1
|
El Ati R, Öztaşkın N, Çağan A, Akıncıoğlu A, Demir Y, Göksu S, Touzani R, Gülçin İ. Novel benzene sulfonamides with acetylcholinesterase and carbonic anhydrase inhibitory actions. Arch Pharm (Weinheim) 2024; 357:e2300545. [PMID: 38423951 DOI: 10.1002/ardp.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
A series of benzene sulfonamides 15-26 were synthesized and determined for their in vitro and in silico inhibitory profiles toward acetylcholinesterase (AChE) and carbonic anhydrases (CAs). Commercially available 3,4-dimethoxytoluene was reacted with chlorosulfonic acid to furnish benzene sulfonyl chloride derivatives. The reaction of substituted benzene sulfonyl chloride with some amines also including (±)-α-amino acid methyl esters afforded a series of novel benzene sulfonamides. In this study, the enzyme inhibition abilities of these compounds were evaluated against AChE and CAs. They exhibited a highly potent inhibition ability on AChE and -CAs (Ki values are in the range of 28.11 ± 4.55 nM and 145.52 ± 28.68 nM for AChE, 39.20 ± 2.10 nM to 131.54 ± 12.82 nM for CA I, and 50.96 ± 9.83 nM and 147.94 ± 18.75 nM for CA II). The present newly synthesized novel benzene sulfonamides displayed efficient inhibitory profiles against AChE and CAs, and it is anticipated that they may emerge as lead molecules for some diseases including glaucoma, epilepsy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rafika El Ati
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Necla Öztaşkın
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Ahmet Çağan
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
| | - Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
- Vocational School, Ağrı İbrahim Çeçen University, Agri, Turkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Ardahan University, Ardahan, Turkiye
| | - Süleyman Göksu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| |
Collapse
|
2
|
Semenya J, Yang Y, Picazo E. Cross-Electrophile Coupling of Benzyl Halides and Disulfides Catalyzed by Iron. J Am Chem Soc 2024; 146:4903-4912. [PMID: 38346333 PMCID: PMC10910570 DOI: 10.1021/jacs.3c13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cross-electrophile couplings are influential reactions that typically require a terminal reductant or photoredox conditions. We discovered an iron-catalyzed reaction that couples benzyl halides with disulfides to yield thioether products in the absence of a terminal reductant and under photoredox conditions. The disclosed platform proceeds without sulfur-induced catalyst poisoning or the use of an exogenous base, supporting a broad scope and circumventing undesired elimination pathways. We applied the developed chemistry in a new mode of disulfide bioconjugation, drug synthesis, gram-scale synthesis, and product derivatization. Lastly, we performed mechanistic experiments to better understand the stereoablative reaction between two electrophiles. Disulfides and benzylic thioethers are imperative for biological and pharmaceutical applications but remain severely understudied in comparison to their ethereal and amino counterparts. Hence, we expect this platform of iron catalysis and the downstream applications to be of interest to the greater scientific community.
Collapse
Affiliation(s)
- Julius Semenya
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of
Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Yuanjie Yang
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of
Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Elias Picazo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of
Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| |
Collapse
|
3
|
Xiao YC, Chen FE. The vinyl sulfone motif as a structural unit for novel drug design and discovery. Expert Opin Drug Discov 2024; 19:239-251. [PMID: 37978948 DOI: 10.1080/17460441.2023.2284201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Godesi S, Nada H, Lee J, Kang JH, Kim SY, Choi Y, Lee K. Integration of Hybridization Strategies in Pyridine-Urea Scaffolds for Novel Anticancer Agents: Design, Synthesis, and Mechanistic Insights. Molecules 2023; 28:4952. [PMID: 37446614 DOI: 10.3390/molecules28134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Annually, millions of new cancer cases are reported, leading to millions of deaths worldwide. Among the newly reported cases, breast and colon cancers prevail as the most frequently detected variations. To effectively counteract this rapid increase, the development of innovative therapies is crucial. Small molecules possessing pyridine and urea moieties have been reported in many of the currently available anticancer agents, especially VEGFR2 inhibitors. With this in mind, a rational design approach was employed to create hybrid small molecules combining urea and pyridine. These synthesized compounds underwent in vitro testing against breast and colon cancer cell lines, revealing potent submicromolar anticancer activity. Compound 8a, specifically, exhibited an impressive GI50 value of 0.06 μM against the MCF7 cancer cell line, while compound 8h displayed the highest cytotoxic activity against the HCT116 cell line, with a GI50 of 0.33 ± 0.042 μM. Notably, compounds 8a, 8h, and 8i demonstrated excellent safety profiles when tested on normal cells. Molecular docking, dynamic studies, and free energy calculations were employed to validate the affinity of these compounds as VEGFR2 inhibitors.
Collapse
Affiliation(s)
- Sreenivasulu Godesi
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | - Joohan Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Joon-Hee Kang
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yongseok Choi
- College of Biosciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
5
|
Al-Zaydi KM, Saleh TS, Alqahtani NF, Bagazi MS. Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System. Molecules 2023; 28:molecules28052355. [PMID: 36903598 PMCID: PMC10005632 DOI: 10.3390/molecules28052355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
We reported herein efficient economic high-pressure synthesis procedures for the synthesis of bis(azoles) and bis(azines) by utilizing the bis(enaminone) intermediate. Bis(enaminone) reacted with hydrazine hydrate, hydroxylamine hydrochloride, guanidine hydrochloride, urea, thiourea, and malononitrile to form the desired bis azines and bis azoles. A combination of elemental analyses and spectral data was used to confirm the structures of the products. Compared with conventional heating, the high-pressure Q-Tube method promotes reactions in a short period of time and provides high yields.
Collapse
Affiliation(s)
- Khadijah M. Al-Zaydi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
- Correspondence: (K.M.A.-Z.); (T.S.S.)
| | - Tamer S. Saleh
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
- Green Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
- Correspondence: (K.M.A.-Z.); (T.S.S.)
| | - Norah F. Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Meaad S. Bagazi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Al-Zaydi KM, Saleh TS, Alqahtani NF, Bagazi MS. Q-Tube Assisted Green Synthesis of Bis(Azoles) and Bis(Azines) Linked to Arene Unit. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khadijah M. Al-Zaydi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Tamer S. Saleh
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Green Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Norah F. Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Meaad S. Bagazi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Challa CS, Katari NK, Nallanchakravarthula V, Nayakanti D, Kapavarapu R, Pal M. Wang-OSO3H catalyzed green synthesis of 2-arylamino-3-cyanopyridine derivatives under ultrasound: Their assessment as potential inhibitors of SIRT1. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|
9
|
Hafez HN, El-Gazzar ARBA. Synthesis of Novel Pyridine Bearing Biologically Active Imidiazolyl, Pyrazolyl, Oxa/thiadiazolyl and Urea Derivatives as Promising Anticancer Agents. Curr Org Synth 2021; 17:55-64. [PMID: 32103718 DOI: 10.2174/1570179417666191223163225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/04/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND A novel series of pyridine containing 1,3,4-oxa/thiadiazol derivatives 4a,b, pyrazole derivatives 5-7, thiazole derivatives 9a,b and 17a-c, urea derivatives 12a-c, imidiazole derivative 16, imidazo[1,2-a]pyridine derivatives 18a, b, tetrazole 19, pyrane 20 and pyridine derivatives 21 has been synthesized. OBJECTIVE This research aims to synthesize 6-(Trifluoromethyl)-2-{[3-(trifluoromethyl)phenyl] amino} nicotinohydrazide 2 and 6-(trifluoromethyl)-2-{[3-(trifluoromethyl)phenyl]amino} pyridin-3-carboaldhyde 15 as key intermediate for the synthesis of novel pyridine derivatives bearing different heterocyclic rings in order to study the additive effect of this ring toward tumor cell lines. METHODS 6-(Trifluoromethyl)-2-{[3-(trifluoromethyl)phenyl]amino} nicotinohydrazide 2 was synthesized in a series of synthetic steps and was used as key intermediate for the synthesis of compounds 3-(1,3,4- oxa/thiadiazol-2-yl)-6-(trifluoromethyl)-N-(3- trifluoromethyl) phenyl) pyridin-2-amine 4a,b, (3,5-dimethyl- 1H-pyrazol-1-yl derivatives) [6-(trifluoromethyl)-2-{[3- trifluoromethyl) phenyl] amino} pyridin-3- yl]methanone 5a,b, 6-8, 9a,b and 12a-c. Also, 6-(trifluoromethyl)-2-{[3-(trifluoromethyl)phenyl]amino} pyridin-3-carboaldhyde (15) was used as a key intermediate for the synthesis of novel series of pyridine derivatives with different heterocyclic ring (16-21). RESULTS Structures of the newly synthesized compounds were established by elemental analysis and spectral data. All the synthesized compounds were screened for their in vitro anticancer activity against liver cancer (HepG2), human colon cancer (HT-29) and human breast adenocarcinoma cell lines (MCF-7). CONCLUSION All the synthesized compounds were investigated for their in vitro antitumor activity. Compounds 4b, 9a,b and 19 showed higher antitumor activity than the doxorubicin. Interestingly, pyridine with pfluorophenyl urea 12a demonstrated the most potent antitumor activity. The activity of these compounds is strongly dependent on the basic skeleton of the molecules and the nature of the heterocyclic ring attached to the pyridine moiety.
Collapse
Affiliation(s)
- Hend N Hafez
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box: 90950, Riyadh 11623, Saudi Arabia.,Photochemistry Department, (Heterocyclic & Nucleosides Unit), National Research Centre, Cairo, Egypt
| | - Abdel-Rahman B A El-Gazzar
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box: 90950, Riyadh 11623, Saudi Arabia.,Photochemistry Department, (Heterocyclic & Nucleosides Unit), National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Rahaman MH, Lam F, Zhong L, Teo T, Adams J, Yu M, Milne RW, Pepper C, Lokman NA, Ricciardelli C, Oehler MK, Wang S. Targeting CDK9 for treatment of colorectal cancer. Mol Oncol 2019; 13:2178-2193. [PMID: 31398271 PMCID: PMC6763784 DOI: 10.1002/1878-0261.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most lethal human malignancies, and pursuit of new therapeutic targets for treatment has been a major research focus. Cyclin-dependent kinase 9 (CDK9), which plays a crucial role in transcription, has emerged as a target for cancer treatment. CDKI-73, one of the most potent and pharmacologically superior CDK9 inhibitors, has demonstrated excellent anti-tumour efficacy against several types of cancers. In this study, we evaluated its therapeutic potential against CRC. CDKI-73 elicited high cytotoxicity against all colon cancer cell lines tested. Cell cycle and apoptosis analysis in HCT 116 and HT29 cells revealed that CDKI-73 induced cell death without accumulation of DNA at any phase of the cell cycle. Moreover, it caused depolarisation of mitochondrial membrane, leading to caspase-independent apoptosis. Knockdown by shRNA demonstrated the CDK9-targeted mechanism of CDKI-73, which also affected the Mnk/eIF4E signalling axis. In addition, RT-qPCR analysis showed that CDKI-73 down-regulated multiple pro-survival factors at the mRNA level. Its in vivo anti-tumour efficacy was further evaluated in Balb/c nude mice bearing HCT 116 xenograft tumours. CDKI-73 significantly inhibited tumour growth (***P < 0.001) without overt toxicity. Analysis of the tumour tissues collected from the xenografted animals confirmed that the in vivo anti-tumour efficacy was associated with CDK9 targeting of CDKI-73. Overall, this study provides compelling evidence that CDKI-73 is a promising drug candidate for treating colorectal cancer.
Collapse
Affiliation(s)
- Muhammed H Rahaman
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Frankie Lam
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Longjin Zhong
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Julian Adams
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Chris Pepper
- School of Medicine, Cardiff University, Health Park, UK
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| |
Collapse
|
11
|
Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Pharmaceutical and medicinal significance of sulfur (S VI)-Containing motifs for drug discovery: A critical review. Eur J Med Chem 2019; 162:679-734. [PMID: 30496988 PMCID: PMC7111228 DOI: 10.1016/j.ejmech.2018.11.017] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
Sulfur (SVI) based moieties, especially, the sulfonyl or sulfonamide based analogues have showed a variety of pharmacological properties, and its derivatives propose a high degree of structural diversity that has established useful for the finding of new therapeutic agents. The developments of new less toxic, low cost and highly active sulfonamides containing analogues are hot research topics in medicinal chemistry. Currently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with therapeutic power. This comprehensive review highlights the recent developments of sulfonyl or sulfonamides based compounds in huge range of therapeutic applications such as antimicrobial, anti-inflammatory, antiviral, anticonvulsant, antitubercular, antidiabetic, antileishmanial, carbonic anhydrase, antimalarial, anticancer and other medicinal agents. We believe that, this review article is useful to inspire new ideas for structural design and developments of less toxic and powerful Sulfur (SVI) based drugs against the numerous death-causing diseases.
Collapse
Affiliation(s)
- Chuang Zhao
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| | - L Ravidar
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Wan-Yin Fang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR, China.
| |
Collapse
|
12
|
Kaushik R, Chand M, Rashid M, Jain SC. Synthesis of novel 2-acetamidothiazoles tethered with 1,2,3-triazole and pyridine pharmacophores. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reena Kaushik
- Department of Chemistry; University of Delhi; Delhi India
| | - Mahesh Chand
- Department of Chemistry; University of Delhi; Delhi India
| | - Mohd. Rashid
- Department of Chemistry; University of Delhi; Delhi India
| | | |
Collapse
|
13
|
Pyridine-Ureas as Potential Anticancer Agents: Synthesis and In Vitro Biological Evaluation. Molecules 2018; 23:molecules23061459. [PMID: 29914120 PMCID: PMC6100082 DOI: 10.3390/molecules23061459] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023] Open
Abstract
In our endeavor towards the development of effective anticancer agents, a novel series of pyridine-ureas 8a⁻n were synthesized. All the newly prepared derivatives were evaluated in vitro for their growth inhibitory activity towards the proliferation of breast cancer MCF-7 cell line. Compounds 8e and 8n were found to be the most active congeners against MCF-7 cells (IC50 = 0.22 and 1.88 µM after 48 h treatment; 0.11 and 0.80 µM after 72 h treatment, respectively) with increased activity compared to the reference drug doxorubicin (IC50 = 1.93 µM). Moreover, eight selected pyridines 8b, 8d, 8e, 8i, 8j and 8l⁻n were evaluated for their in vitro anticancer activity according to the US-NCI protocol. Pyridines 8b and 8e proved to be the most effective anticancer agents in the NCI assay with mean inhibition = 43 and 49%, respectively. Both 8b and 8e exhibited anti-proliferative activity against all tested cancer cell lines from all subpanels growth inhibition (GI for 8b; 12⁻78%, GI for 8e; 15⁻91%). Pyridines 8b and 8e were screened in vitro for their inhibitory activity against VEGFR-2. Both compounds inhibited VEGFR-2 at micromolar IC50 values 5.0 ± 1.91 and 3.93 ± 0.73 µM, respectively. The most active pyridines were filtered according to the Lipinski and Veber rules and all of them passed these filters. Finally, several ADME descriptors were predicted for the active pyridines through a theoretical kinetic study.
Collapse
|
14
|
Durgapal SD, Soni R, Umar S, Suresh B, Soman SS. 3-Aminomethyl pyridine chalcone derivatives: Design, synthesis, DNA binding and cytotoxic studies. Chem Biol Drug Des 2018; 92:1279-1287. [DOI: 10.1111/cbdd.13189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sunil Dutt Durgapal
- Department of Chemistry; Faculty of Science; The M. S. University of Baroda; Vadodara India
| | - Rina Soni
- Department of Chemistry; Faculty of Science; The M. S. University of Baroda; Vadodara India
| | - Shweta Umar
- Department of Zoology; Faculty of Science; The M. S. University of Baroda; Vadodara India
| | - Balakrishnan Suresh
- Department of Zoology; Faculty of Science; The M. S. University of Baroda; Vadodara India
| | - Shubhangi S. Soman
- Department of Chemistry; Faculty of Science; The M. S. University of Baroda; Vadodara India
| |
Collapse
|
15
|
Inhibition of Mnk enhances apoptotic activity of cytarabine in acute myeloid leukemia cells. Oncotarget 2018; 7:56811-56825. [PMID: 27462781 PMCID: PMC5302954 DOI: 10.18632/oncotarget.10796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 01/31/2023] Open
Abstract
Cytarabine (Ara-C) is a first line clinical therapeutic agent for treatment of acute myeloid leukemia (AML). However, this therapy is limited due to high rate of resistance and relapse. Recent research has revealed that the poor prognosis and resistance to Ara-C in AML were associated with its abnormally activated MAPK pathways. In this study, we showed a strong synergistic effect of Ara-C with either our Mnk inhibitor (MNKI-8e) or short hairpin RNA (shRNA) mediated knockdown of Mnks in MV4-11 AML cells. We investigated the underlying mechanisms for this synergism. We showed that both MNKI-8e and Mnk shRNAs enhanced the ability of Ara-C to induce apoptosis. We found that Ara-C increased the phosphorylation of Erk1/2, p38 and eIF4E, which correlated with an enhanced level of anti-apoptotic Mcl-1 protein. Inhibition of Mnk activity suppressed the Ara-C-induced MAPK activity, and thus enhanced apoptosis in MV4-11 cells. Taken together, our study suggests that MAPK-Mnk-eIF4E pathway plays a critical role in Ara-C-treated MV4-11 cells and targeting Mnk may be a promising therapeutic strategy for sensitizing leukemic cells to Ara-C therapy.
Collapse
|
16
|
Chahrour O, Malone J, Collins M, Salmon V, Greenan C, Bombardier A, Ma Z, Dunwoody N. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉. J Pharm Biomed Anal 2017; 145:84-90. [DOI: 10.1016/j.jpba.2017.06.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 11/29/2022]
|
17
|
Long Y, Yu M, Li P, Islam S, Goh AW, Kumarasiri M, Wang S. Synthesis and biological evaluation of heteroaryl styryl sulfone derivatives as anticancer agents. Bioorg Med Chem Lett 2016; 26:5674-5678. [DOI: 10.1016/j.bmcl.2016.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023]
|
18
|
Lu T, Laughton CA, Wang S, Bradshaw TD. In vitro antitumor mechanism of (E)-N-(2-methoxy-5-(((2,4,6-trimethoxystyryl)sulfonyl)methyl)pyridin-3-yl)methanesulfonamide. Mol Pharmacol 2015; 87:18-30. [PMID: 25316768 DOI: 10.1124/mol.114.093245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ON01910.Na [sodium (E)-2-(2-methoxy-5-((2,4,6-trimethoxystyrylsulfonyl)methyl)phenylamino)acetate; Rigosertib, Estybon], a styryl benzylsulfone, is a phase III stage anticancer agent. This non-ATP competitive kinase inhibitor has multitargeted activity, promoting mitotic arrest and apoptosis. Extensive phase I/II studies with ON01910.Na, conducted in patients with solid tumors and hematologic cancers, demonstrate excellent efficacy. However, issues remain affecting its development. These include incomplete understanding of antitumor mechanisms, low oral bioavailability, and unpredictable pharmacokinetics. We have identified a novel (E)-styrylsulfonyl methylpyridine [(E)-N-(2-methoxy-5-((2,4,6-trimethoxystyrylsulfonyl)methyl)pyridin-3-yl)methanesulfonamide (TL-77)] which has shown improved oral bioavailability compared with ON01910.Na. Here, we present detailed cellular mechanisms of TL-77 in comparison with ON01910.Na. TL-77 displays potent growth inhibitory activity in vitro (GI50 < 1μM against HCT-116 cells), demonstrating 3- to 10-fold greater potency against tumor cell lines when compared with normal cells. Cell-cycle analyses reveal that TL-77 causes significant G2/M arrest in cancer cells, followed by the onset of apoptosis. In cell-free conditions, TL-77 potently inhibits tubulin polymerization. Mitotically arrested cells display multipolar spindles and misalignment of chromosomes, indicating that TL-77 interferes with mitotic spindle assembly in cancer cells. These effects are accompanied by induction of DNA damage, inhibition of Cdc25C phosphorylation [indicative of Plk1 inhibition], and downstream inhibition of cyclin B1. However, kinase assays failed to confirm inhibition of Plk1. Nonsignificant effects on phosphoinositide 3-kinase/Akt signal transduction were observed after TL-77 treatment. Analysis of apoptotic signaling pathways reveals that TL-77 downregulates expression of B-cell lymphoma 2 family proteins (Bid, Bcl-xl, and Mcl-1) and stimulates caspase activation. Taken together, TL-77 represents a promising anticancer agent worthy of further evaluation.
Collapse
Affiliation(s)
- Tiangong Lu
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| | - Charles A Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| | - Shudong Wang
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| | - Tracey D Bradshaw
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| |
Collapse
|
19
|
Eldehna WM, Altoukhy A, Mahrous H, Abdel-Aziz HA. Design, synthesis and QSAR study of certain isatin-pyridine hybrids as potential anti-proliferative agents. Eur J Med Chem 2015; 90:684-94. [DOI: 10.1016/j.ejmech.2014.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
|