit higher risks of cardiovascular diseases and thus increased mortality. Pharmaceutical therapy is an important constituent of treatment regimen. Areas covered: Patents published since 2012 are reviewed, which claim therapeutic compounds interfering with ACTH secretion and down-stream signal transduction, inhibiting cortisol biosynthesis and antagonizing glucocorticoid receptors. Advances focus on a) new analogues with improved efficacy and PK properties or less off-target toxicity; b) existing drugs (candidates) being repurposed to treat CS; and c) novel strategies such as selective inhibition of CYP11B1. Expert opinion: New compounds against established targets need to be developed because current drugs lack selectivity leading to off-target toxicity. Selective inhibition of CYP11B1 is a novel alternative strategy and is potentially versatile in controlling all types of hypercortisolism. Selective multi-targeting enzymes in steroidogenesis network is promising due to potential synergistic effects. However, doses toward each targets are not feasible to adjust because the corresponding intrinsic potencies are rigid. Targeting PRKACA mutations is promising in treating CS caused by adrenal adenomas.
Collapse
Affiliation(s)
- Li Ma
- a College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China PR
| | | | - Qingzhong Hu
- c Department of Chemistry , University of Cambridge , Cambridge , UK
| |
Collapse
|
28
|
Gobbi S, Hu Q, Zimmer C, Belluti F, Rampa A, Hartmann RW, Bisi A. Targeting Steroidogenic Cytochromes P450 (CYPs) with 6-Substituted 1-Imidazolylmethylxanthones. ChemMedChem 2016; 11:1770-7. [DOI: 10.1002/cmdc.201600078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/11/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Silvia Gobbi
- Department of Pharmacy and Biotechnology; University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry; Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätscampus E8 1 66123 Saarbrücken Germany
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Christina Zimmer
- Pharmaceutical and Medicinal Chemistry; Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätscampus E8 1 66123 Saarbrücken Germany
| | - Federica Belluti
- Department of Pharmacy and Biotechnology; University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology; University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry; Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätscampus E8 1 66123 Saarbrücken Germany
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology; University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| |
Collapse
|
29
|
Gobbi S, Hu Q, Zimmer C, Engel M, Belluti F, Rampa A, Hartmann RW, Bisi A. Exploiting the Chromone Scaffold for the Development of Inhibitors of Corticosteroid Biosynthesis. J Med Chem 2016; 59:2468-77. [DOI: 10.1021/acs.jmedchem.5b01609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Silvia Gobbi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Christina Zimmer
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Matthias Engel
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Federica Belluti
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Angela Rampa
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123 Saarbrücken, Germany
| | - Alessandra Bisi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro,
6, I-40126 Bologna, Italy
| |
Collapse
|
30
|
Martin RE, Lehmann J, Alzieu T, Lenz M, Carnero Corrales MA, Aebi JD, Märki HP, Kuhn B, Amrein K, Mayweg AV, Britton R. Synthesis of annulated pyridines as inhibitors of aldosterone synthase (CYP11B2). Org Biomol Chem 2016; 14:5922-7. [DOI: 10.1039/c6ob00848h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of potent and selective aldosterone synthase (CYP11B2) inhibitors were prepared in one step through an intermolecular Kondrat'eva reaction.
Collapse
|
31
|
Papillon JPN, Lou C, Singh AK, Adams CM, Ksander GM, Beil ME, Chen W, Leung-Chu J, Fu F, Gan L, Hu CW, Jeng AY, LaSala D, Liang G, Rigel DF, Russell KS, Vest JA, Watson C. Discovery of N-[5-(6-Chloro-3-cyano-1-methyl-1H-indol-2-yl)-pyridin-3-ylmethyl]-ethanesulfonamide, a Cortisol-Sparing CYP11B2 Inhibitor that Lowers Aldosterone in Human Subjects. J Med Chem 2015; 58:9382-94. [PMID: 26540564 DOI: 10.1021/acs.jmedchem.5b01545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human clinical studies conducted with LCI699 established aldosterone synthase (CYP11B2) inhibition as a promising novel mechanism to lower arterial blood pressure. However, LCI699's low CYP11B1/CYP11B2 selectivity resulted in blunting of adrenocorticotropic hormone-stimulated cortisol secretion. This property of LCI699 prompted its development in Cushing's disease, but limited more extensive clinical studies in hypertensive populations, and provided an impetus for the search for cortisol-sparing CYP11B2 inhibitors. This paper summarizes the discovery, pharmacokinetics, and pharmacodynamic data in preclinical species and human subjects of the selective CYP11B2 inhibitor 8.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael E Beil
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Wei Chen
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Jennifer Leung-Chu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Fumin Fu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | - Chii-Whei Hu
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Arco Y Jeng
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Daniel LaSala
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | - Dean F Rigel
- Cardiovascular and Metabolism, Novartis Institutes for BioMedical Research , One Health Plaza, East Hanover, New Jersey 07936, United States
| | | | | | | |
Collapse
|
32
|
Martin RE, Aebi JD, Hornsperger B, Krebs HJ, Kuhn B, Kuglstatter A, Alker AM, Märki HP, Müller S, Burger D, Ottaviani G, Riboulet W, Verry P, Tan X, Amrein K, Mayweg AV. Discovery of 4-Aryl-5,6,7,8-tetrahydroisoquinolines as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors: In Vivo Evaluation in Rodents and Cynomolgus Monkeys. J Med Chem 2015; 58:8054-65. [PMID: 26403853 DOI: 10.1021/acs.jmedchem.5b00851] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inappropriately high levels of aldosterone are associated with many serious medical conditions, including renal and cardiac failure. A focused screen hit has been optimized into a potent and selective aldosterone synthase (CYP11B2) inhibitor with in vitro activity against rat, mouse, human, and cynomolgus monkey enzymes, showing a selectivity factor of 160 against cytochrome CYP11B1 in the last species. The novel tetrahydroisoquinoline compound (+)-(R)-6 selectively reduced aldosterone plasma levels in vivo in a dose-dependent manner in db/db mice and cynomolgus monkeys. The selectivity against CYP11B1 as predicted by cellular inhibition data and free plasma fraction translated well to Synacthen challenged cynomolgus monkeys up to a dose of 0.1 mg kg(-1). This compound, displaying good in vivo potency and selectivity in mice and monkeys, is ideally suited to perform mechanistic studies in relevant rodent models and to provide the information necessary for translation to non-human primates and ultimately to man.
Collapse
Affiliation(s)
- Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Johannes D Aebi
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Benoit Hornsperger
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Hans-Jakob Krebs
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Bernd Kuhn
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - André M Alker
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Hans Peter Märki
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Stephan Müller
- Discovery Technologies, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Dominique Burger
- Discovery Technologies, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Giorgio Ottaviani
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Shanghai, F. Hoffmann-La Roche Ltd. , 720 Cai Lun Road, Building 5, Pudong, Shanghai 201203, China
| | - William Riboulet
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Philippe Verry
- Discovery Cardiovascular and Metabolic Disease, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Xuefei Tan
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Shanghai, F. Hoffmann-La Roche Ltd. , 720 Cai Lun Road, Building 5, Pudong, Shanghai 201203, China
| | - Kurt Amrein
- Discovery Infectious Disease, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Alexander V Mayweg
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
33
|
|
34
|
Hoyt SB, Petrilli W, London C, Liang GB, Tata J, Hu Q, Yin L, van Koppen CJ, Hartmann RW, Struthers M, Wisniewski T, Ren N, Bopp C, Sok A, Cai TQ, Stribling S, Pai LY, Ma X, Metzger J, Verras A, McMasters D, Chen Q, Tung E, Tang W, Salituro G, Buist N, Clemas J, Zhou G, Gibson J, Maxwell CA, Lassman M, McLaughlin T, Castro-Perez J, Szeto D, Forrest G, Hajdu R, Rosenbach M, Xiong Y. Discovery of Triazole CYP11B2 Inhibitors with in Vivo Activity in Rhesus Monkeys. ACS Med Chem Lett 2015; 6:861-5. [PMID: 26288685 DOI: 10.1021/acsmedchemlett.5b00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/17/2015] [Indexed: 12/21/2022] Open
Abstract
Hit-to-lead efforts resulted in the discovery of compound 19, a potent CYP11B2 inhibitor that displays high selectivity vs related CYPs, good pharmacokinetic properties in rat and rhesus, and lead-like physical properties. In a rhesus pharmacodynamic model, compound 19 displays robust, dose-dependent aldosterone lowering efficacy, with no apparent effect on cortisol levels.
Collapse
Affiliation(s)
- Scott B. Hoyt
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Whitney Petrilli
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Clare London
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gui-Bai Liang
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jim Tata
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Qingzhong Hu
- Department
of Pharmaceutical and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Lina Yin
- Department
of Pharmaceutical and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Im Stadtwald, D-66123 Saarbrücken, Germany
| | | | - Rolf W. Hartmann
- Department
of Pharmaceutical and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C2-3, D-66123 Saarbrücken, Germany
| | - Mary Struthers
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Tom Wisniewski
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Ning Ren
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Charlene Bopp
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Andrea Sok
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Tian-Quan Cai
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Sloan Stribling
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Lee-Yuh Pai
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Xiuying Ma
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Joe Metzger
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Andreas Verras
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Daniel McMasters
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Qing Chen
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Elaine Tung
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Wei Tang
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gino Salituro
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Nicole Buist
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Joe Clemas
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gaochao Zhou
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jack Gibson
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | | | - Mike Lassman
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | | | - Jose Castro-Perez
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Daphne Szeto
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gail Forrest
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Richard Hajdu
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Mark Rosenbach
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Yusheng Xiong
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| |
Collapse
|
35
|
Schiffer L, Anderko S, Hannemann F, Eiden-Plach A, Bernhardt R. The CYP11B subfamily. J Steroid Biochem Mol Biol 2015; 151:38-51. [PMID: 25465475 DOI: 10.1016/j.jsbmb.2014.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Abstract
The biosynthesis of steroid hormones is dependent on P450-catalyzed reactions. In mammals, cholesterol is the common precursor of all steroid hormones, and its conversion to pregnenolone is the initial and rate-limiting step in hormone biosynthesis in steroidogenic tissues such as gonads and adrenal glands. The production of glucocorticoids and mineralocorticoids takes place in the adrenal gland and the final steps are catalyzed by 2 mitochondrial cytochromes P450, CYP11B1 (11β-hydroxylase or P45011β) and CYP11B2 (aldosterone synthase or P450aldo). The occurrence and development of these 2 enzymes in different species, their contribution to the biosynthesis of steroid hormones as well as their regulation at different levels (gene expression, cellular regulation, regulation on the level of proteins) is the topic of this chapter.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Simone Anderko
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Antje Eiden-Plach
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
36
|
Papillon JPN, Adams CM, Hu QY, Lou C, Singh AK, Zhang C, Carvalho J, Rajan S, Amaral A, Beil ME, Fu F, Gangl E, Hu CW, Jeng AY, LaSala D, Liang G, Logman M, Maniara WM, Rigel DF, Smith SA, Ksander GM. Structure–Activity Relationships, Pharmacokinetics, and in Vivo Activity of CYP11B2 and CYP11B1 Inhibitors. J Med Chem 2015; 58:4749-70. [DOI: 10.1021/acs.jmedchem.5b00407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julien P. N. Papillon
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher M. Adams
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qi-Ying Hu
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Changgang Lou
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alok K. Singh
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chun Zhang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jose Carvalho
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Srinivan Rajan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Adam Amaral
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael E. Beil
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Fumin Fu
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Eric Gangl
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chii-Whei Hu
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Arco Y. Jeng
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Daniel LaSala
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Logman
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wieslawa M. Maniara
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dean F. Rigel
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Sherri A. Smith
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gary M. Ksander
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Hoyt SB, Park MK, London C, Xiong Y, Tata J, Bennett DJ, Cooke A, Cai J, Carswell E, Robinson J, MacLean J, Brown L, Belshaw S, Clarkson TR, Liu K, Liang GB, Struthers M, Cully D, Wisniewski T, Ren N, Bopp C, Sok A, Cai TQ, Stribling S, Pai LY, Ma X, Metzger J, Verras A, McMasters D, Chen Q, Tung E, Tang W, Salituro G, Buist N, Kuethe J, Rivera N, Clemas J, Zhou G, Gibson J, Maxwell CA, Lassman M, McLaughlin T, Castro-Perez J, Szeto D, Forrest G, Hajdu R, Rosenbach M, Ali A. Discovery of Benzimidazole CYP11B2 Inhibitors with in Vivo Activity in Rhesus Monkeys. ACS Med Chem Lett 2015; 6:573-8. [PMID: 26005536 DOI: 10.1021/acsmedchemlett.5b00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022] Open
Abstract
We report the discovery of a benzimidazole series of CYP11B2 inhibitors. Hit-to-lead and lead optimization studies identified compounds such as 32, which displays potent CYP11B2 inhibition, high selectivity versus related CYP targets, and good pharmacokinetic properties in rat and rhesus. In a rhesus pharmacodynamic model, 32 produces dose-dependent aldosterone lowering efficacy, with no apparent effect on cortisol levels.
Collapse
Affiliation(s)
- Scott B. Hoyt
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Min K. Park
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Clare London
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Yusheng Xiong
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jim Tata
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | | | - Andrew Cooke
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - Jiaqiang Cai
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - Emma Carswell
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - John Robinson
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - John MacLean
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - Lindsay Brown
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - Simone Belshaw
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - Thomas R. Clarkson
- Merck Research Laboratories, Newhouse, Lanarkshire ML1 5SH, United Kingdom
| | - Kun Liu
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gui-Bai Liang
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Mary Struthers
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Doris Cully
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Tom Wisniewski
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Ning Ren
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Charlene Bopp
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Andrea Sok
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Tian-Quan Cai
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Sloan Stribling
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Lee-Yuh Pai
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Xiuying Ma
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Joe Metzger
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Andreas Verras
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Daniel McMasters
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Qing Chen
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Elaine Tung
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Wei Tang
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gino Salituro
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Nicole Buist
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jeff Kuethe
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Nelo Rivera
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Joe Clemas
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gaochao Zhou
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jack Gibson
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | | | - Mike Lassman
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | | | - Jose Castro-Perez
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Daphne Szeto
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gail Forrest
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Richard Hajdu
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Mark Rosenbach
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Amjad Ali
- Merck Research Laboratories, Rahway, New Jersey 07065, United States
| |
Collapse
|
38
|
Hu Q, Kunde J, Hanke N, Hartmann RW. Identification of 4-(4-nitro-2-phenethoxyphenyl)pyridine as a promising new lead for discovering inhibitors of both human and rat 11β-Hydroxylase. Eur J Med Chem 2015; 96:139-50. [PMID: 25874338 DOI: 10.1016/j.ejmech.2015.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 11/26/2022]
Abstract
The inhibition of 11β-hydroxylase is a promising strategy for the treatment of Cushing's syndrome, in particular for the recurrent and subclinical cases. To achieve proof of concept in rats, efforts were paid to identify novel lead compounds inhibiting both human and rat CYP11B1. Modifications on a potent promiscuous inhibitor of hCYP11B1, hCYP11B2 and hCYP19 (compound IV) that exhibited moderate rCYP11B1 inhibition led to compound 8 as a new promising lead compound. Significant improvements compared to starting point IV were achieved regarding inhibitory potency against both human and rat CYP11B1 (IC50 values of 2 and 163 nM, respectively) as well as selectivity over hCYP19 (IC50 = 1900 nM). Accordingly, compound 8 was around 7- and 28-fold more potent than metyrapone regarding the inhibition of human and rat CYP11B1 and exhibited a comparable selectivity over hCYP11B2 (SF of 3.5 vs 4.9). With further optimizations on this new lead compound 8, drug candidates with satisfying profiles are expected to be discovered.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| | - Jessica Kunde
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- Elexopharm GmbH, Campus A1, 66123 Saarbrücken, Germany
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany.
| |
Collapse
|
39
|
Abstract
Hypertension is the most common modifiable risk factor for cardiovascular disease and death, and lowering blood pressure with antihypertensive drugs reduces target organ damage and prevents cardiovascular disease outcomes. Despite a plethora of available treatment options, a substantial portion of the hypertensive population has uncontrolled blood pressure. The unmet need of controlling blood pressure in this population may be addressed, in part, by developing new drugs and devices/procedures to treat hypertension and its comorbidities. In this Compendium Review, we discuss new drugs and interventional treatments that are undergoing preclinical or clinical testing for hypertension treatment. New drug classes, eg, inhibitors of vasopeptidases, aldosterone synthase and soluble epoxide hydrolase, agonists of natriuretic peptide A and vasoactive intestinal peptide receptor 2, and a novel mineralocorticoid receptor antagonist are in phase II/III of development, while inhibitors of aminopeptidase A, dopamine β-hydroxylase, and the intestinal Na
+
/H
+
exchanger 3, agonists of components of the angiotensin-converting enzyme 2/angiotensin(1–7)/Mas receptor axis and vaccines directed toward angiotensin II and its type 1 receptor are in phase I or preclinical development. The two main interventional approaches, transcatheter renal denervation and baroreflex activation therapy, are used in clinical practice for severe treatment resistant hypertension in some countries. Renal denervation is also being evaluated for treatment of various comorbidities, eg, chronic heart failure, cardiac arrhythmias and chronic renal failure. Novel interventional approaches in early development include carotid body ablation and arteriovenous fistula placement. Importantly, none of these novel drug or device treatments has been shown to prevent cardiovascular disease outcomes or death in hypertensive patients.
Collapse
Affiliation(s)
- Suzanne Oparil
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| | - Roland E. Schmieder
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| |
Collapse
|
40
|
Hu Q, Yin L, Ali A, Cooke AJ, Bennett J, Ratcliffe P, Lo MMC, Metzger E, Hoyt S, Hartmann RW. Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability. J Med Chem 2015; 58:2530-7. [PMID: 25711516 DOI: 10.1021/acs.jmedchem.5b00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CYP11B2 inhibition is a promising treatment for diseases caused by excessive aldosterone. To improve the metabolic stability in human liver miscrosomes of previously reported CYP11B2 inhibitors, modifications were performed via a combination of ligand- and structure-based drug design approaches, leading to pyridyl 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolones. Compound 26 not only exhibited a much longer half-life (t1/2 ≫ 120 min), but also sustained inhibitory potency (IC50 = 4.2 nM) and selectivity over CYP11B1 (SF = 422), CYP17, CYP19, and a panel of hepatic CYP enzymes.
Collapse
Affiliation(s)
- Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2-3, D-66123, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu R, Wang J, Wang R, Lin Y, Hu Y, Wang Y, Shu M, Lin Z. Combined pharmacophore modeling, 3D-QSAR, homology modeling and docking studies on CYP11B1 inhibitors. Molecules 2015; 20:1014-30. [PMID: 25584832 PMCID: PMC6272247 DOI: 10.3390/molecules20011014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/29/2014] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial cytochrome P450 enzymes inhibitor steroid 11β-hydroxylase (CYP11B1) can decrease the production of cortisol. Therefore, these inhibitors have an effect in the treatment of Cushing’s syndrome. A pharmacophore model generated by Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD) was used to align the compounds and perform comparative molecular field analysis (CoMFA) with Q2 = 0.658, R2 = 0.959. The pharmacophore model contained six hydrophobic regions and one acceptor atom, and electropositive and bulky substituents would be tolerated at the A and B sites, respectively. A three-dimensional quantitative structure-activity relationship (3D-QSAR) study based on the alignment with the atom root mean square (RMS) was applied using comparative molecular field analysis (CoMFA) with Q2 = 0.666, R2 = 0.978, and comparative molecular similarity indices analysis (CoMSIA) with Q2 = 0.721, R2 = 0.972. These results proved that all the models have good predictability of the bioactivities of inhibitors. Furthermore, the QSAR models indicated that a hydrogen bond acceptor substituent would be disfavored at the A and B groups, while hydrophobic groups would be favored at the B site. The three-dimensional (3D) model of the CYP11B1 was generated based on the crystal structure of the CYP11B2 (PDB code 4DVQ). In order to probe the ligand-binding modes, Surflex-dock was employed to dock CYP11B1 inhibitory compounds into the active site of the receptor. The docking result showed that the imidazolidine ring of CYP11B1 inhibitors form H bonds with the amino group of residue Arg155 and Arg519, which suggested that an electronegative substituent at these positions could enhance the activities of compounds. All the models generated by GALAHAD QSAR and Docking methods provide guidance about how to design novel and potential drugs for Cushing’s syndrome treatment.
Collapse
Affiliation(s)
- Rui Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Juan Wang
- College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Rui Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong Lin
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Zhihua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
42
|
Grombein CM, Hu Q, Heim R, Rau S, Zimmer C, Hartmann RW. 1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols: A new class of potent and selective aldosterone synthase inhibitors. Eur J Med Chem 2015; 89:597-605. [DOI: 10.1016/j.ejmech.2014.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/27/2022]
|
43
|
Discovery of new 7-substituted-4-imidazolylmethyl coumarins and 4′-substituted-2-imidazolyl acetophenones open analogues as potent and selective inhibitors of steroid-11β-hydroxylase. Eur J Med Chem 2015; 89:106-14. [DOI: 10.1016/j.ejmech.2014.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/04/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022]
|
44
|
Grombein CM, Hu Q, Rau S, Zimmer C, Hartmann RW. Heteroatom insertion into 3,4-dihydro-1H-quinolin-2-ones leads to potent and selective inhibitors of human and rat aldosterone synthase. Eur J Med Chem 2015; 90:788-96. [DOI: 10.1016/j.ejmech.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/17/2022]
|
45
|
Ménard J, Rigel DF, Watson C, Jeng AY, Fu F, Beil M, Liu J, Chen W, Hu CW, Leung-Chu J, LaSala D, Liang G, Rebello S, Zhang Y, Dole WP. Aldosterone synthase inhibition: cardiorenal protection in animal disease models and translation of hormonal effects to human subjects. J Transl Med 2014; 12:340. [PMID: 25491597 PMCID: PMC4301837 DOI: 10.1186/s12967-014-0340-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/22/2014] [Indexed: 01/31/2023] Open
Abstract
Background Aldosterone synthase inhibition provides the potential to attenuate both the mineralocorticoid receptor-dependent and independent actions of aldosterone. In vitro studies with recombinant human enzymes showed LCI699 to be a potent, reversible, competitive inhibitor of aldosterone synthase (Ki = 1.4 ± 0.2 nmol/L in humans) with relative selectivity over 11β-hydroxylase. Methods Hormonal effects of orally administered LCI699 were examined in rat and monkey in vivo models of adrenocorticotropic hormone (ACTH) and angiotensin-II-stimulated aldosterone release, and were compared with the mineralocorticoid receptor antagonist eplerenone in a randomized, placebo-controlled study conducted in 99 healthy human subjects. The effects of LCI699 and eplerenone on cardiac and renal sequelae of aldosterone excess were investigated in a double-transgenic rat (dTG rat) model overexpressing human renin and angiotensinogen. Results Rat and monkey in vivo models of stimulated aldosterone release predicted human dose– and exposure–response relationships, but overestimated the selectivity of LCI699 in humans. In the dTG rat model, LCI699 dose-dependently blocked increases in aldosterone, prevented development of cardiac and renal functional abnormalities independent of blood pressure changes, and prolonged survival. Eplerenone prolonged survival to a similar extent, but was less effective in preventing cardiac and renal damage. In healthy human subjects, LCI699 0.5 mg selectively reduced plasma and 24 h urinary aldosterone by 49 ± 3% and 39 ± 6% respectively (Day 1, mean ± SEM; P < 0.001 vs placebo), which was associated with natriuresis and an increase in plasma renin activity. Doses of LCI699 greater than 1 mg inhibited basal and ACTH-stimulated cortisol. Eplerenone 100 mg increased plasma and 24 h urinary aldosterone while stimulating natriuresis and increasing renin activity. In contrast to eplerenone, LCI699 increased the aldosterone precursor 11-deoxycorticosterone and urinary potassium excretion. Conclusions These results provide new insights into the cardiac and renal effects of inhibiting aldosterone synthase in experimental models and translation of the hormonal effects to humans. Selective inhibition of aldosterone synthase appears to be a promising approach to treat diseases associated with aldosterone excess. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0340-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joël Ménard
- Université Paris Descartes, Faculté de Médecine and INSERM/AP-HP Clinical Investigation Center, Georges Pompidou Hospital, Paris, France.
| | - Dean F Rigel
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Catherine Watson
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Arco Y Jeng
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA. .,Current address: Golda Och Academy, 1418 Pleasant Valley Way, West Orange, NJ, 07052, USA.
| | - Fumin Fu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Michael Beil
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Jing Liu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Wei Chen
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Chii-Whei Hu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | | | - Daniel LaSala
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Sam Rebello
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Yiming Zhang
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - William P Dole
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
46
|
Rhesus monkey model for concurrent analyses of in vivo selectivity, pharmacokinetics and pharmacodynamics of aldosterone synthase inhibitors. J Pharmacol Toxicol Methods 2014; 71:137-46. [PMID: 25304940 DOI: 10.1016/j.vascn.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022]
Abstract
INTRODUCTION In vivo profiles of aldosterone synthase inhibitors (ASIs) have been investigated utilizing various rodent models. Due to lack of CYP17 activity, rodents produce corticosterone rather than cortisol as that of humans, which raised concern to their effectiveness in translational pharmacological characterization of ASI. METHODS A rhesus monkey model that combines a low sodium diet with adrenocorticotropin (ACTH) treatment was developed. Plasma concentrations of steroid metabolites associated with reactions catalyzed by CYP11B2 and CYP11B1 were measured concurrently by a UPLC/MS method. RESULTS Plasma concentration of aldosterone in regular diet fed rhesus monkeys was low at 109pg/mL. Aldosterone concentrations were increased to 252pg/mL when animals were maintained on a low sodium diet for 3weeks, and to 300pg/mL with ACTH treatment at 0.3mg/kg. The combination of low sodium diet with ACTH treatment further increased plasma concentration of aldosterone to 730pg/mL and other steroid metabolites at various levels. Intravenous administration of ASI, fadrozole (0.001-1mg/kg) or LCI699 (0.003-3mg/kg), led to dose-dependent reductions in aldosterone and 18-hydroxycorticosterone, increases in 11-deoxycorticosterone and 11-deoxycortisol, and bell-shaped changes in cortisol and corticosterone. In vivo selectivity of CYP11B2/CYP11B1 for fadrazole was 26-fold and LCI-699 was 27-fold, which was consistent with relative selectivity using in vitro values from recombinant cells transfected with rhesus monkey CYP11B2 and CYP11B1. DISCUSSION This model enables concurrent characterization of pharmacokinetics, pharmacodynamics and selectivity of CYP11B2 over CYP11B1 inhibition in the same animal. It may be used as a translational model for pharmacological characterization of ASI.
Collapse
|
47
|
Barau C, Ghaleh B, Berdeaux A, Morin D. Cytochrome P450 and myocardial ischemia: potential pharmacological implication for cardioprotection. Fundam Clin Pharmacol 2014; 29:1-9. [DOI: 10.1111/fcp.12087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/20/2014] [Accepted: 06/13/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Caroline Barau
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Alain Berdeaux
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Didier Morin
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| |
Collapse
|
48
|
Zhu W, Hu Q, Hanke N, van Koppen CJ, Hartmann RW. Potent 11β-Hydroxylase Inhibitors with Inverse Metabolic Stability in Human Plasma and Hepatic S9 Fractions To Promote Wound Healing. J Med Chem 2014; 57:7811-7. [DOI: 10.1021/jm501004t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Weixing Zhu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| | - Nina Hanke
- ElexoPharm GmbH, Im
Stadtwald, D-66123 Saarbrücken, Germany
| | | | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, D-66123 Saarbrücken, Germany
| |
Collapse
|
49
|
Yin L, Hu Q, Emmerich J, Lo MMC, Metzger E, Ali A, Hartmann RW. Novel Pyridyl- or Isoquinolinyl-Substituted Indolines and Indoles as Potent and Selective Aldosterone Synthase Inhibitors. J Med Chem 2014; 57:5179-89. [DOI: 10.1021/jm500140c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lina Yin
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- ElexoPharm GmbH, Campus A1, D-66123 Saarbrücken, Germany
| | - Qingzhong Hu
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Juliette Emmerich
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Michael Man-Chu Lo
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Edward Metzger
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Amjad Ali
- Discovery
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rolf W. Hartmann
- Pharmaceutical
and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|