1
|
Discovery of Hepatotoxic Equivalent Markers and Mechanism of Polygonum multiflorum Thunb. by Metabolomics Coupled with Molecular Docking. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010025. [PMID: 36615221 PMCID: PMC9822512 DOI: 10.3390/molecules28010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Polygonum multiflorum Thunb. (PMT), a commonly used Chinese herbal medicine for treating diseases such as poisoning and white hair, has attracted constant attention due to the frequent occurrence of liver injury incidents. To date, its hepatotoxic equivalent markers (HEMs) and potential hepatotoxic mechanisms are still unclear. In order to clarify the HEMs of PMT and further explore the potential mechanisms of hepatotoxicity, firstly, the chemical constituents in PMT extract were globally characterized, and the fingerprints of PMT extracts were established along with the detection of their hepatotoxicity in vivo. Then, the correlations between hepatotoxic features and component contents were modeled by chemometrics to screen HEMs of PMT, which were then further evaluated. Finally, the hepatotoxic mechanisms of PMT were investigated using liver metabolomics and molecular docking. The results show that the chemical combination of 2,3,5,4-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) and emodin-8-O-glucoside (EG) was discovered as the HEMs of PMT through pre-screening and verifying process. Liver metabolomics revealed that PMT caused liver injury by interfering with purine metabolism, which might be related to mitochondrial function disorder and oxidative injury via the up-regulations of xanthosine and xanthine, and the down-regulation of 5' nucleotidase (NT5E) and adenylate kinase 2 (AK2). This study not only found that the HEMs of PMT were TSG and EG, but also clarified that PMT might affect purine metabolism to induce liver injury, which contributed to our understanding of the underlying mechanisms of PMT hepatotoxicity.
Collapse
|
2
|
Vavřina Z, Perlíková P, Milisavljević N, Chevrier F, Smola M, Smith J, Dejmek M, Havlíček V, Buděšínský M, Liboska R, Vaneková L, Brynda J, Boura E, Řezáčová P, Hocek M, Birkuš G. Design, Synthesis, and Biochemical and Biological Evaluation of Novel 7-Deazapurine Cyclic Dinucleotide Analogues as STING Receptor Agonists. J Med Chem 2022; 65:14082-14103. [PMID: 36201304 PMCID: PMC9620234 DOI: 10.1021/acs.jmedchem.2c01305] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety. We used mouse cyclic GMP-AMP synthase and bacterial dinucleotide synthases for the enzymatic synthesis of CDNs. Alternatively, 7-(het)aryl 7-deazapurine CDNs were prepared by Suzuki-Miyaura cross-couplings. New CDNs were tested in biochemical and cell-based assays for their affinity to human STING. Eight CDNs showed better activity than 2'3'-cGAMP, the natural ligand of STING. The effect on cytokine and chemokine induction was also evaluated. The best activities were observed for CDNs bearing large aromatic substituents that point above the CDN molecule. We solved four X-ray structures of complexes of new CDNs with human STING. We observed π-π stacking interactions between the aromatic substituents and Tyr240 that are involved in the stabilization of CDN-STING complexes.
Collapse
Affiliation(s)
- Zdeněk Vavřina
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 2030/8, Prague 128 00, Czech Republic
| | - Pavla Perlíková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Nemanja Milisavljević
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 00, Czech Republic
| | - Florian Chevrier
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Miroslav Smola
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Joshua Smith
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- First
Faculty of Medicine, Charles University, Katerinska 1660/32, Prague 121 08, Czech Republic
| | - Milan Dejmek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Vojtěch Havlíček
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 00, Czech Republic
| | - Miloš Buděšínský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Radek Liboska
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Lenka Vaneková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, Vinicna 1594/7, Prague 128 43, Czech Republic
| | - Jiří Brynda
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Evzen Boura
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Pavlína Řezáčová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Gabriel Birkuš
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| |
Collapse
|
3
|
Vaňková K, Doleželová E, Tloušťová E, Hocková D, Zíková A, Janeba Z. Synthesis and anti-trypanosomal evaluation of novel N-branched acyclic nucleoside phosphonates bearing 7-aryl-7-deazapurine nucleobase. Eur J Med Chem 2022; 239:114559. [PMID: 35763869 DOI: 10.1016/j.ejmech.2022.114559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
A series of novel 7-aryl-7-deazaadenine-based N-branched acyclic nucleoside phosphonates (aza-ANPs) has been prepared using the optimized Suzuki cross-coupling reaction as the key synthetic step. The final free phosphonates 15a-h were inactive, due to their inefficient transport across cell membranes, but they inhibited Trypanosoma brucei adenine phosphoribosyltransferase (TbrAPRT1) with Ki values of 1.7-14.1 μM. The corresponding phosphonodiamidate prodrugs 14a-h exhibited anti-trypanosomal activity in the Trypanosoma brucei brucei cell-based assay with EC50 values in the range of 0.58-6.8 μM. 7-(4-Methoxy)phenyl-7-deazapurine derivative 14h, containing two phosphonate moieties, was the most potent anti-trypanosomal agent from the series, with EC50 = 0.58 μM and SI = 16. Finally, phosphonodiamidate prodrugs 14a-h exerted low micromolar cytotoxicity against leukemia and/or cancer cell lines tested.
Collapse
Affiliation(s)
- Karolína Vaňková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Dana Hocková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
4
|
Hussain F, Rahman FI, Saha P, Mikami A, Osawa T, Obika S, Rahman SMA. Synthesis of Sugar and Nucleoside Analogs and Evaluation of Their Anticancer and Analgesic Potentials. Molecules 2022; 27:molecules27113499. [PMID: 35684435 PMCID: PMC9182362 DOI: 10.3390/molecules27113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Chemical modification of sugars and nucleosides has a long history of producing compounds with improved selectivity and efficacy. In this study, several modified sugars (2–3) and ribonucleoside analogs (4–8) have been synthesized from α-d-glucose in a total of 21 steps. The compounds were tested for peripheral anti-nociceptive characteristics in the acetic acid-induced writhing assay in mice, where compounds 2, 7, and 8 showed a significant reduction in the number of writhes by 56%, 62%, and 63%, respectively. The compounds were also tested for their cytotoxic potential against human HeLa cell line via trypan blue dye exclusion test followed by cell counting kit-8 (CCK-8) assay. Compound 6 demonstrated significant cytotoxic activity with an IC50 value of 54 µg/mL. Molecular docking simulations revealed that compounds 2, 7, and 8 had a comparable binding affinity to cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes. Additionally, the bridged nucleoside analogs 7 and 8 potently inhibited adenosine kinase enzyme as well, which indicates an alternate mechanistic pathway behind their anti-nociceptive action. Cytotoxic compound 6 demonstrated strong docking with cancer drug targets human cytidine deaminase, proto-oncogene tyrosine-protein kinase Src, human thymidine kinase 1, human thymidylate synthase, and human adenosine deaminase 2. This is the first ever reporting of the synthesis and analgesic property of compound 8 and the cytotoxic potential of compound 6.
Collapse
Affiliation(s)
- Fahad Hussain
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
| | - Fahad Imtiaz Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
| | - Poushali Saha
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
| | - Atsushi Mikami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka 565-0871, Japan; (A.M.); (T.O.); (S.O.)
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka 565-0871, Japan; (A.M.); (T.O.); (S.O.)
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka 565-0871, Japan; (A.M.); (T.O.); (S.O.)
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
- Correspondence: ; Tel.: +880-1732477343
| |
Collapse
|
5
|
Lin C, Hulpia F, Karalic I, De Schepper L, Maes L, Caljon G, Van Calenbergh S. 6-Methyl-7-deazapurine nucleoside analogues as broad-spectrum antikinetoplastid agents. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:57-66. [PMID: 34375904 PMCID: PMC8358123 DOI: 10.1016/j.ijpddr.2021.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Kinetoplastid parasites are the causative agents of Chagas disease (CD), leishmaniasis and human African trypanosomiasis (HAT). Despite a sustained decrease in the number of HAT cases, more efforts are needed to discover safe and effective therapies against CD and leishmaniasis. Kinetoplastid parasites lack the capability to biosynthesize purines de novo and thus critically depend on uptake and processing of purines from host cells. As such, modified purine nucleoside analogues may act as broad-spectrum antikinetoplastid agents. This study assessed the in vitro activity profile of 7-modified 6-methyl tubercidin derivatives against Trypanosoma cruzi, Leishmania infantum, Trypanosoma brucei brucei and T. b. rhodesiense, and led to the identification of analogues that display activity against all these species, such as 7-ethyl (13) and 7-chloro (7) analogues. These selected analogues also proved sufficiently stable in liver microsomes to warrant in vivo follow-up evaluation. New safe and effective therapies are needed for Chagas disease and leishmaniasis. The causative agents rely on the acquisition of purine nucleobases and nucleosides from host cells to grow and multiply. New 7-substituted 6-methyl-7-deazapurine ribonucleosides were synthesized. A 7-ethyl and 7-chloro analogue display low to submicromolar activity against T. brucei, T. cruzi and L. infantum.
Collapse
Affiliation(s)
- Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Izet Karalic
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Laurens De Schepper
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| |
Collapse
|
6
|
Milisavljevic N, Konkolová E, Kozák J, Hodek J, Veselovská L, Sýkorová V, Čížek K, Pohl R, Eyer L, Svoboda P, Růžek D, Weber J, Nencka R, Bouřa E, Hocek M. Antiviral Activity of 7-Substituted 7-Deazapurine Ribonucleosides, Monophosphate Prodrugs, and Triphoshates against Emerging RNA Viruses. ACS Infect Dis 2021; 7:471-478. [PMID: 33395259 DOI: 10.1021/acsinfecdis.0c00829] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of 7-deazaadenine ribonucleosides bearing alkyl, alkenyl, alkynyl, aryl, or hetaryl groups at position 7 as well as their 5'-O-triphosphates and two types of monophosphate prodrugs (phosphoramidates and S-acylthioethanol esters) were prepared and tested for antiviral activity against selected RNA viruses (Dengue, Zika, tick-borne encephalitis, West Nile, and SARS-CoV-2). The modified triphosphates inhibited the viral RNA-dependent RNA polymerases at micromolar concentrations through the incorporation of the modified nucleotide and stopping a further extension of the RNA chain. 7-Deazaadenosine nucleosides bearing ethynyl or small hetaryl groups at position 7 showed (sub)micromolar antiviral activities but significant cytotoxicity, whereas the nucleosides bearing bulkier heterocycles were still active but less toxic. Unexpectedly, the monophosphate prodrugs were similarly or less active than the corresponding nucleosides in the in vitro antiviral assays, although the bis(S-acylthioethanol) prodrug 14h was transported to the Huh7 cells and efficiently released the nucleoside monophosphate.
Collapse
Affiliation(s)
- Nemanja Milisavljevic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Eva Konkolová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucia Veselovská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Karel Čížek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Luděk Eyer
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Pavel Svoboda
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, CZ-61242 Brno, Czech Republic
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
7
|
Pecina A, Eyrilmez SM, Köprülüoğlu C, Miriyala VM, Lepšík M, Fanfrlík J, Řezáč J, Hobza P. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. Chempluschem 2020; 85:2362-2371. [PMID: 32609421 DOI: 10.1002/cplu.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Quantum mechanical (QM) methods have been gaining importance in structure-based drug design where a reliable description of protein-ligand interactions is of utmost significance. However, strategies i. e. QM/MM, fragmentation or semiempirical (SQM) methods had to be pursued to overcome the unfavorable scaling of QM methods. Various SQM-based approaches have significantly contributed to the accuracy of docking and improvement of lead compounds. Parametrizations of SQM and implicit solvent methods in our laboratory have been instrumental to obtain a reliable SQM-based scoring function. The experience gained in its application for activity ranking of ligands binding to tens of protein targets resulted in setting up a faster SQM/COSMO scoring approach, which outperforms standard scoring methods in native pose identification for two dozen protein targets with ten thousand poses. Recently, SQM/COSMO was effectively applied in a proof-of-concept study of enrichment in virtual screening. Due to its superior performance, feasibility and chemical generality, we propose the SQM/COSMO approach as an efficient tool in structure-based drug design.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Cemal Köprülüoğlu
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| |
Collapse
|
8
|
Mehta P, Malik R. Discovery and identification of putative adenosine kinase inhibitors as potential anti-epileptic agents from structural insights. J Biomol Struct Dyn 2019; 38:5320-5337. [DOI: 10.1080/07391102.2019.1699447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Pakhuri Mehta
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
9
|
Crespo R, Dang Q, Zhou NE, Guthrie LM, Snavely TC, Dong W, Loesch KA, Suzuki T, You L, Wang W, O’Malley T, Parish T, Olsen DB, Sacchettini JC. Structure-Guided Drug Design of 6-Substituted Adenosine Analogues as Potent Inhibitors of Mycobacterium tuberculosis Adenosine Kinase. J Med Chem 2019; 62:4483-4499. [PMID: 31002508 PMCID: PMC6511943 DOI: 10.1021/acs.jmedchem.9b00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis adenosine kinase (MtbAdoK) is an essential enzyme of Mtb and forms part of the purine salvage pathway within mycobacteria. Evidence suggests that the purine salvage pathway might play a crucial role in Mtb survival and persistence during its latent phase of infection. In these studies, we adopted a structural approach to the discovery, structure-guided design, and synthesis of a series of adenosine analogues that displayed inhibition constants ranging from 5 to 120 nM against the enzyme. Two of these compounds exhibited low micromolar activity against Mtb with half maximal effective inhibitory concentrations of 1.7 and 4.0 μM. Our selectivity and preliminary pharmacokinetic studies showed that the compounds possess a higher degree of specificity against MtbAdoK when compared with the human counterpart and are well tolerated in rodents, respectively. Finally, crystallographic studies showed the molecular basis of inhibition, potency, and selectivity and revealed the presence of a potentially therapeutically relevant cavity unique to the MtbAdoK homodimer.
Collapse
Affiliation(s)
- Roberto
A. Crespo
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Qun Dang
- Merck
Sharp Dohme Corporation, West Point Pennsylvania 19486, United States
| | - Nian E. Zhou
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Liam M. Guthrie
- College
of Medicine, Texas A&M University Health
Science Center, Bryan, Texas 77807, United
States
| | - Thomas C. Snavely
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Wen Dong
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kimberly A. Loesch
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Takao Suzuki
- WuXi
AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Lanying You
- WuXi
AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Wei Wang
- WuXi
AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Theresa O’Malley
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue E, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue E, Seattle, Washington 98102, United States
| | - David B. Olsen
- Merck
Sharp Dohme Corporation, West Point Pennsylvania 19486, United States,E-mail: . Phone: 215-652-5250 (D.B.O.)
| | - James C. Sacchettini
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States,E-mail: . Phone: (979) 845-8548 (J.C.S.)
| |
Collapse
|
10
|
Ding H, Ruan Z, Kou P, Dong X, Bai J, Xiao Q. Total Synthesis of Mycalisine B. Mar Drugs 2019; 17:E226. [PMID: 31013980 PMCID: PMC6520845 DOI: 10.3390/md17040226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
The first total synthesis of the marine nucleoside Mycalisine B-a naturally occurring and structurally distinct 4,5-unsaturated 7-deazapurine nucleoside-has been accomplished in 10 linear steps with 27.5% overall yield from commercially available 1,2,3,5-tetra-O-acetyl-ribose and tetracyanoethylene. Key steps of the approach include: (1) I2 catalyzed acetonide formation from 1,2,3,5-tetra-O-acetylribose and acetone at large scale; (2) Vorbrüggen glycosylation using N4-benzoyl-5-cyano-6-bromo-7H-pyrrolo[2,3-d]pyrimidine as a nucleobase to avoid formation of N-3 isomer; (3) mild and scalable reaction conditions.
Collapse
Affiliation(s)
- Haixin Ding
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Zhizhong Ruan
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Peihao Kou
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Xiangyou Dong
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Jiang Bai
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
11
|
Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. Eur J Med Chem 2019; 164:689-705. [DOI: 10.1016/j.ejmech.2018.12.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
|
12
|
Tokarenko A, Lišková B, Smoleń S, Táborská N, Tichý M, Gurská S, Perlíková P, Frydrych I, Tloušt'ová E, Znojek P, Mertlíková-Kaiserová H, Poštová Slavětínská L, Pohl R, Klepetářová B, Khalid NUA, Wenren Y, Laposa RR, Džubák P, Hajdúch M, Hocek M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J Med Chem 2018; 61:9347-9359. [PMID: 30281308 DOI: 10.1021/acs.jmedchem.8b01258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three series of isomeric pyrrolo- and furo-fused 7-deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2',3':4,5]pyrrolo[2,3- d]pyrimidine and furo[2',3':4,5]pyrrolo[2,3- d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3',2',4,5]pyrrolo[2,3- d]pyrimidine nucleosides were inactive. The most active were the methyl, methoxy, and methylsulfanyl derivatives exerting submicromolar cytostatic effects and good selectivity toward cancer cells. We have shown that the nucleosides are activated by intracellular phosphorylation and the nucleotides get incorporated to both RNA and DNA, where they cause DNA damage. They represent a new type of promising candidates for preclinical development toward antitumor agents.
Collapse
Affiliation(s)
- Anna Tokarenko
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| | - Barbora Lišková
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Natálie Táborská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Soňa Gurská
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Ivo Frydrych
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Pawel Znojek
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic
| | - Noor-Ul-Ain Khalid
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Yiqian Wenren
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Rebecca R Laposa
- Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle, Room 4213 , Toronto , Ontario M5S 1A8 , Canada
| | - Petr Džubák
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Marián Hajdúch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine , Palacky University and University Hospital in Olomouc , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , CZ-775 15 Olomouc , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic.,Department of Organic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
13
|
Perlíková P, Hocek M. Pyrrolo[2,3-d]pyrimidine (7-deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med Res Rev 2017; 37:1429-1460. [PMID: 28834581 PMCID: PMC5656927 DOI: 10.1002/med.21465] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022]
Abstract
7-Deazapurine (pyrrolo[2,3-d]pyrimidine) nucleosides are important analogues of biogenic purine nucleosides with diverse biological activities. Replacement of the N7 atom with a carbon atom makes the five-membered ring more electron rich and brings a possibility of attaching additional substituents at the C7 position. This often leads to derivatives with increased base-pairing in DNA or RNA or better binding to enzymes. Several types of 7-deazapurine nucleosides with potent cytostatic or cytotoxic effects have been identified. The most promising are 7-hetaryl-7-deazaadenosines, which are activated in cancer cells by phosphorylation and get incorporated both to RNA (causing inhibition of proteosynthesis) and to DNA (causing DNA damage). Mechanism of action of other types of cytostatic nucleosides, 6-hetaryl-7-deazapurine and thieno-fused deazapurine ribonucleosides, is not yet known. Many 7-deazaadenosine derivatives are potent inhibitors of adenosine kinases. Many types of sugar-modified derivatives of 7-deazapurine nucleosides are also strong antivirals. Most important are 2'-C-methylribo- or 2'-C-methyl-2'-fluororibonucleosides with anti-HCV activities (several compounds underwent clinical trials). Some underexplored areas of potential interest are also outlined.
Collapse
Affiliation(s)
- Pavla Perlíková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesCZ‐16610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesCZ‐16610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueCZ‐12843Prague 2Czech Republic
| |
Collapse
|
14
|
Tichý M, Smoleń S, Tloušt'ová E, Pohl R, Oždian T, Hejtmánková K, Lišková B, Gurská S, Džubák P, Hajdúch M, Hocek M. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J Med Chem 2017; 60:2411-2424. [PMID: 28221790 DOI: 10.1021/acs.jmedchem.6b01766] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two isomeric series of new thieno-fused 7-deazapurine ribonucleosides (derived from 4-substituted thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidines and thieno[3',2':4,5]pyrrolo[2,3-d]pyrimidines) were synthesized by a sequence involving Negishi coupling of 4,6-dichloropyrimidine with iodothiophenes, nucleophilic azidation, and cyclization of tetrazolopyrimidines, followed by glycosylation and cross-couplings or nucleophilic substitutions at position 4. Most nucleosides (from both isomeric series) exerted low micromolar or submicromolar in vitro cytostatic activities against a broad panel of cancer and leukemia cell lines and some antiviral activity against HCV. The most active were the 6-methoxy, 6-methylsulfanyl, and 6-methyl derivatives, which were highly active to cancer cells and less toxic or nontoxic to fibroblasts.
Collapse
Affiliation(s)
- Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomáš Oždian
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Klára Hejtmánková
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry , Hněvotínská 5, CZ-775 15 Olomouc, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Gilead Sciences & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
15
|
Hara T, Kodama T, Takegaki Y, Morihiro K, Ito KR, Obika S. Synthesis and Properties of 7-Deazapurine- and 8-Aza-7-deazapurine-Locked Nucleic Acid Analogues: Effect of the Glycosidic Torsion Angle. J Org Chem 2016; 82:25-36. [DOI: 10.1021/acs.joc.6b02525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takashi Hara
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kodama
- Graduate
School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yumi Takegaki
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Morihiro
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ramon Ito
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Köse M, Schiedel AC, Bauer AA, Poschenrieder H, Burbiel JC, Akkinepally RR, Stachel HD, Müller CE. Focused screening to identify new adenosine kinase inhibitors. Bioorg Med Chem 2016; 24:5127-5133. [PMID: 27595538 DOI: 10.1016/j.bmc.2016.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/18/2023]
Abstract
Adenosine kinase (AdK) is a key player in controlling intra- and extracellular concentrations of the signaling molecule adenosine. Extensive evidence points to an important role of AdK in several diseases, and suggests that AdK inhibition might be a promising therapeutic strategy. The development of a new AdK assay and subsequent screening of part of our focused compound library led to the identification of 12 hit compounds (hit rate of 6%) representing six new classes of non-nucleoside human AdK inhibitors. The most potent inhibitor 1 displayed a Ki value of 184nM. Compound screening with a newly developed assay was useful and efficient for discovering novel AdK inhibitors which may serve as lead structures for developing drugs for adenosine augmentation therapy.
Collapse
Affiliation(s)
- Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Anke C Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alexander Andreas Bauer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Hermann Poschenrieder
- Department Pharmazie, Zentrum für Pharmaforschung, Universität München, Butenandtstr. 7, D-81377 München, Germany
| | - Joachim C Burbiel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Raghuram Rao Akkinepally
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, A.P. 506009, India
| | - Hans-Dietrich Stachel
- Department Pharmazie, Zentrum für Pharmaforschung, Universität München, Butenandtstr. 7, D-81377 München, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
17
|
Kavoosi S, Rayala R, Walsh B, Barrios M, Gonzalez WG, Miksovska J, Mathivathanan L, Raptis RG, Wnuk SF. Synthesis of 8-(1,2,3-triazol-1-yl)-7-deazapurine nucleosides by azide-alkyne click reactions and direct C-H bond functionalization. Tetrahedron Lett 2016; 57:4364-4367. [PMID: 28239199 DOI: 10.1016/j.tetlet.2016.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment of toyocamycin or sangivamycin with 1,3-dibromo-5,5-dimethylhydantoin in MeOH (r.t./30 min) gave 8-bromotoyocamycin and 8-bromosangivamycin in good yields. Nucleophilic aromatic substitution of 8-bromotoyocamycin with sodium azide provided novel 8-azidotoyocamycin. Strain promoted click reactions of the latter with cyclooctynes resulted in the formation of the 1,2,3-triazole products. Iodine-mediated direct C8-H bond functionalization of tubercidin with benzotriazoles in the presence of tert-butyl hydroperoxide gave the corresponding 8-benzotriazolyltubercidin derivatives. The 8-(1,2,3-triazol-1-yl)-7-deazapurine derivatives showed moderate quantum yields and a large Stokes shifts of ~ 100 nm.
Collapse
Affiliation(s)
- Sam Kavoosi
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Ramanjaneyulu Rayala
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Brenna Walsh
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Maria Barrios
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Walter G Gonzalez
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Jaroslava Miksovska
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Logesh Mathivathanan
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Raphael G Raptis
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| | - Stanislaw F Wnuk
- Florida International University, Department of Chemistry and Biochemistry, Miami, Florida, 33199, United States
| |
Collapse
|
18
|
Toti KS, Osborne D, Ciancetta A, Boison D, Jacobson KA. South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase. J Med Chem 2016; 59:6860-77. [PMID: 27410258 PMCID: PMC5032833 DOI: 10.1021/acs.jmedchem.6b00689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine kinase (AdK) inhibitors raise endogenous adenosine levels, particularly in disease states, and have potential for treatment of seizures, neurodegeneration, and inflammation. On the basis of the South (S) ribose conformation and molecular dynamics (MD) analysis of nucleoside inhibitors bound in AdK X-ray crystallographic structures, (S)- and North (N)-methanocarba (bicyclo[3.1.0]hexane) derivatives of known inhibitors were prepared and compared as human (h) AdK inhibitors. 5'-Hydroxy (34, MRS4202 (S); 55, MRS4380 (N)) and 5'-deoxy 38a (MRS4203 (S)) analogues, containing 7- and N(6)-NH phenyl groups in 7-deazaadenine, robustly inhibited AdK activity (IC50 ∼ 100 nM), while the 5'-hydroxy derivative 30 lacking the phenyl substituents was weak. Docking in the hAdK X-ray structure and MD simulation suggested a mode of binding similar to 5'-deoxy-5-iodotubercidin and other known inhibitors. Thus, a structure-based design approach for further potency enhancement is possible. The potent AdK inhibitors in this study are ready to be further tested in animal models of epilepsy.
Collapse
Affiliation(s)
- Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Danielle Osborne
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute , 1225 NE Second Avenue, Portland, Oregon 97232, United States
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, United States
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute , 1225 NE Second Avenue, Portland, Oregon 97232, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
19
|
Perlíková P, Rylová G, Nauš P, Elbert T, Tloušťová E, Bourderioux A, Slavětínská LP, Motyka K, Doležal D, Znojek P, Nová A, Harvanová M, Džubák P, Šiller M, Hlaváč J, Hajdúch M, Hocek M. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Mol Cancer Ther 2016; 15:922-37. [DOI: 10.1158/1535-7163.mct-14-0933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/02/2016] [Indexed: 11/16/2022]
|
20
|
Abstract
Purine and pyrimidine nucleoside and nucleotide analogs have been extensively studied as anticancer and antiviral agents. In addition to this, they have recently shown great potential against Mycobacterium Tuberculosis, the causative agent of TB. TB ranks as the tenth most common cause of death in the world. The current treatment for TB infection is limited by side effects and cost of the drugs and most importantly by the development of resistance to the therapy. Therefore the development of novel drugs, capable of overcoming the drawbacks of the existing treatments, has become the focus of many research programs. In parallel to that, a tremendous effort has been made to elucidate the unique metabolism of this pathogen with the aim to identify new possible targets. This review presents the state of the art in nucleoside and nucleotide analogs in the treatment of TB. In particular, we report on the inhibitory activity of this class of compounds, both in enzymatic and whole-cell assays, providing a brief insight to which reported target these novel compounds are hitting.
Collapse
|
21
|
Malnuit V, Slavětínská LP, Nauš P, Džubák P, Hajdúch M, Stolaříková J, Snášel J, Pichová I, Hocek M. 2-Substituted 6-(Het)aryl-7-deazapurine Ribonucleosides: Synthesis, Inhibition of Adenosine Kinases, and Antimycobacterial Activity. ChemMedChem 2015; 10:1079-93. [PMID: 25882678 DOI: 10.1002/cmdc.201500081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/17/2015] [Indexed: 12/26/2022]
Abstract
A series of 6-(hetero)aryl- or 6-methyl-7-deazapurine ribonucleosides bearing a substituent at position 2 (Cl, F, NH2, or CH3) were prepared by cross-coupling reactions at position 6 and functional group transformations at position 2. Cytostatic, antiviral, and antimicrobial activity assays were performed. The title compounds were observed to be potent and selective inhibitors of Mycobacterium tuberculosis adenosine kinase (ADK), but not human ADK; moreover, they were found to be non-cytotoxic. The antimycobacterial activities against M. tuberculosis, however, were only moderate. The reason for this could be due to either poor uptake through the cell wall or to parallel biosynthesis of adenosine monophosphate by the salvage pathway.
Collapse
Affiliation(s)
- Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Petr Nauš
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77515 Olomouc (Czech Republic)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 77515 Olomouc (Czech Republic)
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské nám. 7, 70200 Ostrava (Czech Republic)
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic).
| |
Collapse
|
22
|
Klečka M, Slavětínská LP, Tloušťová E, Džubák P, Hajdúch M, Hocek M. Synthesis and cytostatic activity of 7-arylsulfanyl-7-deazapurine bases and ribonucleosides. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00492b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel 6-substituted 7-arylsulfanyl-7-deazapurine bases and nucleosides has been prepared for screening of anticancer activity. 7-Thienylsulfanyl-7-deazapurine bases exerted micromolar cytostatic affects.
Collapse
Affiliation(s)
- Martin Klečka
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead Sciences & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Lenka Poštová Slavětínská
- Department of Organic Chemistry
- Faculty of Science
- Charles University in Prague
- CZ-12843 Prague 2
- Czech Republic
| | - Eva Tloušťová
- Department of Organic Chemistry
- Faculty of Science
- Charles University in Prague
- CZ-12843 Prague 2
- Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacky University and University Hospital in Olomouc
- CZ-775 15 Olomouc
- Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacky University and University Hospital in Olomouc
- CZ-775 15 Olomouc
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead Sciences & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| |
Collapse
|