1
|
Hu Y, Zhang Y, Guo J, Chen S, Jin J, Li P, Pan Y, Lei S, Li J, Wu S, Bu B, Fu L. Synthesis and anti-proliferative effect of novel 4-Aryl-1, 3-Thiazole-TPP conjugates via mitochondrial uncoupling process. Bioorg Chem 2024; 150:107588. [PMID: 38936051 DOI: 10.1016/j.bioorg.2024.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.
Collapse
Affiliation(s)
- Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Guo
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shihao Chen
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jie Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Pengyu Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuchen Pan
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Suheng Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Buzhou Bu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
2
|
Suárez-Rozas C, Jara JA, Cortés G, Rojas D, Araya-Valdés G, Molina-Berrios A, González-Herrera F, Fuentes-Retamal S, Aránguiz-Urroz P, Campodónico PR, Maya JD, Vivar R, Catalán M. Antimigratory Effect of Lipophilic Cations Derived from Gallic and Gentisic Acid and Synergistic Effect with 5-Fluorouracil on Metastatic Colorectal Cancer Cells: A New Synthesis Route. Cancers (Basel) 2024; 16:2980. [PMID: 39272835 PMCID: PMC11393949 DOI: 10.3390/cancers16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential. We synthesized gallic acid derivatives linked to a ten-carbon aliphatic chain associated with triphenylphosphonium (TPP+C10), a lipophilic cationic molecule that induces the uncoupling of the electron transport chain (ETC). Other derivatives, such as gentisic acid (GA-TPP+C10), have the same effects on colorectal cancer cells. Although part of our group had previously reported preparing these structures by a convergent synthesis route, including their application via flow chemistry, there was no precedent for a new methodology for preparing these compounds. In this scenario, this study aims to develop a new linear synthesis strategy involving an essential step of Steglich esterification under mild conditions (open flask) and a high degree of reproducibility. Moreover, the study seeks to associate GA-TPP+C10 with 5FU to evaluate synergistic antineoplastic effects. In addition, we assess the antimigratory effect of GA-TPP+C10 and TPP+C10 using human and mouse metastatic CRC cell lines. The results show a new and efficient synthesis route of these compounds, having synergistic effects in combination with 5FU, increasing apoptosis and enhancing cytotoxic properties. Additionally, the results show a robust antimigratory effect of GATPP+C10 and TPP+C10, reducing the activation pathways linked to tumor progression and reducing the expression of VEGF and MMP-2 and MMP-9, common biomarkers of advanced CRC. Moreover, TPP+C10 and GA-TPP+C10 increase the activity of metabolic signaling pathways through AMPK activation. The data allow us to conclude that these compounds can be used for in vivo evaluations and are a promising alternative associated with conventional therapies for advanced colorectal cancer. Additionally, the reported intermediates of the new synthesis route could give rise to analog compounds with improved therapeutic activity.
Collapse
Affiliation(s)
- Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - José Antonio Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Gonzalo Cortés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Diego Rojas
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Gabriel Araya-Valdés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Alfredo Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Sebastián Fuentes-Retamal
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Pablo Aránguiz-Urroz
- School of Health Science, Universidad de Viña del Mar, Viña del Mar 2580022, Chile
| | - Paola Rossana Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan Diego Maya
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Raúl Vivar
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Mabel Catalán
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| |
Collapse
|
3
|
Zhou Q, Cao T, Li F, Zhang M, Li X, Zhao H, Zhou Y. Mitochondria: a new intervention target for tumor invasion and metastasis. Mol Med 2024; 30:129. [PMID: 39179991 PMCID: PMC11344364 DOI: 10.1186/s10020-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Tingping Cao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fujun Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ming Zhang
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Guizhou, 563000, China.
| |
Collapse
|
4
|
Needham D. Niclosamide: A career builder. J Control Release 2024; 369:786-856. [PMID: 37544514 DOI: 10.1016/j.jconrel.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023]
Abstract
My contribution to honoring Professor Kinam Park celebrates and resonates with his scholarly career in drug delivery, his commitment to encouraging the next generation(s), and his efforts to keep us focused on clinically effective formulations. To do this I take as my example, niclosamide, a small molecule protonophore that, uniquely, can "target" all cell membranes, both plasma and organelle. As such, it acts upstream of many cell pathways and so has the potential to affect many of the essential events that a cell, and particularly a diseased cell or other entities like a virus, use to stay alive and prosper. Literature shows that it has so far been discovered to positively influence (at least): cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, systemic sclerosis, Parkinson's, and COPD. With such a fundamental action and broad-spectrum activity, I believe that studying niclosamide in all its manifestations, discovering if and to what extent it can contribute positively to disease control (and also where it can't), formulating it as effective therapeutics, and testing them in preclinical and clinical trials is a career builder for our next generation(s). The article is divided into two parts: Part I introduces niclosamide and other proton shunts mainly in cancer and viral infections and reviews an exponentially growing literature with some concepts and physicochemical properties that lead to its proton shunt mechanism. Part II focuses on repurposing by reformulation of niclosamide. I give two examples of "carrier-free formulations", - one for cancer (as a prodrug therapeutic of niclosamide stearate for i.v. and other administration routes, exemplified by our recent work on Osteosarcoma in mice and canine patients), and the other as a niclosamide solution formulation (that could provide the basis for a preventative nasal spray and early treatment option for COVID19 and other respiratory virus infections). My goal is to excite and enthuse, encourage, and motivate all involved in the drug development and testing process in academia, institutes, and industry, to learn more about this interesting molecule and others like it. To enable such endeavors, I give many proposed ideas throughout the document, that have been stimulated and inspired by gaps in the literature, urgent needs in disease, and new studies arising from our own work. The hope is that, by reading through this document and studying the suggested topics and references, the drug delivery and development community will continue our lineage and benefit from our legacy to achieve niclosamide's potential as an effective contributor to the treatment and control of many diseases and conditions.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA; Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
5
|
Valderrama V, Sánchez P, Delso M, Díaz-Dosque M, Escobar A, Budini M, Catalán M, Vivar R, López-Muñoz R, Jara JA, Molina-Berríos A. Gallic acid triphenylphosphonium derivatives TPP+-C10 and TPP+-C12 inhibit mitochondrial function in Candida albicans exerting antifungal and antibiofilm effects. J Appl Microbiol 2024; 135:lxad316. [PMID: 38148145 DOI: 10.1093/jambio/lxad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
AIMS To evaluate the antifungal and antibiofilm activity of gallic acid derivatives TPP+-C10 and TPP+-C12 and their effects on mitochondrial function on two Candida albicans reference strains (ATCC 90029 and ATCC 10231). METHODS AND RESULTS First, we determined minimal inhibitory concentration (MIC) using a microdilution assay. Both compounds exerted antifungal effects, and their MICs ranged from 3.9 to 13 µM, with no statistically significant differences between them (P > 0.05, t-test). These concentrations served as references for following assays. Subsequently, we measured oxygen consumption with a Clark electrode. Our observations revealed that both drugs inhibited oxygen consumption in both strains with TPP+-C12 exerting a more pronounced inhibitory effect. We then employed flow cytometry with TMRE as a probe to assess mitochondrial membrane potential. For each strain assayed, the compounds induced a decay in transmembrane potential by 75%-90% compared to the control condition (P < 0.05, ANOVA). Then, we measured ATP levels using a commercial kit. TPP+-C12 showed a 50% decrease of ATP content (P < 0.05 ANOVA), while TPP+-C10 exhibited a less pronounced effect. Finally, we assessed the antibiofilm effect using the MTT reduction assay. Both compounds were effective, but TPP+-C12 displayed a greater potency, requiring a lower concentration to inhibit 50% of biofilms viability (P < 0.05, t-test). CONCLUSIONS Derivatives of gallic acid linked to a TPP+ group exert antifungal and antibiofilm activity through impairment of mitochondrial function in C. albicans.
Collapse
Affiliation(s)
- Victoria Valderrama
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Paula Sánchez
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Macarena Delso
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Mario Díaz-Dosque
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Alejandro Escobar
- Laboratory of Cellular Biology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Mauricio Budini
- Cellular and Molecular Pathology Laboratory, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Raúl Vivar
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - José A Jara
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Alfredo Molina-Berríos
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| |
Collapse
|
6
|
Andreeva OV, Voloshina AD, Lyubina AP, Garifullin BF, Sapunova AS, Amerhanova SK, Yu Strobykina I, Belenok MG, Babaeva OB, Saifina LF, Semenov VE, Kataev VE. Acetylenyl substituted nucleic bases and their triphenylphosphonium (TPP) conjugates. Unexpected surge in cytotoxicity. Bioorg Chem 2024; 142:106959. [PMID: 37988977 DOI: 10.1016/j.bioorg.2023.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation.
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Olga B Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Liliya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| |
Collapse
|
7
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Ong HC, Coimbra JTS, Ramos MJ, Xing B, Fernandes PA, García F. Beyond the TPP + "gold standard": a new generation mitochondrial delivery vector based on extended PN frameworks. Chem Sci 2023; 14:4126-4133. [PMID: 37063789 PMCID: PMC10094279 DOI: 10.1039/d2sc06508h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.
Collapse
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - João T S Coimbra
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Pedro A Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo Avda Julian Claveria 8 33006 Asturias Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
9
|
Huang T, Ji H, Yan S, Zuo Y, Li J, Lam JWY, Han C, Tang BZ. A hypochlorite-activated strategy for realizing fluorescence turn-on, type I and type II ROS-combined photodynamic tumor ablation. Biomaterials 2023; 297:122108. [PMID: 37037180 DOI: 10.1016/j.biomaterials.2023.122108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
The combination of cancer cell-activated fluorescence and the advantages of both type I and type II photodynamic therapy (PDT) capabilities to achieve a synergistic therapeutic effect in a complex tumor environment is highly desirable. Herein, we report an approach by means of tumor intracellular hypochlorite (ClO-) to turn on fluorescence integrated with type I and II ROS generation for imaging-guided PDT. The resultant PTZSPy functions as a type II photosensitizer with mitochondria-targeting capability. In the presence of ClO-, PTZSPy is transformed into its oxidized counterpart SPTZSPy, turns on an orange-red fluorescence and triggers the type I ROS generation ability. Biological studies revealed that PTZSPy can accurately distinguishes tumor cells from normal cells, dynamically monitors the cell ablation process and be utilized for theranostics in MCF-7 tumor-bearing nude mice in vivo. This work provides an innovative strategy exploiting the highly abundant ClO- in tumor cells for the type I and II ROS two-pronged and imaging-guided PDT.
Collapse
Affiliation(s)
- Tonghui Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Heng Ji
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shirong Yan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yifan Zuo
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jacky W Y Lam
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ben Zhong Tang
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
10
|
Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030666. [PMID: 36765624 PMCID: PMC9913854 DOI: 10.3390/cancers15030666] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer is one of the leading causes of death and the most important impediments to the efforts to increase life expectancy worldwide. Currently, chemotherapy is the main treatment for cancer, but it is often accompanied by side effects that affect normal tissues and organs. The search for new alternatives to chemotherapy has been a hot research topic in the field of antineoplastic medicine. Drugs targeting diseased tissues or cells can significantly improve the efficacy of drugs. Therefore, organelle-targeted antitumor drugs are being explored, such as mitochondria-targeted antitumor drugs. Mitochondria is the central site of cellular energy production and plays an important role in cell survival and death. Moreover, a large number of studies have shown a close association between mitochondrial metabolism and tumorigenesis and progression, making mitochondria a promising new target for cancer therapy. Combining mitochondrial targeting agents with drug molecules is an effective way of mitochondrial targeting. In addition, hyperpolarized tumor cell membranes and mitochondrial membrane potentially allow selective accumulation of mitochondria-targeted drugs. This enhances the direct killing of tumor cells by drug molecules while minimizing the potential toxicity to normal cells. In this review, we discuss the common pro-mitochondrial agents, the advantages of triphenylphosphine (TPP) in mitochondrial-targeted cancer therapy and systematically summarize various TPP-based mitochondria-targeting anticancer drugs.
Collapse
|
11
|
Design, Synthesis, Biological Evaluation, and Preliminary Mechanistic Study of a Novel Mitochondrial-Targeted Xanthone. Molecules 2023; 28:molecules28031016. [PMID: 36770683 PMCID: PMC9920806 DOI: 10.3390/molecules28031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
α-Mangostin, a natural xanthone, was found to have anticancer effects, but these effects are not sufficient to be effective. To increase anticancer potential and selectivity, a triphenylphosphonium cation moiety (TPP) was introduced to α-mangostin to specifically target cancer cell mitochondria. Compared to the parent compound, the cytotoxicity of the synthesized compound 1b increased by one order of magnitude. Mechanistic analysis revealed that the anti-tumor effects were involved in the mitochondrial apoptotic pathway by prompting apoptosis and arresting the cell cycle at the G0/G1 phase, increasing the production of reactive oxygen species (ROS), and reducing mitochondrial membrane potential (Δψm). More notably, the antitumor activity of compound 1b was further confirmed by zebrafish models, which remarkably inhibited cancer cell proliferation and migration, as well as zebrafish angiogenesis. Taken together, our results for the first time indicated that TPP-linked 1b could lead to the development of new mitochondrion-targeting antitumor agents.
Collapse
|
12
|
Nolasco-Quintana NY, González-Maya L, Razo-Hernández RS, Alvarez L. Exploring the Gallic and Cinnamic Acids Chimeric Derivatives as Anticancer Agents over HeLa Cell Line: An in silico and in vitro Study. Mol Inform 2023; 42:e2200016. [PMID: 36065495 DOI: 10.1002/minf.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/03/2022] [Indexed: 01/12/2023]
Abstract
Cervical cancer is one of the most aggressive and important cancer types in the female population, due to its low survival rate. Actually, the search for new bioactive compounds, like gallic and cinnamic acid, is one of the most employed options to finding a treatment. In the present study, 134 phenolic compounds with cytotoxic activity over HeLa cell line were used to generate a descriptive ( R 2 ${{R}^{2}}$ =0.76) and predictive ( Q 2 ${{Q}^{2}}$ =0.69 and Q e x t 2 ${{Q}_{{\rm e}{\rm x}{\rm t}}^{2}}$ =0.62) QSAR model. Structural, electronic, steric, and hydrophobic features are represented as different molecular descriptors in our QSAR model. From this model, nine gallate-cinnamate ester derivatives (N1-N9) were designed and synthesized. Furthermore, in vitro cytotoxic activity was evaluated against HeLa and non-tumorigenic cells. Derivatives N6, N5, N1, and N9 were the most active molecules with IC50ExpHeLa values from 7.26 to 11.95 μM. Finally, the binding of the synthesized compounds to the colchicine binding site on tubulin was evaluated by molecular docking as a possible action mechanism. N1, N5 and N6 can be considered as templates for the design of new cervical anticancer compounds.
Collapse
Affiliation(s)
- Ninfa Yaret Nolasco-Quintana
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México.,Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| |
Collapse
|
13
|
Arbon D, Ženíšková K, Šubrtová K, Mach J, Štursa J, Machado M, Zahedifard F, Leštinová T, Hierro-Yap C, Neuzil J, Volf P, Ganter M, Zoltner M, Zíková A, Werner L, Sutak R. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob Agents Chemother 2022; 66:e0072722. [PMID: 35856666 PMCID: PMC9380531 DOI: 10.1128/aac.00727-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.
Collapse
Affiliation(s)
- Dominik Arbon
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Karolína Šubrtová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Štursa
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Marta Machado
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tereza Leštinová
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lukáš Werner
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
14
|
Terekhova NV, Lyubina AP, Voloshina AD, Sapunova AS, Khayarov KR, Islamov DR, Usachev KS, Evtugyn VG, Tatarinov DA, Mironov VF. Synthesis, biological evaluation and structure-activity relationship of 2-(2-hydroxyaryl)alkenylphosphonium salts with potency as anti-MRSA agents. Bioorg Chem 2022; 127:106030. [PMID: 35870414 DOI: 10.1016/j.bioorg.2022.106030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Here we report the synthesis, in vitro antimicrobial activity, preliminary toxicity and mechanism study of a new series of 2-(2-hydroxyaryl)alkenylphosphonium salts with the variation of phosphonium moiety obtained by a two-step synthetic method from phosphine oxides. The salts showed pronounced activity against Gram-positive bacteria, including MRSA strains, and some fungi. Mechanism of action against S. aureus was studied by CV test, TEM and proteomic assay. No cell wall integrity loss was observed while proteomic assay results suggested interference in different metabolic processes of S. aureus. For this series, lipophilicity was determined as a key factor for the inhibition of Gram-positive bacteria growth and S. aureus killing. Biological properties of methylated derivatives were notably different with manifested action against Gram-negative bacteria.
Collapse
Affiliation(s)
- Natalia V Terekhova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Khasan R Khayarov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russian Federation
| | - Daut R Islamov
- Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, Lobachevskogo Str., 2/31, Kazan 420111, Russian Federation
| | - Konstantin S Usachev
- Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, Lobachevskogo Str., 2/31, Kazan 420111, Russian Federation
| | - Vladimir G Evtugyn
- Interdisciplinary center for Analytical microscopy, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008, Russian Federation
| | - Dmitry A Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation; Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russian Federation.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| |
Collapse
|
15
|
Wang R, Krasniqi B, Li Y, Dehaen W. Triphenylphosphonium-linked derivative of allobetulin: preparation, anticancer properties and their mechanism of inhibiting SGC-7901 cells proliferation. Bioorg Chem 2022; 126:105853. [DOI: 10.1016/j.bioorg.2022.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
|
16
|
Tuli HS, Mistry H, Kaur G, Aggarwal D, Garg VK, Mittal S, Yerer MB, Sak K, Khan MA. Gallic acid: a dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anticancer Agents Med Chem 2021; 22:499-514. [PMID: 34802408 DOI: 10.2174/1871520621666211119085834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022]
Abstract
Phytochemicals are being used for thousands of years to prevent dreadful malignancy. Side effects of existing allopathic treatment have also initiated intense research in the field of bioactive phytochemicals. Gallic acid, a natural polyphenolic compound, exists freely as well as in polymeric forms. The anti-cancer properties of gallic acid are indomitable by a variety of cellular pathways such as induction of programmed cell death, cell cycle apprehension, reticence of vasculature and tumor migration, and inflammation. Furthermore, gallic acid is found to show synergism with other existing chemotherapeutic drugs. Therefore, the antineoplastic role of gallic acid suggests its promising therapeutic candidature in the near future. The present review describes all these aspects of gallic acid at a single platform. In addition nanotechnology-mediated approaches are also discussed to enhance bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana. India
| | - Hiral Mistry
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, Maharashtra. India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, Maharashtra. India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana. India
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali - 140413, Punjab. India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi. India
| | - Mükerrem Betül Yerer
- Erciyes University, Faculty of Pharmacy Department of Pharmacology, Erciyes University Drug Application and Research Center, 05056784551. Turkey
| | | | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000. China
| |
Collapse
|
17
|
Mironov VF, Nemtarev AV, Tsepaeva OV, Dimukhametov MN, Litvinov IA, Voloshina AD, Pashirova TN, Titov EA, Lyubina AP, Amerhanova SK, Gubaidullin AT, Islamov DR. Rational Design 2-Hydroxypropylphosphonium Salts as Cancer Cell Mitochondria-Targeted Vectors: Synthesis, Structure, and Biological Properties. Molecules 2021; 26:6350. [PMID: 34770759 PMCID: PMC8588467 DOI: 10.3390/molecules26216350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
It has been shown for a wide range of epoxy compounds that their interaction with triphenylphosphonium triflate occurs with a high chemoselectivity and leads to the formation of (2-hydroxypropyl)triphenylphosphonium triflates 3 substituted in the 3-position with an alkoxy, alkylcarboxyl group, or halogen, which were isolated in a high yield. Using the methodology for the disclosure of epichlorohydrin with alcohols in the presence of boron trifluoride etherate, followed by the substitution of iodine for chlorine and treatment with triphenylphosphine, 2-hydroxypropyltriphenylphosphonium iodides 4 were also obtained. The molecular and supramolecular structure of the obtained phosphonium salts was established, and their high antitumor activity was revealed in relation to duodenal adenocarcinoma. The formation of liposomal systems based on phosphonium salt 3 and L-α-phosphatidylcholine (PC) was employed for improving the bioavailability and reducing the toxicity. They were produced by the thin film rehydration method and exhibited cytotoxic properties. This rational design of phosphonium salts 3 and 4 has promising potential of new vectors for targeted delivery into mitochondria of tumor cells.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Eugenii A. Titov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia;
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| | - Daut R. Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (O.V.T.); (M.N.D.); (I.A.L.); (A.D.V.); (T.N.P.); (A.P.L.); (S.K.A.); (A.T.G.); (D.R.I.)
| |
Collapse
|
18
|
Shrestha R, Johnson E, Byrne FL. Exploring the therapeutic potential of mitochondrial uncouplers in cancer. Mol Metab 2021; 51:101222. [PMID: 33781939 PMCID: PMC8129951 DOI: 10.1016/j.molmet.2021.101222] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mitochondrial uncouplers are well-known for their ability to treat a myriad of metabolic diseases, including obesity and fatty liver diseases. However, for many years now, mitochondrial uncouplers have also been evaluated in diverse models of cancer in vitro and in vivo. Furthermore, some mitochondrial uncouplers are now in clinical trials for cancer, although none have yet been approved for the treatment of cancer. SCOPE OF REVIEW In this review we summarise published studies in which mitochondrial uncouplers have been investigated as an anti-cancer therapy in preclinical models. In many cases, mitochondrial uncouplers show strong anti-cancer effects both as single agents, and in combination therapies, and some are more toxic to cancer cells than normal cells. Furthermore, the mitochondrial uncoupling mechanism of action in cancer cells has been described in detail, with consistencies and inconsistencies between different structural classes of uncouplers. For example, many mitochondrial uncouplers decrease ATP levels and disrupt key metabolic signalling pathways such as AMPK/mTOR but have different effects on reactive oxygen species (ROS) production. Many of these effects oppose aberrant phenotypes common in cancer cells that ultimately result in cell death. We also highlight several gaps in knowledge that need to be addressed before we have a clear direction and strategy for applying mitochondrial uncouplers as anti-cancer agents. MAJOR CONCLUSIONS There is a large body of evidence supporting the therapeutic use of mitochondrial uncouplers to treat cancer. However, the long-term safety of some uncouplers remains in question and it will be critical to identify which patients and cancer types would benefit most from these agents.
Collapse
Affiliation(s)
- Riya Shrestha
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Edward Johnson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia.
| |
Collapse
|
19
|
Kaempferol Induces Cell Death and Sensitizes Human Head and Neck Squamous Cell Carcinoma Cell Lines to Cisplatin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33368015 DOI: 10.1007/5584_2020_603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cisplatin is a first-line chemotherapeutic drug commonly used to treat patients with head and neck cancer; nevertheless, cisplatin resistance poses a main challenge for its clinical efficacy. Recent studies have shown that kaempferol, a natural flavonoid found in various plants and foods, has an anticancer effect. The following study evaluated the cytotoxic effects of kaempferol on head and neck tumor cells and their mechanism of action, evaluating the effects on proliferation, the oxygen consumption rate, transmembrane potential, tumor cell migration and induction of apoptosis. Moreover, we determined the effects of a combination of kaempferol and cisplatin on head and neck tumor cells. We found that kaempferol inhibited the oxygen consumption rate and decreased the intracellular ATP content in tumor cells. This novel mechanism may inhibit the migratory capacity and promote antiproliferative effects and apoptosis of tumor cells. Additionally, our in vitro data indicated that kaempferol may sensitize head and neck tumor cells to the effects of cisplatin. These effects provide new evidence for the use of a combination of kaempferol and cisplatin in vivo and their future applications in head and neck cancer therapy.
Collapse
|
20
|
Shi L, Gao LL, Cai SZ, Xiong QW, Ma ZR. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem 2021; 221:113528. [PMID: 34020339 DOI: 10.1016/j.ejmech.2021.113528] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Naturally occurring polyphenol curcumin (4) or demethoxycurcumin (5) and their synthetic derivatives display promising anticancer activities. However, their further development is limited by low bioavailability and poor selectivity. Thus, a mitochondria-targeted compound 14 (DMC-TPP) was prepared in the present study by conjugating a triphenylphosphine moiety to the phenolic hydroxyl group of demethoxycurcumin to enhance its bioavailability and treatment efficacy. The in vitro biological experiments of DMC-TPP showed that it not only displayed higher cytotoxicity as compared with its parent compound 5, but also exhibited superior mitochondria accumulation ability. Glioma cells were more sensitive to DMC-TPP, which inhibited the proliferation of U251 cells with an IC50 of 0.42 μM. The mechanism studies showed that DMC-TPP triggers mitochondria-dependent apoptosis, caused by caspase activation, production of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP). In addition, DMC-TPP efficiently inhibited cellular thioredoxin reductase, which contributed to its cytotoxicity. Significantly, DMC-TPP delayed tumor progression in a mouse xenograft model of human glioma cancer. Taken together, the potent in vitro and in vivo antitumor activity of DMC-TPP warrant further comprehensive evaluation as a novel anti-glioma agent.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, First People's Hospital of Kunshan, Suzhou, 215300, PR China
| | - Li-Li Gao
- Department of Oncology, The People's Hospital of Funing County in Yancheng City, Yancheng, 224400, Jiang Su, PR China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Suzhou, 215021, PR China.
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China.
| |
Collapse
|
21
|
Guarra F, Pratesi A, Gabbiani C, Biver T. A focus on the biological targets for coinage metal-NHCs as potential anticancer complexes. J Inorg Biochem 2021; 217:111355. [PMID: 33596529 DOI: 10.1016/j.jinorgbio.2021.111355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Metal complexes of N-heterocyclic carbene (NHC) ligands are the object of increasing attention for therapeutic purposes. Among the different metal centres, interest on Au-based compounds started with the application as anti-arthritis drugs. On the other hand, Ag(I) antimicrobial properties have been known for a long time. For Au(I)/Au(III)-NHC and Ag(I)-NHC anti-tumour and anti-proliferative properties have been quite recently demonstrated. In addition to these and as for Group 11, copper is a much less investigated metal centre, but a few papers underline its pharmacological potential. This review wants to focus on the different biological targets for these metal-based compounds. It is divided into chapters which are respectively devoted on: i) mitochondria and thiol oxidoreductase systems; ii) other relevant enzymes; iii) nucleic acids. Examples of representative coinage NHCs for each of the targets are provided together with significant references on recent advances on the topic. Moreover, a final comment summarises the aspects enlightened by each chapter and provides some hints to better understand the metal-NHCs mechanistic behaviour based on structure-activity relationships.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
22
|
Eriau E, Paillet J, Kroemer G, Pol JG. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13061260. [PMID: 33809187 PMCID: PMC7999281 DOI: 10.3390/cancers13061260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction and fasting have been known for a long time for their health- and life-span promoting effects, with coherent observations in multiple model organisms as well as epidemiological and clinical studies. This holds particularly true for cancer. The health-promoting effects of caloric restriction and fasting are mediated at least partly through their cellular effects-chiefly autophagy induction-rather than reduced calorie intake per se. Interestingly, caloric restriction has a differential impact on cancer and healthy cells, due to the atypical metabolic profile of malignant tumors. Caloric restriction mimetics are non-toxic compounds able to mimic the biochemical and physiological effects of caloric restriction including autophagy induction. Caloric restriction and its mimetics induce autophagy to improve the efficacy of some cancer treatments that induce immunogenic cell death (ICD), a type of cellular demise that eventually elicits adaptive antitumor immunity. Caloric restriction and its mimetics also enhance the therapeutic efficacy of chemo-immunotherapies combining ICD-inducing agents with immune checkpoint inhibitors targeting PD-1. Collectively, preclinical data encourage the application of caloric restriction and its mimetics as an adjuvant to immunotherapies. This recommendation is subject to confirmation in additional experimental settings and in clinical trials. In this work, we review the preclinical and clinical evidence in favor of such therapeutic interventions before listing ongoing clinical trials that will shed some light on this subject.
Collapse
Affiliation(s)
- Erwan Eriau
- Centre de Cancérologie de Lyon, Université de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; or
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique–Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-44-27-76-66
| |
Collapse
|
23
|
Tsepaeva OV, Nemtarev AV, Salikhova TI, Abdullin TI, Grigor Eva LR, Khozyainova SA, Mironov VF. Synthesis, Anticancer, and Antibacterial Activity of Betulinic and Betulonic Acid C-28-Triphenylphosphonium Conjugates with Variable Alkyl Linker Length. Anticancer Agents Med Chem 2021; 20:286-300. [PMID: 31660842 DOI: 10.2174/1871520619666191014153554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Conjugation of triterpenoids such as betulinic acid 1 with the Triphenylphosphonium (TPP) group is a powerful approach to generating medicinal compounds. Their development proposes structure optimization in respect of availability and activity towards target cells and organelles. Selection of 1 or its precursor betulonic acid 2 and the optimal linker is of particular importance for drug candidate identification among the TPP-triterpenoid conjugates. OBJECTIVE In this study, new C-28-TPP conjugated derivatives of 1 and 2 with the alkyl/alkoxyalkyl linkers of variable length were synthesized and compared regarding their anticancer, antibacterial, and mitochondriatargeted effects. METHODS The TPP conjugates of 1 and 2 [6a-f, 7a-f] were synthesized by the reaction of halogenalkyl esters [3a-f, 4a-f, 5] with triphenylphosphine in acetonitrile upon heating. Cytotoxicity (MTT assay), antibacterial activity (microdilution assay), and mitochondrial effects (flow cytofluorometry) were studied. RESULTS Conjugation with the TPP group greatly increased the cytotoxicity of the triterpenoids up to 30 times. The conjugates were up to 10-17 times more active against MCF-7 (IC50 = 0.17μM, 72h, 6c) and PC-3 (IC50 = 0.14μM, 72h, 6a) cancer cells than for human skin fibroblasts. The enhanced antibacterial (bactericidal) activity of the TPP-triterpenoid conjugates with MIC for Gram-positive bacteria as low as 2μM (6a, 7a) was for the first time revealed. The conjugates were found to effectively inhibit fluorescence of 2′,7′-dichlorofluorescin probe in the cytosol upon oxidation, decrease transmembrane potential, and increase superoxide radical level in mitochondria. CONCLUSION Relationships between the effects and structure of the TPP-triterpenoid conjugates were evaluated and discussed. Based on the results, 6a can be selected for further preclinical investigation as a potential anticancer compound.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation.,Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Taliya I Salikhova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Timur I Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Leysan R Grigor Eva
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Svetlana A Khozyainova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation.,Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russian Federation
| |
Collapse
|
24
|
Synthesis and in vitro evaluation of triphenylphosphonium derivatives of acetylsalicylic and salicylic acids: structure-dependent interactions with cancer cells, bacteria, and mitochondria. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02674-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Discovery of Amoebicidal Compounds by Combining Computational and Experimental Approaches. Antimicrob Agents Chemother 2021; 65:AAC.01749-20. [PMID: 33229426 DOI: 10.1128/aac.01749-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Abstract
Pathogenic and opportunistic free-living amoebae such as Acanthamoeba spp. can cause keratitis (Acanthamoeba keratitis [AK]), which may ultimately lead to permanent visual impairment or blindness. Acanthamoeba can also cause rare but usually fatal granulomatous amoebic encephalitis (GAE). Current therapeutic options for AK require a lengthy treatment with nonspecific drugs that are often associated with adverse effects. Recent developments in the field led us to target cAMP pathways, specifically phosphodiesterase. Guided by computational tools, we targeted the Acanthamoeba phosphodiesterase RegA. Computational studies led to the construction and validation of a homology model followed by a virtual screening protocol guided by induced-fit docking and chemical scaffold analysis using our medicinal and biological chemistry (MBC) chemical library. Subsequently, 18 virtual screening hits were prioritized for further testing in vitro against Acanthamoeba castellanii, identifying amoebicidal hits containing piperidine and urea imidazole cores. Promising activities were confirmed in the resistant cyst form of the amoeba and in additional clinical Acanthamoeba strains, increasing their therapeutic potential. Mechanism-of-action studies revealed that these compounds produce apoptosis through reactive oxygen species (ROS)-mediated mitochondrial damage. These chemical families show promise for further optimization to produce effective antiacanthamoebal drugs.
Collapse
|
26
|
Kulkarni CA, Fink BD, Gibbs BE, Chheda PR, Wu M, Sivitz WI, Kerns RJ. A Novel Triphenylphosphonium Carrier to Target Mitochondria without Uncoupling Oxidative Phosphorylation. J Med Chem 2021; 64:662-676. [PMID: 33395531 DOI: 10.1021/acs.jmedchem.0c01671] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is an underlying pathology in numerous diseases. Delivery of diagnostic and therapeutic cargo directly into mitochondria is a powerful approach to study and treat these diseases. The triphenylphosphonium (TPP+) moiety is the most widely used mitochondriotropic carrier. However, studies have shown that TPP+ is not inert; TPP+ conjugates uncouple mitochondrial oxidative phosphorylation. To date, all efforts toward addressing this problem have focused on modifying lipophilicity of TPP+-linker-cargo conjugates to alter mitochondrial uptake, albeit with limited success. We show that structural modifications to the TPP+ phenyl rings that decrease electron density on the phosphorus atom can abrogate uncoupling activity as compared to the parent TPP+ moiety and prevent dissipation of mitochondrial membrane potential. These alterations of the TPP+ structure do not negatively affect the delivery of cargo to mitochondria. Results here identify the 4-CF3-phenyl TPP+ moiety as an inert mitochondria-targeting carrier to safely target pharmacophores and probes to mitochondria.
Collapse
Affiliation(s)
- Chaitanya A Kulkarni
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brian D Fink
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, United States
| | - Bettine E Gibbs
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Pratik R Chheda
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Meng Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, United States.,University of Iowa High Throughput Screening (UIHTS) Core, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - William I Sivitz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, United States
| | - Robert J Kerns
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
27
|
Wang R, Li Y, Dehaen W. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur J Med Chem 2020; 207:112737. [DOI: 10.1016/j.ejmech.2020.112737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
|
28
|
Hoenke S, Serbian I, Deigner HP, Csuk R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020; 25:molecules25225443. [PMID: 33233650 PMCID: PMC7699795 DOI: 10.3390/molecules25225443] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Immo Serbian
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Hans-Peter Deigner
- Medical and Life Science Faculty, Institute of Precision Medicine, Furtwangen University, Jakob–Kienzle–Street 17, D-78054 Villigen–Schwenningen, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
29
|
Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity. Int J Mol Sci 2020; 21:E8684. [PMID: 33217901 PMCID: PMC7698797 DOI: 10.3390/ijms21228684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in tumor cell mitochondria as a pharmacological target has been rekindled in recent years. This attention is due in part to new publications documenting heterogenous characteristics of solid tumors, including anoxic and hypoxic zones that foster cellular populations with differentiating metabolic characteristics. These populations include tumor-initiating or cancer stem cells, which have a strong capacity to adapt to reduced oxygen availability, switching rapidly between glycolysis and oxidative phosphorylation as sources of energy and metabolites. Additionally, this cell subpopulation shows high chemo- and radioresistance and a high capacity for tumor repopulation. Interestingly, it has been shown that inhibiting mitochondrial function in tumor cells affects glycolysis pathways, cell bioenergy, and cell viability. Therefore, mitochondrial inhibition may be a viable strategy for eradicating cancer stem cells. In this context, medicinal chemistry research over the last decade has synthesized and characterized "vehicles" capable of transporting novel or existing pharmacophores to mitochondrial tumor cells, based on mechanisms that exploit the physicochemical properties of the vehicles and the inherent properties of the mitochondria. The pharmacophores, some of which have been isolated from plants and others, which were synthesized in the lab, are diverse in chemical nature. Some of these molecules are active, while others are prodrugs that have been evaluated alone or linked to mitochondria-targeted agents. Finally, researchers have recently described drugs with well-proven safety and efficacy that may exert a mitochondria-specific inhibitory effect in tumor cells through noncanonical mechanisms. The effectiveness of these molecules may be improved by linking them to mitochondrial carrier molecules. These promising pharmacological agents should be evaluated alone and in combination with classic chemotherapeutic drugs in clinical studies.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Ivonne Olmedo
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Jennifer Faúndez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| | - José A. Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| |
Collapse
|
30
|
Rational design, synthesis and biological evaluation of triphenylphosphonium-ginsenoside conjugates as mitochondria-targeting anti-cancer agents. Bioorg Chem 2020; 103:104150. [DOI: 10.1016/j.bioorg.2020.104150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
|
31
|
Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem 2020; 204:112609. [DOI: 10.1016/j.ejmech.2020.112609] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
32
|
Catalán M, Castro-Castillo V, Gajardo-de la Fuente J, Aguilera J, Ferreira J, Ramires-Fernandez R, Olmedo I, Molina-Berríos A, Palominos C, Valencia M, Domínguez M, Souto JA, Jara JA. Continuous flow synthesis of lipophilic cations derived from benzoic acid as new cytotoxic chemical entities in human head and neck carcinoma cell lines. RSC Med Chem 2020; 11:1210-1225. [PMID: 33479625 DOI: 10.1039/d0md00153h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023] Open
Abstract
Continuous flow chemistry was used for the synthesis of a series of delocalized lipophilic triphenylphosphonium cations (DLCs) linked by means of an ester functional group to several hydroxylated benzoic acid derivatives and evaluated in terms of both reaction time and selectivity. The synthesized compounds showed cytotoxic activity and selectivity in head and neck tumor cell lines. The mechanism of action of the molecules involved a mitochondrial uncoupling effect and a decrease in both intracellular ATP production and apoptosis induction.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Vicente Castro-Castillo
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Javier Gajardo-de la Fuente
- Department of Organic and Physical Chemistry , Faculty of Chemical and Pharmaceutical Sciences , Universidad de Chile , Santos Dumont 964 , Santiago 8380494 , Chile
| | - Jocelyn Aguilera
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | | | - Ivonne Olmedo
- Physiopathology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago 8380453 , Chile
| | - Alfredo Molina-Berríos
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| | - Charlotte Palominos
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marcelo Valencia
- Clinical and Molecular Pharmacology Program , Institute of Biomedical Sciences (ICBM) , Faculty of Medicine , Universidad de Chile , Santiago , 8380453 , Chile
| | - Marta Domínguez
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Souto
- Departamento de Química Orgánica , Facultad de Química , CINBIO and IIS Galicia Sur , Universidade de Vigo , E-36310 , Vigo , Spain .
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD) , Faculty of Dentistry , Universidad de Chile , Santiago , 8380492 , Chile . ; Tel: +56 2 29781730
| |
Collapse
|
33
|
Orienti I, Cripe TP, Currier MA, Cavallari C, Teti G, Falconi M. A Cationic Nanomicellar Complex of the Quaternary Amphiphilic Amine RC16+ with Fenretinide as a New Multitasking System for Antitumor Therapy. Curr Drug Deliv 2020; 16:807-817. [PMID: 31577206 DOI: 10.2174/1567201816666191002100745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 07/27/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity. METHODS The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components. Moreover, the mean size of the nanomicellar complex (ranging from 20 ± 1.97 nm to 40 ± 3.05 nm) was suitable for accumulation to the tumor site by the enhanced permeability and retention effect and the positive charge provided by the quaternary RC16+ induced adsorption of the complex on the tumor cell surface improving the intracellular concentration of fenretinide. RESULTS All these characteristics made the Fen-RC16+ complex a multitasking system for antitumor therapy. CONCLUSION Indeed its in vivo activity, evaluated on SH-SY5Y xenografts, was strong, and the tumor growth did not resume after the treatment withdrawal.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Cristina Cavallari
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| |
Collapse
|
34
|
Synthesis of C-29-phosphonium derivatives of 3,28-diacetoxylup-20(29)-en-30-oic acid. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Jara JA, Rojas D, Castro-Castillo V, Fuentes-Retamal S, Sandoval-Acuña C, Parra E, Pavani M, Maya JD, Ferreira J, Catalán M. Novel benzoate-lipophilic cations selectively induce cell death in human colorectal cancer cell lines. Toxicol In Vitro 2020; 65:104814. [PMID: 32112803 DOI: 10.1016/j.tiv.2020.104814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a critical health issue worldwide. The high rate of liver and lung metastasis associated with CRC creates a significant barrier to effective and efficient therapy. Tumour cells, including CRC cells, have metabolic alterations, such as high levels of glycolytic activity, increased cell proliferation and invasiveness, and chemo- and radio-resistance. However, the abnormally elevated mitochondrial transmembrane potential of these cells also provides an opportunity to develop drugs that selectively target the mitochondrial functions of tumour cells. METHODS In this work, we used a new batch of benzoic acid esters with cytotoxic activities attached to the triphenylphosphonium group as a vehicle to target tumour mitochondria and improve their activity. We evaluated the cytotoxicity, selectivity, and mechanism of action of these derivatives, including the effects on energy stress-induced apoptosis and metabolic behaviour in the human CRC cell lines HCT-15 and COLO-205. RESULTS The benzoic acid derivatives selectively targeted the tumour cells with high potency and efficacy. The derivatives induced the uncoupling of the oxidative phosphorylation system, decreased the transmembrane potential, and reduced ATP levels while increasing AMPK activation, thereby triggering tumour cell apoptosis in both tumour cell lines tested. CONCLUSION The benzoic acid derivatives studied here are promising candidates for assessing in vivo models of CRC, despite the diverse metabolic characteristics of these tumour cells.
Collapse
Affiliation(s)
- José Antonio Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Diego Rojas
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Vicente Castro-Castillo
- Department of Physical Chemistry and Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Sandoval-Acuña
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eduardo Parra
- School of Medicine, Faculty of Health Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000007, Chile
| | - Mario Pavani
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Diego Maya
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
36
|
Complex Mitochondrial Dysfunction Induced by TPP +-Gentisic Acid and Mitochondrial Translation Inhibition by Doxycycline Evokes Synergistic Lethality in Breast Cancer Cells. Cells 2020; 9:cells9020407. [PMID: 32053908 PMCID: PMC7072465 DOI: 10.3390/cells9020407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid β-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.
Collapse
|
37
|
Karaman O, Almammadov T, Emre Gedik M, Gunaydin G, Kolemen S, Gunbas G. Mitochondria-Targeting Selenophene-Modified BODIPY-Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem 2019; 14:1879-1886. [PMID: 31663667 DOI: 10.1002/cmdc.201900380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Two red-absorbing, water-soluble and mitochondria (MT)-targeting selenophene-substituted BODIPY-based photosensitizers (PSs) were realized (BOD-Se, BOD-Se-I), and their potential as photodynamic therapy (PDT) agents were evaluated. BOD-Se-I showed higher 1 O2 generation yield thanks to the enhanced heavy-atom effect, and this derivative was further tested in detail in cell culture studies under both normoxic and hypoxic conditions. BOD-Se-I not only effectively functioned under hypoxic conditions, but also showed highly selective photocytotoxicity towards cancer cells. The selectivity is believed to arise from differences in mitochondrial membrane potentials of healthy and cancerous cells. To the best of our knowledge, this marks the first example of a MT-targeted BODIPY PS that functions under hypoxic conditions. Remarkably, thanks to the design strategy, all these properties where realized by a compound that was synthesized in only five steps with 32 % overall yield. Hence, this material holds great promise for the realization of next-generation PDT drugs for the treatment of hypoxic solid tumors.
Collapse
Affiliation(s)
- Osman Karaman
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| | | | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koc University, 34450, Istanbul, Turkey.,Koc University (KU), Surface Science and Technology Center (KUYTAM), 34450, Istanbul, Turkey
| | - Gorkem Gunbas
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| |
Collapse
|
38
|
Bi J, Wang W, Du J, Chen K, Cheng K. Structure-activity relationship study and biological evaluation of SAC-Garlic acid conjugates as novel anti-inflammatory agents. Eur J Med Chem 2019; 179:233-245. [DOI: 10.1016/j.ejmech.2019.06.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
|
39
|
Chen H, Wang J, Feng X, Zhu M, Hoffmann S, Hsu A, Qian K, Huang D, Zhao F, Liu W, Zhang H, Cheng Z. Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem Sci 2019; 10:7946-7951. [PMID: 31853349 PMCID: PMC6836573 DOI: 10.1039/c9sc01410a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
Fluorescent mitochondria-accumulating delocalized lipophilic cations (DLCs) for cancer therapy have drawn significant attention in the field of cancer theranostics. One of the most promising fluorescent DLCs, F16, can selectively trigger the apoptosis and necrosis of cancer cells, making it an attractive targeted theranostic drug candidate. However, it suffers from low clinical translation potential, largely due to its inefficient anti-cancer activity (IC50 in the μM range) and poorly understood structure-activity relationship (SAR). In this report, eleven indole-ring substituted F16 derivatives (F16s) were synthesized. Among these derivatives, 5BMF was identified as a highly effective theranostic agent, with in vitro studies showing a low IC50 of ∼50 nM (to H2228 cells) and high cancer to normal cell selectivity index of 225. In vivo studies revealed that tumors treated with 5BMF were significantly suppressed (almost no growth over the treatment period) compared to the PBS treated control group, and also no obvious toxicity to mice was found. In addition, the tumor imaging capability of 5BMF was demonstrated by in vivo fluorescence imaging. Finally, we report for the first time a proposed SAR for F16 DLCs. Our work lays down a solid foundation for translating 5BMF into a novel and highly promising DLC for cancer theranostics.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
- Center for Molecular Imaging Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai , 201203 , China
| | - Jing Wang
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Xin Feng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
- The College of Veterinary Medicine , Jilin University , Changchun , 130021 , China
| | - Mark Zhu
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Simon Hoffmann
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Alex Hsu
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Kun Qian
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Daijuan Huang
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Feng Zhao
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Wei Liu
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
| | - Huimao Zhang
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| |
Collapse
|
40
|
Ursolic Acid Derivatives as Potential Agents Against Acanthamoeba Spp. Pathogens 2019; 8:pathogens8030130. [PMID: 31443577 PMCID: PMC6789456 DOI: 10.3390/pathogens8030130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
The current chemotherapy of Acanthamoeba keratitis relies on few drugs with low potential and limited efficacy, for all this there is an urgent need to identify new classes of anti-Acanthamoeba agents. In this regard, natural products play an important role in overcoming the current need and medicinal chemistry of natural products represents an attractive approach for the discovery and development of new agents. Ursolic acid, a natural pentacyclic triterpenoid compound, possesses a broad spectrum of activities including anti-Acanthamoeba. Herein, we report on the development by chemical transformation of an ursolic acid-based series of seven compounds (2-8), one of them reported for the first time. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity revealed that acylation/ether formation or oxidation enhances their biological profile, suggesting that the hydrophobic moiety contributes to activity, presumably by increasing the affinity and/or cell membrane permeability. These ursolic acid derivatives highlight the potential of this source as a good base for the development of novel therapeutic agents against Acanthamoeba infections.
Collapse
|
41
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
42
|
Differential effects of alkyl gallates on quorum sensing in Pseudomonas aeruginosa. Sci Rep 2019; 9:7741. [PMID: 31123307 PMCID: PMC6533263 DOI: 10.1038/s41598-019-44236-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Virulence factors and biofilms constitute attractive targets for the prevention of infections caused by multidrug-resistant bacteria. Among alkyl gallates, propyl gallate (PG) and octyl gallate (OG) are used as food preservatives. Here we found that alkyl gallates differentially affect virulence, biofilm formation, and quorum sensing (QS) in Pseudomonas aeruginosa. Ethyl gallate (EG), PG, and butyl gallate (BG) inhibited biofilm formation and virulence factors including elastase, pyocyanin, and rhamnolipid, in P. aeruginosa without affecting cell viability by antagonizing the QS receptors LasR and RhlR. PG exhibited the most potent activity. Interestingly, hexyl gallate (HG) inhibited the production of rhamnolipid and pyocyanin but did not affect elastase production or biofilm formation. Notably, OG inhibited the production of rhamnolipid and pyocyanin but stimulated elastase production and biofilm formation. Analysis of QS signaling molecule production and QS gene expression suggested that HG inhibited RhlR, while OG activated LasR but inhibited PqsR. This mechanism was confirmed using QS mutants. Additionally, PG prevented the virulence of P. aeruginosa in Caenorhabditis elegans and a mouse model. This is the first report of the differential effects of alkyl gallates on QS systems and PG has great potential as an inhibitor of the virulence and biofilm formation of P. aeruginosa.
Collapse
|
43
|
Khasiyatullina NR, Mironov VF, Voloshina AD, Sapunova AS. Synthesis and Antimicrobial Properties of Novel Phosphonium Salts Bearing 1,4-Dihydroxyaryl Fragment. Chem Biodivers 2019; 16:e1900039. [PMID: 30817850 DOI: 10.1002/cbdv.201900039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Abstract
A versatile two-step pathway to the synthesis of triaryl(2,5-dihydroxy-6-methyl-3-(propan-2-yl)phenyl)- and triaryl(1,4-dihydroxynaphthyl)phosphonium salts from triarylphosphonium trifluoroacetates was developed. The reaction proceeds under mild conditions (20 °C, CH2 Cl2 ) with high yields (88-95 %). Some representatives of this series possess low hemolytic and high bactericidal activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Nadezhda R Khasiyatullina
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Vladimir F Mironov
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Alexandra D Voloshina
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Anastasiya S Sapunova
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| |
Collapse
|
44
|
Mitochondria-targeted triphenylphosphonium conjugated glycyrrhetinic acid derivatives as potent anticancer drugs. Bioorg Chem 2019; 85:179-190. [DOI: 10.1016/j.bioorg.2018.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/25/2022]
|
45
|
Wang J, He H, Xiang C, Fan XY, Yang LY, Yuan L, Jiang FL, Liu Y. Uncoupling Effect of F16 Is Responsible for Its Mitochondrial Toxicity and Anticancer Activity. Toxicol Sci 2019; 161:431-442. [PMID: 29069523 DOI: 10.1093/toxsci/kfx218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As a novel delocalized lipophilic cation, F16 selectively accumulates in mitochondria of carcinoma cells and shows a broad spectrum of antiproliferative action towards cancer cell lines. In order to reveal the mode of action and molecular mechanism of F16 inducing cytotoxicity, we investigated the effects of F16 on cancer cells and isolated mitochondria relative to its precursor compound (E)-3-(2-(pyridine-4yl)vinyl)-1 H-indole (PVI), which has a similar structure without positive charge. It was found that PVI did not accumulate in mitochondria, and exhibited lower cytotoxicity compared to F16. However, when they were directly incubated with mitochondria, both F16 and PVI were observed to induce damage to mitochondrial structure and function. Moreover, it was found that F16 as well as PVI acted as uncouplers on mitochondria, and further rescue experiments revealed that the addition of adenosine 5'-triphosphate was the most effective way to recover the cell viability decreased by F16. Thus it was concluded that the decreased intracellular adenosine 5'-triphosphate availability induced by the uncoupling effect of F16 was a major factor in F16-mediated cytotoxicity. Futhermore, the results indicated that the uncoupling effect of F16 is attributed to its chemical stucture in common with PVI but independent of its positive charge. The study may shed light on understanding the underlying mechanism of action for F16, and providing suggestions for the design of new mitochondria-targeted antitumor molecules.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Huan He
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Chen Xiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Xiao-Yang Fan
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Li-Yun Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Lian Yuan
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
46
|
Xu J, Yan B, Du X, Xiong J, Zhou M, Wang H, Du Z. Acidity-triggered zwitterionic prodrug nano-carriers with AIE properties and amplification of oxidative stress for mitochondria-targeted cancer theranostics. Polym Chem 2019. [DOI: 10.1039/c8py01518j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A TPE-based polyurethane prodrug has been established for mitochondria-targeting drug delivery and real-time monitoring.
Collapse
Affiliation(s)
- Junhuai Xu
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Bin Yan
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Xiaosheng Du
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Junjie Xiong
- Department of Pancreatic Surgery
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Mi Zhou
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Haibo Wang
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Zongliang Du
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| |
Collapse
|
47
|
Suárez-Rozas C, Simpson S, Fuentes-Retamal S, Catalán M, Ferreira J, Theoduloz C, Mella J, Cabezas D, Cassels BK, Yáñez C, Castro-Castillo V. Antiproliferative and proapoptotic activities of aza-annulated naphthoquinone analogs. Toxicol In Vitro 2018; 54:375-390. [PMID: 30389605 DOI: 10.1016/j.tiv.2018.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
1,4-Naphthoquinone derivatives have been widely documented with regard to their biological properties, and particularly their anticancer activities. In the 9,10-anthraquinone family, aza-annulation involving one of the carbonyl oxygen atoms has afforded more potent, possibly less toxic analogues. We recently carried out different modifications on the naphthoquinone skeleton to generate 3-chloro-2-amino- and 3-chloro-2-(N-acetamido)-1,4-naphthoquinone and 3,4-dihydrobenzo[f]quinoxalin-6(2H)-one derivatives. These three series of compounds were now tested against normal human fibroblasts and six human cancer cell lines. Some of the dihydrobenzoquinoxalinone derivatives were not only more potent than their 1,4-naphthoquinone counterparts, but also exhibited 10- to 14-fold selectivity between bladder carcinoma and normal cells and were equipotent with the non-selective reference drug used (etoposide). The fusion of an additional azaheterocycle to the 1,4-naphthoquinone nucleus modulates both the activity, selectivity and mechanism of action of the compounds. The electrochemical properties of selected compounds were evaluated in an attempt to correlate them with cytotoxic activity and mechanism of action. Finally, 3D-QSAR CoMFA and CoMSIA models were built on the AGS, J82, and HL-60 cell lines. The best models had values of r2pred = 0.815; 0.823 and 0.925. The main structural relationships found, suggest that acetylation and alkylation of the amino group with large groups would be beneficial for cytotoxic activity.
Collapse
Affiliation(s)
- Cristian Suárez-Rozas
- Department of Chemistry, Faculty of Sciences, University of Chile, Las Palmeras 3425, 780003 Ñuñoa, Santiago, Chile
| | - Sebastián Simpson
- Department of Chemistry, Faculty of Basic Sciences, Metropolitan Educational Sciences University, Av. José Pedro Alessandri 774, 7760197 Ñuñoa, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Cristina Theoduloz
- Cell Culture Laboratory, Faculty of Health Sciences, University of Talca, 824000, Av. Lircay, Talca, Chile
| | - Jaime Mella
- Institute of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaiso, 2360102, Av. Gran Bretaña 1111, Playa Ancha, Valparaiso, Casilla 5030, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), University of Valparaíso, 2360134, Santa Marta 183, Valparaíso, Chile
| | - David Cabezas
- Institute of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaiso, 2360102, Av. Gran Bretaña 1111, Playa Ancha, Valparaiso, Casilla 5030, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), University of Valparaíso, 2360134, Santa Marta 183, Valparaíso, Chile
| | - Bruce K Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Las Palmeras 3425, 780003 Ñuñoa, Santiago, Chile
| | - Claudia Yáñez
- Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8330015 Santiago, Chile
| | - Vicente Castro-Castillo
- Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8330015 Santiago, Chile.
| |
Collapse
|
48
|
Khasiyatullina NR, Bogdanov AV, Mironov VF. Reaction of 6-Bromo-1,2-naphthoquinone with Tertiary ortho-Anisylphosphines as a Convenient Synthetic Approach to 1,2-Dihydroxynaphthylphosphonium Salts. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Xu B, Yu Z, Xiang S, Li Y, Zhang SL, He Y. Rational design of mitochondria-targeted pyruvate dehydrogenase kinase 1 inhibitors with improved selectivity and antiproliferative activity. Eur J Med Chem 2018; 155:275-284. [DOI: 10.1016/j.ejmech.2018.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022]
|
50
|
Teixeira J, Oliveira C, Cagide F, Amorim R, Garrido J, Borges F, Oliveira PJ. Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid. J Enzyme Inhib Med Chem 2018. [PMID: 29513043 PMCID: PMC6010063 DOI: 10.1080/14756366.2018.1442831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pharmacological interventions targeting mitochondria present several barriers for a complete efficacy. Therefore, a new mitochondriotropic antioxidant (AntiOxBEN3) based on the dietary antioxidant gallic acid was developed. AntiOxBEN3 accumulated several thousand-fold inside isolated rat liver mitochondria, without causing disruption of the oxidative phosphorylation apparatus, as seen by the unchanged respiratory control ratio, phosphorylation efficiency, and transmembrane electric potential. AntiOxBEN3 showed also limited toxicity on human hepatocarcinoma cells. Moreover, AntiOxBEN3 presented robust iron-chelation and antioxidant properties in both isolated liver mitochondria and cultured rat and human cell lines. Along with its low toxicity profile and high antioxidant activity, AntiOxBEN3 strongly inhibited the calcium-dependent mitochondrial permeability transition pore (mPTP) opening. From our data, AntiOxBEN3 can be considered as a lead compound for the development of a new class of mPTP inhibitors and be used as mPTP de-sensitiser for basic research or clinical applications or emerge as a therapeutic application in mitochondria dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal.,b Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech , Cantanhede , Portugal
| | - Catarina Oliveira
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Fernando Cagide
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Ricardo Amorim
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal.,c PhD Programme in Experimental Biology and Biomedicine (PDBEB) , Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal.,d III-Institute for Interdisciplinary Research , University of Coimbra , Portugal
| | - Jorge Garrido
- e Department of Chemical Engineering, School of Engineering (ISEP) , Polytechnic Institute of Porto , Porto , Portugal
| | - Fernanda Borges
- a CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Paulo J Oliveira
- b Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech , Cantanhede , Portugal
| |
Collapse
|